\qquad
Worksheet due dates: At the time of your Lecture Final ($01, H 1$), Wed, 3/19, 11:59 PM (W1, email). To complete, show detailed steps on how to get the given answer for each problem. Failure to use this form for work and answers will result in a point penalty.

Problem 1: The following data was collected for the reaction shown below. Determine the value of the rate constant (k). Be sure to show the orders of each reactant in this reaction (and how you got them!)

$$
2 \mathrm{MnO}_{4}^{-1}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+10 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\left[\mathrm{MnO}_{4}^{-1}\right]$	$\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{H}^{+}\right]$	Rate $(\mathrm{M} / \mathrm{s})$
$1 * 10^{-3}$	$1 * 10^{-3}$	1.0	$2 * 10^{-4}$
$2 * 10^{-3}$	$1 * 10^{-3}$	1.0	$8 * 10^{-4}$
$2 * 10^{-3}$	$2 * 10^{-3}$	1.0	$1.6 * 10^{-3}$
$2 * 10^{-3}$	$2 * 10^{-3}$	2.0	$1.6 * 10^{-3}$

Answer to Problem \#1: $\mathbf{k}=\mathbf{2}$ * $\mathbf{1 0}^{5}$

Problem 2: The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}\left(2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{NO}_{2}(\mathrm{~g})\right)$ is first order in $\mathrm{N}_{2} \mathrm{O}_{5}$ with $\mathrm{k}=1.0 * 10^{-5} \mathrm{~s}^{-1}$. If the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $1.0 * 10^{-3} \mathrm{M}$, calculate the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after $1.0 * 10^{5}$ seconds.

Problem 3: The rate constant k for a reaction is $2.6 * 10^{-8}$ when the reaction proceeds at 300.0 K , and the activation energy is $98 \mathrm{~kJ} /$ mol. Determine the frequency factor, A, for the reaction. What is the value of k at 310 K ?

Answer to Problem \#3: $\mathbf{A}=\mathbf{3 . 0} \boldsymbol{*} \mathbf{1 0}^{\mathbf{9}}, \mathbf{k}=\mathbf{9 . 2} * \mathbf{1 0}^{-8}$

Problem 4: A sample of wood from an Egyptian mummy case gives a ${ }^{14} \mathrm{C}$ count of $9.4 \mathrm{cpm} / \mathrm{gC}$ (counts per minute per gram of carbon.) How old is the wood? (The initial decay rate of ${ }^{14} \mathrm{C}$ is $15.3 \mathrm{cpm} / \mathrm{gC}$, and the ${ }^{14} \mathrm{C}$ half-life is 5730 years.)

Answer to Problem \#4: 4.0 * $\mathbf{1 0}^{\mathbf{3}}$ years
Problem 5: One of the hopes for solving the world's energy problem is to make use of the following fusion reaction:

$$
{ }^{2} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+{ }^{1} \mathrm{n}+\text { energy }
$$

How much energy (in kJ) is released when one mole of deuterium is fused with one mole of tritium according to the above reaction? The masses of the atoms and neutrons are:
${ }^{2} \mathrm{H}: 2.0140 \mathrm{amu}$
${ }^{3} \mathrm{H}: 3.01605 \mathrm{amu}$
${ }^{4} \mathrm{He}: 4.002603 \mathrm{amu}$
${ }^{1} \mathrm{n}: 1.008665 \mathrm{amu}$

