1. Consider the data (below) gathered for the following reaction: $A + B \rightarrow C$ (8 points)

[A] (M)	[B] (M)	Δ [C]/ Δt (initial) M/s
0.100	0.200	6.80×10^{-6}
0.100	0.400	2.72×10^{-5}
0.200	0.400	5.44×10^{-5}

- a. What is the order of the reaction with respect to A: $\underline{1}$ B: $\underline{2}$ Overall order: $\underline{3}$
- b. What is the numerical value for the rate constant?

$$k = 1.70 \times 10^{-3}$$

- c. Write the rate law for the reaction. $rate = k[A][B]^2$
- d. What is the value of the rate when [A] = 0.337 M and [B] = 0.122 M?

rate =
$$8.53 \times 10^{-6}$$

2. In basic solution, (CH₃)₃CCl reacts according to the equation below.

$$(CH_3)_3CCl + OH^- \rightarrow (CH_3)_3COH + Cl^-$$

The accepted mechanism for the reaction is

$$(CH_3)_3CCl \rightarrow (CH_3)_3C^+ + Cl^-$$
 (slow)
 $(CH_3)_3C^+ + OH^- \rightarrow (CH_3)_3COH$ (fast)

a. What is a rate law that is consistent with the mechanism for this reaction? (2 points)

rate =
$$k [(CH_3)_3CCl]$$
 slow step

b. Are intermediates present in the reaction? If so, list them. (2 points)

3. For a chemical reaction, the activation energy for the forward reaction is +187 kJ and the activation energy for the backward reaction is +112 kJ. What is the overall energy change for the forward reaction? (4 points)

forward reaction is endothermic (reverse reaction has lower activation energy) $\Delta H = 187$ - 112 = +75~kJ

4. What is the half-life of a first order reaction with a rate constant of 0.457 s⁻¹? (4 points)

$$t_{1/2} = 1.52 \text{ s}$$