Name:

Worksheet due dates: At the time of your Lecture Final (01, H1), Wed, 3/19, 11:59 PM (W1, email). To complete, show detailed steps on how to get the given answer for each problem. Failure to use this form for work and answers will result in a point penalty.

<u>Problem 1</u>: The following data was collected for the reaction shown below. Determine the value of the rate constant (k). *Be sure to show the orders of each reactant in this reaction (and how you got them!)*

 $2 \text{ MnO}_{4^{-1}}(aq) + 5 \text{ H}_{2}\text{C}_{2}\text{O}_{4}(aq) + 6 \text{ H}_{2}^{+}(aq) \rightarrow 2 \text{ Mn}_{2}^{2+}(aq) + 10 \text{ CO}_{2}(g) + 8 \text{ H}_{2}\text{O}(l)$

$[MnO_4^{-1}]$	$[H_2C_2O_4]$	$[\mathrm{H}^+]$	Rate (M/s)	
1 * 10-3	1 * 10-3	1.0	2 * 10-4	
2 * 10-3	1 * 10-3	1.0	8 * 10-4	
2 * 10-3	2 * 10-3	1.0	1.6 * 10-3	
2 * 10-3	2 * 10-3	2.0	1.6 * 10-3	

Answer to Problem #1: $k = 2 * 10^5$

<u>Problem 2</u>: The decomposition of N_2O_5 (2 $N_2O_5(g) \rightarrow O_2(g) + 4 NO_2(g)$) is first order in N_2O_5 with $k = 1.0 * 10^{-5} s^{-1}$. If the initial concentration of N_2O_5 is $1.0 * 10^{-3}$ M, calculate the concentration of N_2O_5 after $1.0 * 10^5$ seconds.

