1.	Fill in	the blanks using the following species: (1 point each)	
		MgO, LiCl, NH ₃ , CHCl ₃ , Kr(g), Mg ²⁺ (aq)	
	a.	Which species will have no appreciable intermolecular forces?	Kr
	b.	Which species will exhibit hydrogen bonding in the liquid state?	<u>NH3</u>
	c.	Which species will have the highest melting point?	MgO
	d.	Which has the lowest normal boiling point?	<u>_Kr</u>
	e.	Will species has a solvent and solute?	Mg ²⁺ (aq)

2. The molar enthalpy of vaporization for 2-pentanol is 46.26 kJ/mol at 71.0 °C, and the density is 0.9884 g/cm³. How much energy is required to evaporate 2.25 L of 2-pentanol? (5 points)

1170 kJ

3. A quantity (161 mmol, where 1 mmol = 10^{-3} mol) of a nonvolatile solute is dissolved in 0.101 kg of benzene (C₆H₆). The vapor pressure of pure benzene at 27 °C is 115.8 mm Hg. Find the mole fraction of the solute and the vapor pressure of the solution at 27 °C. (5 points)

χ(solute) = 0.111 VP = 103 mm Hg

4. Which will generate the higher osmotic pressure at 298 K: 1 L of a 0.250 M cesium sulfate solution or 1 L of a 0.220 M phosphoric acid? Explain your reasoning, calculate the osmotic pressure for both solutions and assume 100% dissociation into ions. (5 points)

for $C_{S_2}SO_4$: $\pi = 18.3$ atm for H_2PO_4 : $\pi = 21.5$ atm H₃PO₄ is higher!