CH 222 Winter 2025: **Problem Set #2** *Instructions*

Step One (all sections):

- Learn the material for Problem Set #2 by reading Chapter 8 of the textbook and/or by watching the videos found on our website (https://mhchem.org/222)
- Try the problems for Problem Set #2 found on the next pages on your own first. Write out the answers (and show your work) by hand (on a tablet or paper); do not type your answers (and work) to avoid a point penalty. If you write the answers on the problem set itself, you will receive fewer points. Include your name on your problem set!

Step Two:

<u>Section H1</u>: We will go over Problem Set #2 during recitation. Self correct all problems of your problem set before turning it in at the end of recitation.

• Section H1: due Wednesday, January 22 at 1:10 PM

<u>Section 01 and Section W1</u>: Watch the recitation video for Problem Set #2 here: http://mhchem.org/y/u.htm

Self correct *all* **of the problems** while viewing the video. Mark correct problems with a star (or other similar mark), and correct all incorrect problems (show the correct answer and the steps required to achieve it.)

- <u>Section W1</u>: Submit Problem Set #2 via email (mike.russell@mhcc.edu) as a single PDF file (use CamScanner (https://camscanner.com), CombinePDF (https://combinepdf.com), etc.) by 11:59 PM Wednesday, January 22.
- <u>Section 01</u>: Due to MLK day, submit Problem Set #2 as a hard copy (nothing electronic) on **9 AM**, Wednesday January 22 in AC 1303 (lecture.)

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

CH 222 Problem Set #2

- * Complete problem set on separate pieces of paper showing all work, circling final answers, etc.
- * Self correct your work before turning it in to the instructor.

Covering: Chapter Eight and Chapter Guide Two

Important Tables and/or Constants: "MO Diagram for B₂, C₂, and N₂" / "MO Diagram for O₂, F₂, and Ne₂" (Handouts, http://mhchem.org/MO), "Geometry and Polarity Guide" (Handout, https://mhchem.org/geopo)

- 1. Draw the Lewis structure of NF₃. What are its electron pair and molecular geometries? What is the hybridization of the nitrogen atom? What orbitals on N and F overlap to form bonds between these elements?
- 2. Specify the electron pair and molecular geometry for each of the following. Describe the hybrid orbital set used by the central atom in each molecule or ion.
 - a. CSe₂
 - b. SO₂
 - c. CH₂O
 - $d. \ NH_{4^+}$
- 3. Draw the Lewis structure and then specify the electron pair and molecular geometries for each of the following molecules or ions. Identify the hybridization of the central atom.
 - a. XeOF₄
 - $b. \ OSF_4$
 - $c. \quad BrF_5$
 - d. The central atom in $Br_{3^{-1}}$
- 4. The compound C₄H₈ has six isomers. Draw them. (*Note:* 4 of them have a double bond.)
- 5. Give the electron configurations for the Li_2 , $Li_{2^{+1}}$ and $Li_{2^{-1}}$ in molecular orbital terms. Compare the Li-Li bond order in the three species; which has the shortest bond length?
- 6. Oxygen, O₂, can acquire one or two electrons to give $O_{2^{-1}}$ (superoxide ion) or $O_{2^{2^{-}}}$ (peroxide ion.) Write the molecular orbital configuration for O_2 , O_2^{-1} and $O_2^{2^{-}}$. Remember to use the molecular orbital diagram for O_2 , F_2 and Ne_2 when constructing the diagrams. For each species, determine the
 - a. Magnetic character
 - b. Net number of σ and π bonds
 - c. Bond order
 - d. Relative oxygen-oxygen bond length
- 7. The nitrosyl ion, NO⁺, has an interesting chemistry. Use the " O_2 , F_2 and Ne_2 " molecular orbital diagram for this problem.
 - a. Is NO⁺ diamagnetic or paramagnetic? If paramagnetic, how many unpaired electrons does it have?
 - b. What is the highest energy occupied molecular orbital (HOMO) in the molecule? What is the lowest unoccupied molecular orbital (LUMO) in the molecule?
 - c. What is the nitrogen-oxygen bond order?
 - d. Is the N-O bond in NO⁺ stronger or weaker than the bond in NO? Explain.

Problem Set #2 continues on the next page

- 8. Nitrogen, N_2 , can ionize to form N_{2^+} or add an electron to form $N_{2^{-1}}$. Using molecular orbital theory, compare these three species with regard to:
 - a. Their magnetic character
 - b. Net number of π bonds
 - c. Bond order
 - d. Bond length
 - e. Bond strength
- 9. Phosphoserine is a less common amino acid with the structure shown to the right.
 - a. Describe the hybridization of atoms 1 through 5.
 - b. What are the approximate values of the bond angles *A*, *B*, *C* and *D*?
- 10. Sketch the Lewis structures of ClF_{2^+} and $ClF_{2^{-1}}$. What are the electron pair and molecular geometries of each ion? Do both have the same F-Cl-F- angle? What hybrid set is used in each ion?
- 11. Compare the structure and bonding in CO_2 and CO_3^{2-} with regard to:
 - a. The O-C-O bond angles
 - b. The CO bond order
 - c. The C atom hybridization.
 - d. Does the molecule CO have a stronger bond than CO_2 and/or CO_3^{2-2} ? Explain.
- 12. Hydroxyproline is an unusual amino acid with the structure shown to the (right.
 - a. What are the approximate values for the bond angles for 1, 2, 3, 4 and 5?
 - b. Describe the hybridization around the central atom for 1, 2, 3, 4 and 5.
- 13. Iodine and oxygen form a complex series of ions, among them IO4-1 and

 $IO_{5^{-3}}$. Draw the Lewis structures for these ions and specify their electron pair and molecular geometries. What is the hybridization of the I atom in these ions?

- 14. Which of the following molecules or ions should be paramagnetic? What is the highest occupied molecular orbital (HOMO) in each one? Note that if an O, F or Ne is present in the molecule, you should use the molecular orbital diagram for O₂, F₂ and Ne₂ to construct the molecule.
 - a. NO
 - b. OF-1
 - c. O₂²⁻
 - d. Ne₂+1
 - e. CN

This page intentionally left blank for printing purposes