\qquad
\qquad

1. Consider the data (below) gathered for the following reaction: $\mathbf{A}+\mathbf{B} \rightarrow \mathbf{C}$ (8 points)

$[\mathrm{A}](\mathrm{M})$	$[\mathrm{B}](\mathrm{M})$	$\Delta[\mathrm{C}] / \Delta t($ initial $) \mathrm{M} / \mathrm{s}$
0.100	0.200	6.80×10^{-6}
0.100	0.400	2.72×10^{-5}
0.200	0.400	5.44×10^{-5}

a. What is the order of the reaction with respect to $\mathrm{A}: _$

B: $\underline{\mathbf{2}}$ Overall order: $\underline{\mathbf{3}}$
b. What is the numerical value for the rate constant?
$\mathrm{k}=1.70 \times 10^{-3}$
c. Write the rate law for the reaction. $\quad \mathbf{r a t e}=\mathbf{k}[\mathbf{A}][\mathbf{B}]^{2}$
d. What is the value of the rate when $[\mathrm{A}]=0.337 \mathrm{M}$ and $[\mathrm{B}]=0.122 \mathrm{M}$?

```
rate = 8.53 x 10-6
```

2. In basic solution, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ reacts according to the equation below.
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Cl}^{-}$
The accepted mechanism for the reaction is
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{Cl}^{-}$
(slow)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
(fast)
a. What is a rate law that is consistent with the mechanism for this reaction? (2 points)
rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right] \quad$ slow step
b. Are intermediates present in the reaction? If so, list them. (2 points)
yes, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$
3. For a chemical reaction, the activation energy for the forward reaction is +187 kJ and the activation energy for the backward reaction is +112 kJ . What is the overall energy change for the forward reaction? (4 points)
```
forward reaction is endothermic (reverse reaction has lower activation energy)
\DeltaH=187-112=+75 kJ
```

4. What is the half-life of a first order reaction with a rate constant of $0.457 \mathrm{~s}^{-1}$? (4 points)
$\mathrm{t}_{1 / 2}=\mathbf{1 . 5 2 \mathrm { s }}$
