The Chemistry 222 Companion

Lab Manual, Problem Sets, Lecture Slides and Learning Resources

Dr. Michael A. Russell
Mt. Hood Community College
Winter 2025

Welcome to Chemistry 222!

My name is Dr. Michael Russell and I am pleased that you have decided to take Chemistry 222 with me this quarter. I look forward to an exciting term with you!

Here are some hints on how to get the most out of the Chemistry 222 Companion:

- Glance over the Table of Contents that follows this introduction. The Table of Contents lists the respective page numbers for each of the sections.
- If you need it: information on how to construct a graph can be found in the lab section (with a Roman number " \boldsymbol{F} " leading.) A handy pictorial guide to common glassware, a ScienceNotes.org Periodic Table and a parts per thousand handout follow shortly afterwards. The labs we will be performing this quarter follow, and be sure to use the correct lab for your lab section (section W1 (online) is different from sections 01 and H 1 (face to face).)
- The problem sets and Exam Prep worksheets that we will use this quarter follow the lab section. They are listed with a Roman number "II".
- A printed version of the Lecture slides that will be covered this quarter can be found next. The PowerPoint notes use a Roman number "III" followed by the Chapter number, then the page number. For example, Page III-5-3 would refer to a PowerPoint note (the "III") in Chapter 5 (the " $\mathbf{5}$ "), and the " 3 " refers to the third page of notes for Chapter 5.
- Lecture handouts follow the lecture slides and augment difficult concepts discussed in lecture. The numbering system is similar to the PowerPoint slides system but with a "IV". For example, Page $\boldsymbol{I V} \boldsymbol{V} \mathbf{5 - 1}$ would refer to a Lecture Handout (the " \boldsymbol{I} ") in Chapter 5 (the " $\mathbf{5}$ "), and the " \boldsymbol{I} " refers to the first page of lecture handouts for Chapter 5.
- Finally, the Concept Guides (which are useful worked examples relating to each of the chapters studied this quarter) might prove useful - they begin with a Roman number V. Also, practice problem sets (which include answers at the end; they begin with a Roman number VI), various quizzes with answers (which begin with a Roman number VII) and finally sample quizzes and exams (with answers, they start with a Roman number VIII) follow shortly after. Note that additional quiz and exam testing resources are available on the CH 222 website (http://mhchem.org/222/classroom/qe.htm).

If you have questions throughout the quarter, please do not hesitate to contact me using the contact information below. Good luck with your studying!

Peace,

Dr. Michael Russell

mike.russell@mhcc.edu - email address
http://mhchem.org/222-CH 222 website
(503) 491-7348 - phone

AC 2568-office

CHEMISTRY 222 TABLE OF CONTENTS

CH 222 Laboratory Experiments - http://mhchem.org/lab222
Laboratory Safety \& Etiquette V
Information on Graphs vii
Types of Lab Glassware and a ScienceNotes.org Periodic Table ix
A Parts Per Thousand handout xii
The Chemistry 222 Syllabus xiii
Labs for Sections 01 and H1:
Chromatography Ia-1-1
Lewis Structures (Section H1 only) Ia-2-1
Valence Bond Theory and Molecular Orbital Theory Ia-3-1
Organic Chemistry Ia-4-1
Molar Mass of a Volatile Liquid Ia-5-1
Linear Regression \& The Crystal Structures of Solids Ia-6-1
Molar Mass Determination by Freezing Point Depression Ia-7-1
Kinetics I - The Iodination of Acetone Ia-8-1
Kinetics II - The Iodination of Acetone. Ia-9-1
Labs for Section W1
Introduce Yourself Ib-1-1
Lewis Structures (Section 01 and Section W1) Ib-2-1
Valence Bond Theory and Molecular Orbital Theory Ib-3-1
Organic Chemistry Ib-4-1
Molar Mass of a Volatile Liquid Ib-5-1
Linear Regression \& The Crystal Structures of Solids Ib-6-1
Molar Mass Determination by Freezing Point Depression Ib-7-1
Kinetics I - The Iodination of Acetone Ib-8-1
Kinetics II - The Iodination of Acetone. Ib-9-1
CH 222 Problem Sets and Exam Prep Worksheets - http://mhchem.org/pset222
Problem Set One II-1-1
Problem Set Two II-2-1
Problem Set Three II-3-1
Exam Prep I Worksheet II-3a-1
Problem Set Four II-4-1
Problem Set Five II-5-1
Exam Prep II Worksheet II-5a-1
Problem Set Six II-6-1
Final Exam Prep Worksheet II-6a-1
CH 222 Lecture Slides - http://mhchem.org/ho222
Chapter Seven III-7-1
Chapter Eight III-8-1
Chapter Twenty III-20-1
Exam I Review III-20a-1
Chapter Nine III-9-1
Chapter Ten III-10-1
Chapter Eleven. III-11-1
Exam II Review III-11a-1
Chapter Twelve III-12-1
Chapter Twenty-one III-21-1
Final Exam Review III-21a-1
CH 222 Handouts - http://mhchem.org/ho222
Chapter Seven:
Building Lewis Dot Structures IV-7-1
Geometry and Polarity Guide. IV-7-2
Polarity Guide IV-7-7
Guide to Formal Charges IV-7-8
Chapter 7 Study Guide IV-7-10
Chapter Eight:IV-8-1
Four Principles of M.O. Theory IV-8-2
MO Diagram - B_{2} through N_{2} IV-8-3
MO Diagram - O_{2} through Ne_{2} IV-8-4
Chapter 8 Study Guide IV-8-5
Chapter Twenty:
Organic Chemistry Nomenclature Guide IV-20-1
Organic Oxygen-Containing Classes IV-20-7
Chapter 20 Study Guide IV-20-8
Chapter Nine:
Principal Assumptions of the KMT IV-9-1
Gas Laws and the KMT IV-9-2
Chapter 9 Study Guide IV-9-3
Chapter Ten:
CH 222 Guide to Intermolecular Forces IV-10-1
CH 222 Guide to Solubility IV-10-2
Cubic Unit Cells Guide IV-10-3
Chapter 10 Study Guide IV-10-4
Chapter Eleven:
Concentration Units IV-11-1
Chapter 11 Study Guide IV-11-2
Chapter Twelve:
Kinetics Cheat Sheet IV-12-1
Reaction Mechanisms Guide IV-12-2
Chapter 12 Study Guide IV-12-4
Chapter Twenty-one:
Nuclear Chemistry Guide IV-21-1
Radiation Information IV-21-2
Chapter 21 Study Guide IV-21-3
CH 222 Concept Guides - http://mhchem.org/ho222
Chapter Seven V-7-1
Chapter Eight V-8-1
Chapter Twenty V-20-1
Chapter Nine V-9-1
Chapter Ten V-10-1
Chapter Eleven V-11-1
Chapter Twelve V-12-1
Chapter Twenty-one V-21-1
CH 222 Practice Problem Sets and Quizzes (with answers) - http://mhchem.org/22
Practice Problem Set One VI-1-1
Practice Problem Set Two VI-2-1
Practice Problem Set Three VI-3-1
Practice Problem Set Four VI-4-1
Practice Problem Set Five VI-5-1
Practice Problem Set Six VI-6-1
Organic Chemistry Quiz \#1 VII-1-1
Organic Chemistry Quiz \#2 VII-2-1
Organic Chemistry Quiz \#3 VII-3-1
Organic Chemistry Quiz \#4 VII-4-1
Solution Calculations Quiz VII-5-1
Colligative Properties and Phase Diagrams VII-6-1
Sample Questions for Exam II VII-7-1
Nuclear Chemistry Problems VII-8-1
Sample Quiz One VIII-1-1
Sample Quiz Two VIII-2-1
Sample Quiz Three VIII-3-1
Sample Quiz Four VIII-4-1
Sample Quiz Five. VIII-5-1
Sample Quiz Six VIII-6-1
Sample Exam I. VIII-7-1
Sample Exam II VIII-8-1
Sample Final Exam. VIII-9-1

Laboratory Safety \& Etiquette

Safety is of utmost importance. Work in the laboratory should be a safe experience. It will be safe, however, only if certain safety precautions are followed without exception. Safety is up to you. Everyone working in the chemistry laboratories must follow the following rules. Your instructor will discuss specific safety precautions relevant to each experiment during the pre-lab lecture. Do not hesitate to consult with your instructor if you have questions regarding any safety precautions. Failure to observe laboratory safety rules and procedures may result in injury to you or to fellow students. Students who do not follow these safety rules (including proper attire) will be asked to leave the laboratory. Repeat offenders may be dropped from the course at the discretion of the instructor.

1. Appropriate attire: Appropriate protective clothing must be worn at all times while in the laboratory. It is a good idea not to wear your best clothing to lab since many chemicals can stain, bleach or generate holes in your clothing.
a. Safety goggles approved by the chemistry department must be worn at all times, even if you are wearing prescription glasses. Contact lenses are not recommended in the lab. Various fumes may accumulate under the lenses and injure your eyes. You are responsible for bringing your own pair of safety goggles to lab each week. Students who borrow safety goggles from the instructor will have points deducted from their lab. Students who fail to wear their safety goggles will be reminded once and have points deducted. The second time a student is seen without safety goggles on during a lab period, the student will be asked to leave the laboratory.
b. Shirts must cover the entire upper torso, including the midsection and upper chest area and should be long enough to tuck inside your pants. Cotton t-shirts are fine. Tank tops, scooped neck tops, leotards, sleeveless blouses and tops made of sheer material are not allowed.
c. Pants and skirts must be at least knee length.
d. Shoes must be flat-soled and cover the entire foot. Socks must be worn with shoes. Sandals, open-toe shoes and high heels are not permitted.
e. Long hair (shoulder length and longer) and billowy clothing must be tied back while working in the lab.
2. Food and Drink: NO food or drink will be allowed in the laboratory. This includes coffee, water, candy and chewing gum.
3. Working in the laboratory without an instructor present is strictly forbidden. Students must work in instructional laboratories only during regularly scheduled lab periods and then only when supervised by a member of the faculty.
4. Do not perform any unauthorized experiments. If you have an idea for improving an experiment or for a new experiment, consult with your instructor.
5. Wash your hands after every experiment and each time your hands come in contact with chemicals.
6. Scales: Never weigh reagents or chemicals directly on a balance or scales. First weigh an empty container or weighing paper, then press tare or "re-zero" to set the mass reading to zero. Then add your reagent to the container or weighing paper and re-weigh. Balances are expensive! Clean any spills immediately! Replace caps on bottles and return to cart when complete.
7. Fume hoods should be used when performing experiments that generate an objectionable gas.

8. Working With Chemicals:

a. Never smell or taste anything in the laboratory unless specifically directed by your instructor. Many chemicals are poisons. Use your hand to waft the odor to your nose.
b. Always read the label on all chemical bottles and waste bottles. If you see the wrong chemical, you may have a serious explosion. If unsure, consult with your instructor.
c. Do not take chemical bottles to your lab bench unless directed by your instructor. Pour the approximate amount you need from the bottle into a small container and take this to your bench.
d. Always use a metal spatula or scoopula to transfer solid chemicals. Do not use your finger to transfer chemicals. This will directly expose you to the potential hazards of the chemical and might contaminate the remaining chemical in the container.
e. Do not put excess reagent back into the original bottle. There is always a chance of contaminating the original sample. Ask your instructor how to properly dispose of excess chemicals.
f. Do not put pipets directly in any reagent bottle. This might result in contamination of the remaining liquid in the bottle. Never mouth pipet any liquid in the lab.
g. Keep the lids and caps on the chemical bottles. Put the lids back on as soon as you are finished dispensing the material. Many chemicals are sensitive to light or to moisture in the air.
h. When diluting concentrated acids or bases, add the acid or base slowly into water. Never pour water into acid. The heat generated from adding water to a concentrated acid or base solution can cause the solution to splatter or shatter the glass.
9. Waste: Dispose chemical waste in designated containers. Only flush chemicals down the sink if instructed by your instructor. Never pour organic waste down the drain. The waste containers are in the hood for each experiment. Read labels on waste containers to be sure to dispose of waste in the proper container. Disposing waste in the wrong container can generate an unwanted (and unexpected) chemical reaction!
10. Spills: Clean up any spills immediately and dispose of the spilled material properly. Check with your instructor on the proper way to clean up any material that you spill.
11. Chipped or broken glassware should be thrown in the glass waste container. Report broken glassware to your instructor so that it can be replaced.
12. Hot objects will burn! Do not pick up hot objects with your fingers. Use tongs or hot pads. Hot glass will crack if run under cold water. Allow heated glass sufficient time to cool.
13. Accidents and Emergencies: Report all injuries and accidents, no matter how minor, to your instructor immediately. Know the location of the fire extinguishes, fire blankets, safety showers, and eyewash stations. Familiarize yourself with two different exits from the lab, in the event of an emergency situation. Accidents are usually minor, but it is best to be prepared for serious trouble.
14. Be aware of your classmates! Are they obeying the safety rules? A nearby accident may not hurt or harm him/her but may injure you!

15. Above all else, ask the instructor if you have any safety related questions!

Information on Graphs

Graphs: Whenever you create a graph for a chemistry lab, keep the following points in mind:

- If creating a graph by hand, use a large portion of the graph paper to create your graph; small graphs can easily misrepresent data and/or trendlines. If using a computer program like Microsoft Excel, use large graph sizes when creating lab reports (up to the size of one complete page.)
- Plan ahead! Make sure all the data points will fit on the graph but will not be too crowded together horizontally or vertically. Again, use as much of the graph paper as possible when constructing your graph.
- On the vertical axis, label the quantity that is being plotted (i.e. "Time") and put its units in parentheses (i.e. "(seconds)". Do the same on the horizontal axis.
- If you are drawing a best-fit line through the data points, do not connect the dots! Instead, draw a line which has some data points on each side of the line you are drawing... think of your line as an "average" of the data points.
- Never force a graph to go through the origin (i.e. at $x=0$ and $y=0$) unless expressly told to do so.
- Examine your graph: are there one or two points which are farther away from the line than the other points? If so, make sure you plotted them correctly.
- Use regression techniques to find the equation for the best fit for your data. ALWAYS include the regression equation with the graph itself.
- Linear regression equations should always be accompanied by the correlation coefficient, \mathbf{r}, and not just R^{2}. To find r from R^{2}, take the square root of R^{2}. If the slope is negative, your r value will be negative as well.

An example graph follows:

Figura I. 1
Common glassware and equipment.

Page I-ix / Graphs, Types of Glassware, Parts Per Thousand

Parts per Thousand (ppt) Guide

Parts per thousand (ppt), also known as the "relative standard deviation", is useful when comparing the uncertainty between different measurements of varying magnitude (i.e. it is a measure of the precision within an experiment.) Parts per thousand can be applied to any set of data where more than one experimental value has been applied - i.e. volumes, percentages, concentrations, etc. We will use parts per thousand often this year, so knowledge of how it works is critical for the successful student.

For the values x_{1}, x_{2} and x_{3} :

- Take the average of the values

$$
\text { average }=\frac{\operatorname{sum}}{\# \text { of values }}=\frac{x_{1}+x_{2}+x_{3}}{3}
$$

- Find the deviation of each value relative to the average

$$
\begin{gathered}
\text { deviation }_{1}=\text { absolute value }\left(\text { average }-\mathrm{x}_{1}\right)=\mid \text { average }-\mathrm{x}_{1} \mid \\
\text { deviation }_{2}=\mid \text { average }-\mathrm{x}_{2} \mid \\
\text { deviation }_{3}=\mid \text { average }-\mathrm{x}_{3} \mid
\end{gathered}
$$

- Find the average deviation of the deviations

$$
\text { average deviation }=\frac{\text { sum of deviations }}{\# \text { of values }}=\frac{\text { deviation }_{1}+\text { deviation }_{2}+\text { deviation }_{3}}{3}
$$

- Calculate the parts per thousand (ppt) for the values

$$
\mathrm{ppt}=\frac{\text { average deviation }}{\text { average }} * 1000
$$

Example: Calculate the parts per thousand for the values $35.72 \%, 35.92 \%$ and 36.02%

- Average $=\frac{\frac{35.72+35.92+36.02}{3}}{3}=\mathbf{3 5 . 8 9} \%$
- Deviation $_{1}=|35.89-35.72|=0.17$
- Deviation $_{2}=|35.89-35.92|=0.03$
- Deviation $_{3}=|35.89-36.02|=0.13$
- average deviation $=\frac{0.17+0.03+0.13}{3}=\mathbf{0 . 1 1 \%}$
- parts per thousand $=\frac{0.11}{35.89} * 1000=\mathbf{3 . 1}$ unitless

Parts per thousand relates the deviation to the magnitude of the experimental data. Consider these two sets of data each with an average deviation of ± 0.010 :

Data set 1: $0.250 \pm 0.010, \mathrm{ppt}=(0.010 / 0.250) \times 1000=40 \mathrm{ppt}($ not very good precision $)$.
Data set 2: $4.50 \pm 0.010, \mathrm{ppt}=(0.010 / 4.50) \times 1000=2 \mathrm{ppt}($ excellent precision)

Although both scenarios have the same deviation, the relative deviation compared to the data gives very different results. Patience and focus is a virtue in this lab.

Winter 2025 Chemistry 222 with Dr. Michael A. Russell

For Section 01, Section H1 and Section W1
CH 222, Mt. Hood Community College, Gresham, Oregon, USA 97030

Office: AC 2568

Phone: (503) 491-7348
Chemistry 222 website:
http://mhchem.org/222
Email: mike.russell@mhcc.edu or mike.russell@mhchem.org
Office Hours: Held in AC 2568 MW 10 AM - 11, MW noon-1 PM and F 8 AM - 9
CH 222 Discord Server: https://discord.gg/ZhrmjCS
Required/Recommended Materials:

* "Chemistry" by The OpenStax College (978-1-947172-62-3),
available here for free: http://mhchem.org/text/OpenStaxChem.pdf
* Chemistry 222 Companion, purchase here: http://mhcc.edu/bookstore (required)
* Scientific calculator with at least EXP/EE and ln and log (ideally) (required)
* iClicker Student App subscription if attending lectures (optional)

Course Description: This course offers the fundamental basis of chemistry for science, preprofessional, chemistry and engineering majors. This second term covers molecular bonding and properties, gases, liquids, solids, physical states and changes of state, solutions, kinetics, and nuclear chemistry. Prerequisites: RD090, WR090 and MTH020, each with a grade of "C" or better, or placement above stated course levels; and CH 221 with a grade of " C " or better.

Course Philosophy: To be successful, students enrolled in a 200 level chemistry course should complete all assignments before coming to class, attend classes regularly, participate in discussions, and think critically. Homework assignments represent the minimum requirement for understanding the principles of chemistry. It is assumed that A and B students will perform enough unassigned exercises to master key concepts. I encourage questions in this class, and I expect a considerable amount of work. If you contact me by email, I will respond to you normally within 24 hours; phone messages will be acted upon as soon as possible.

The Honor Principle: All students will be expected to behave with the highest moral and academic integrity while enrolled in this class. Plagiarism, cheating or sharing information on tests or laboratory reports, disruptive behavior, and other related offenses will be dealt with according to the directives stated in the current Mt. Hood Community College Student Guide. Offering, asking for, giving or receiving help from a person or website without instructor consent is cheating. Copying and/or sharing any course materials outside this class is not allowed and illegal due to copyright laws.

Grading:	Midterm Exams (2 total, 130 points each)
	Quizzes (6 total, lowest quiz dropped, 20 points each)
	Lecture Final Exam
	Laboratory Final Exam
	Class Presentation
	Problem sets, worksheets, reserve CP topic
	Nine lab experiments (20 points each)
	Lab Completion Bonus
	Total points:

260 points	26% of total
100 points	10%
180 points	18%
100 points	10%
100 points	10%
50 points	5%
180 points	18%
$\mathbf{3 0}$ points	$\underline{\mathbf{3} \%}$
$\mathbf{1 0 0 0}$ points	$\mathbf{1 0 0 \%}$

A: 90-100\%
B: 80-89\%
C: 67-79\%
D: 57-66\%
F: less than 57%

Opportunities for extra credit are available and explained in the "Extra-Credit Guide" handout.
Exams and Quizzes will be completed exclusively in class (sections 01 and H 1) or exclusively online (section W1.) Sections 01 and H1 must turn in assignments in person to avoid a point penalty. Section W1 assignments must be submitted via email to the instructor in a suitable format, and Section W1 must show work on all problems to get full credit.

Labs and Problem Sets will be submitted on campus (sections 01 and H1) or via email (section W1.) Sections 01 and H1 must be present during recitation for full credit, and a stamp system will be used to guarantee on-time attendance if necessary.

Each student will submit a Class Presentation this term - see the "Class Presentation FAQ" for more information.
Details regarding grading will be discussed during the first week of the term.

"What's Due This Week" Schedule for CH 222 Winter 2025

All assignments can be found on our website (http://mhchem.org/222)
Assignments are different for section W1 and sections 01 and $\mathbf{H 1}$ - contact the instructor if you are unsure which applies to you

- Sections 01 and $\mathbf{H 1}$ must bring a printed copy of the lab on the specified day, then turn it in on the deadline during class. Problem sets and labs will be turned in during class in AC 2501; quizzes and exams will be completed during class time. Emailed assignments from Section 01 and H1 students will incur a point penalty, no exceptions.
- Section W1 will email all assignments to the instructor as a single PDF file.

Week	Dates
1	$1 / 6-1 / 10$

2

4

5
$1 / 13-1 / 17$
$1 / 20-1 / 24$
$1 / 27-1 / 31$
$2 / 3-2 / 7$

EXAM \#1 (Chapters 7, 8 \& 20); 01, H1: take in recitation; W1: due 2/7 by 9 AM
Due: "Exam Prep I"; 01, H1: due in recitation; W1: due 2/5 by 11:59 PM
01/H1 Lab: "Molar Mass of a Volatile Liquid (in class)" (Lab \#5) due next week in recitation W1 Lab: "Molar Mass of a Volatile Liquid (online)" (Lab \#5) due Wednesday, February 12 by 11:59 PM

2/10-2/14 Due: Problem set \#4 Chapter 9 \& 10; 01, H1: due in recitation; W1: due 2/12 by 11:59 PM
Due: Quiz \#4; 01, H1: take in recitation; W1: due 2/14 by 9 AM
Week 6 continued on next page
continued 01/H1 Lab: "Linear Regression / Structure of Solids (in class)" (Lab \#6) due next week in recitation
W1 Lab: "Linear Regression / Structure of Solids (online)" (Lab \#6) due Wednesday, February 19 by 11:59 PM
Due: Class Presentation Rough Draft Paper; 01, H1: due in recitation; W1: due 2/12 by 11:59 PM

2/17-2/21 Due: Problem set \#5 Chapter 10 \& 11; ; 01, H1: due in recitation; W1: due 2/19 by 11:59 PM
Due: Quiz \#5; 01, H1: take in recitation; W1: due 2/21 by 9 AM
01/H1 Lab: "Molar Mass Determination by Freezing Point Depression (in class)" (Lab \#7) due next week in recitation

W1 Lab: "Molar Mass Determination by Freezing Point Depression (online)" (Lab \#7) due Wednesday, Feb. 26 by 11:59 PM

February 21: Last day to drop or change grade status this quarter at Mt. Hood Community College

3/10-3/14 Due: Problem set \#6 Chapter 12 \& 21; 01, H1: due in recitation; W1: due 3/12 by 11:59 PM

2/24-2/28

3/3-3/7

3/17-3/19

EXAM \#2 (Chapters 9-11); 01, H1: take in recitation; W1: due 2/28 by 9 AM
Due: "Exam Prep II"; 01, H1: due in recitation; W1: due 2/26 by 11:59 PM
01/H1 Lab: "Kinetics I - The Iodination of Acetone (in class)" (Lab \#8) due next week in recitation
W1 Lab: "Kinetics I - The Iodination of Acetone (online)" (Lab \#8) due Wednesday, March 5 by 11:59 PM

CLASS PRESENTATIONS WEEK

01/H1: Class Presentation paper due at time of presentation during recitation
W1: Class Presentation paper and video due Wednesday, March 5 by 11:59 PM

Due: Quiz \#6; 01, H1: take in recitation; W1: due 3/14 by 9 AM
01/H1 Lab: "Kinetics II - The Iodination of Acetone (in class)" (Lab \#9) due next week Wednesday during Finals

W1 Lab: "Kinetics II - The Iodination of Acetone (online)" (Lab \#9) due Wednesday, March 12 by 11:59 PM

All extra credit closes Friday, March 15 at 9 AM

Take Home Lab Final released by 9 AM Monday, 3/17 for all CH 222 sections. Sections 01 and H1 must print the Take Home Lab Final and turn it in on Wednesday.

Section 01: Take Lecture Final tentatively on Wednesday, March 19 at 8:45 AM in AC 1303. Due: Final Exam Prep worksheet, Take Home Lab Final, Kinetics II Lab

Section H1: Take Lecture Final tentatively on Wednesday, March 19 at 1:10 PM in AC 2501. Due:
Final Exam Prep worksheet, Take Home Lab Final, Kinetics II Lab
Section W1: Due: Lecture Final (available Monday March 17), Final Exam Prep worksheet and Take Home Lab Final on Wednesday, March 19 by 11:59 PM

Getting Started in Chemistry 222

Welcome to Chemistry 222! I am glad to have you enrolled in CH 222! Here are some hints on how to get started in the class:

- First, know that I am here to help you succeed in this class. If you have any questions, please email me (mike.russell@mhcc.edu) or stop by the Discord server (https://discord.gg/ZhrmjCS) during office hours. I try to respond to student inquiries within 24 hours
- There are three sections of CH 222 this quarter, namely section $\mathbf{0 1}$ (which meets twice a week on campus), section H1 (which meets only once a week) and section W1 (which is completely online). Sections 01 and H1 will have similar schedules, but section W1 will exhibit some differences. Your experience in this class will depend on which section you are in, so email the instructor (mike.russell@mhcc.edu) if you have any questions about anything, ok?
- Purchase the Chemistry 222 Companion from the MHCC Bookstore. The MHCC Bookstore (http://mhcc.edu/bookstore) will ship you a printed copy of this necessary information; alternatively, you can print the document (on our website), but I do not recommend it due to the size of the Companion. You will need access to printed materials this quarter!
- The "What's Due This Week" Schedule for CH 222 located on page 2 of your syllabus lists all the problem set due dates, assignment deadlines, labs performed, exam/quiz dates, and related information for this term. You can plan your term by referencing this handout.... follow it closely and you will do well in CH 222!
- Check your email often during Chemistry 222. I will be sending weekly reminders as to "what is due this week" in CH 222 as well as returning some assignments, etc. If you would prefer that I use a non-saints email address to communicate with you, let me know - this is easy to set up!
- The Chemistry 222 website is worth exploring. The Chemistry 222 website has a host of learning opportunities waiting for you. You can download and/or print copies of the syllabus, lecture notes, labs, quiz answers, and more; plus there are opportunities for extra credit available. To get started, send your web browser to

http://mhchem.org/222

You should see the CH 222 website on your screen.

- Check out the Chemistry 222 Chapter Guides by selecting "Chapter Guides" from the upper left hand corner of the CH 222 website. The Chapter Guides offer a detailed approach for studying the course material through a series of lessons. Read Lesson Zero, the "Intro to the Chapter Guides System," to understand how they work.
- Start thinking about a Class Presentation Topic. You will be giving a five minute presentation this term on a compound, and you must reserve your compound choice with me. A written paper also accompanies the presentation on your compound. To reserve your compound, email your preferred element choices directly to the instructor, or: http://mhchem.org/cp222

The "Class Presentations FAQ" (available in the syllabus or here: http://mhchem.org/cp222info) has more information.

- The Chemistry 222 Textbook is free and legal to download from our website: http://mhchem.org/text/OpenStaxChem.pdf
- Section W1 students: I highly recommend you check out the CamScanner app (http://camscanner.com) in order to send your work to me as a PDF file over email. CamScanner is free and easy to use.... but there are other options besides CamScanner, use the method best for you. Section 01 and H1 students must submit their work on paper for full credit.
- Many opportunities for extra credit exist in this class.... see the Extra Credit Guide for more information: http://mhchem.org/xc
- You can download the entire Microsoft Office suite of programs (Word, Excel, PowerPoint, etc.) for free... see this link for information: https://mhcc.edu/OfficeInstall/

Again, welcome to Chemistry 222! Let me know if I can make your learning experience better in any way, and I look forward to working with you this term! Peace, Dr. Michael Russell (mike.russell@mhcc.edu, 503.491.7348, AC 2568)

CH 222 CLASS PRESENTATIONS FAQ
 $F A Q=$ Frequently Asked Questions

When: Monday March 3 (section 01) or Wednesday March 5 (sections H1 and W1)
What: A chance to share knowledge with your classmates and the MHCC community
Who: Everyone enrolled in CH 222 (All Sections)
What topic should I pick? For CH 222, the topic will be compounds. Pick a compound you find interesting and write a report on the topic. Since there are millions of compounds, every student must pick a different compound. Reserve your compound using the online form at http://mhchem.org/cp222

Once your compound has been chosen, begin researching interesting information on the compound using the library, internet, etc. You will be preparing a paper on the compound and presenting your work to the class in a short (five minute) presentation.

If you need to change your class presentation topic after the fourth week of class for any reason you will be penalized 20 points; hence, it's best to reserve a compound early and start researching promptly. Also, if you still have not reserved a compound by the end of the sixth week, you will be penalized 20 points for tardiness.
What should I know when writing the paper

Prepare a paper that is at least five full pages of text on your reserved compound. Diagrams, pictures, and other graphics are wonderful, but you will need five full pages of writing for complete credit.

The paper should include a separate cover sheet with the title of your presentation and your name. The paper must be neat, typed, referenced, and interesting to read; spelling and grammar will count. The paper must use a "reasonable" font and font size (Times New Roman, Arial, etc. with size 12 or
 spaced type (less than double spaced.) If unsure, ask the instructor.

A separate page with at least eight references will be at the end of your paper. References within the paper and at the end should adhere to the "Class Presentations Citation Guide" (found here: http://mhchem.org/cg) For an example paper, see: http://mhchem.org/expaper

What is a peer reviewed scientific article?

How do I find my two peer reviewed scientific articles?

Tell me about the Class Presentation Rough Draft

Paper
An important aspect of this assignment is to ensure scientific relevancy. To this end, find two peer reviewed scientific articles published within the last ten years that include a reference to your compound. Include the abstracts of these papers with your final Class Presentation paper.

A sure-fire way to access peer-reviewed scientific articles is through the MHCC library's article databases. Go here (https://libguides.mhcc.edu/chemistryguide - you may have to enter your MyMHCC username and password if you are off campus). Select Articles (on the left), then select ScienceDirect College Edition (under "Chemistry Databases") or Academic Search Complete (under "General Databases"), then search for your topic. Remember, your article citation should include the author(s), year of publication, journal title, title of paper, page number(s), volume of journal, etc. and you will need to include the abstract from the peer reviewed article (but not the entire article!) in your report.

Once you conduct a search for your presentation topic, you will likely have a mix of citation/abstractonly and citation/abstract + full-text (whole article) results. You only need the abstract for your paper - do not include the full article. Here is an example of a peer-reviewed scientific paper with an abstract: http://mhchem.org/abstr

During the seventh week, you will be submitting a rough draft of your class presentation paper to the instructor. Ideally this will be the paper in a mostly complete format, but at the very least, two typed pages of text should be submitted.

The rough draft should include at least one peer reviewed scientific paper abstract (with its citation) as well as the Rough Draft Class Presentation form (http://mhchem.org/rd2) The Class Presentation Rough Draft paper is worth 20 points (out of 100 points total.)

You will be creating a five-minute presentation on your chosen subject. Sections 01 and H1 will give their presentation during a lab period to their peers; Section W1 will record themselves and upload the video to YouTube for the instructor to view. The presentation must be well prepared and interesting; sloppy preparation shows in the presentation portion. Students can use videos, presentation software (PowerPoint, etc.), posters and chalk to enhance their presentation. Presentation software users will be limited to a maximum of six slides; more invokes a penalty.

Section W1: I encourage students to record themselves on their phone, then upload the video to YouTube, etc.. You can send the link (to an unlisted video, not private) to me for watching later. I need to see you for 90% or more of the presentation for full credit.

Please note that using your paper (or a copy of your paper) during the presentation will result in a ten point penalty. This will prevent you from "reading" your presentation to the audience.
How will I be graded? There are 100 points total for this project. 40 points will reflect the work presented in the paper, 40 points will reflect the work done in the presentation and 20 points will be given for completing the peer review process on time.

In addition, failure to turn in the "Class Presentation Reviewer Guide" to the instructor at the end of the day of presentations will result in a ten-point penalty. You will be completing the Reviewer Guide while others are giving their presentations. If curious, you can view this guide on our website (http:// mhchem.org/cp222info). This applies to Sections 01 and H1 only.

Late class presentations will result in a five-point penalty per day. The paper and the presentation must be completed for credit on this assignment. Plagiarism discovered from any source will result in a total Class Presentation grade of zero.

A sample Class Presentation Grading Rubric is available for viewing on the CH 222 website (http://mhchem.org/cgr2) The rubric will allow you to look at the items deemed most important when grading your Class Presentation.

How do I get started? Step 1: Reserve your Class Presentation Compound
Decide on some compounds that interest you, then email the instructor or complete the online web form to reserve your compound: http://mhchem.org/cp222

You should receive a response from Dr. Russell within 48 hours after the beginning of the second week of class; if you do not, email him directly at mike.russell@mhcc.edu. Be sure to include alternate compounds in case your first choice has already been claimed; he can also pick one for you if you are uncertain which compound to pick. Reserve your class presentation compound by the end of the third week, January 24 at 9 AM. You can see which compounds are still available here: http://mhchem.org/222av

Step 2: Turn in the Class Presentation Rough Draft Paper

The Class Presentation Rough Draft paper should include at least two typed pages and one peer reviewed scientific article using the handout (http://mhchem.org/rd2) at the beginning of your paper. Deadline: Mon., Feb.. 10 (01) or Wed. Feb.. 12 (H1 \& W1)

Step 3: Give the Class Presentation and turn in your final Class Presentation paper

Section 01 and H1: Bring your final Class Presentation paper and give your presentation during lab. Section 01: Monday, March 3. Section H1: Wednesday, March 5.

Section W1: At the time of your Class Presentation, turn in your final Class Presentation paper and a video recording of your presentation (YouTube link, etc.) by Wed., March 5 by 11:59 PM.

Before you present and submit your paper, check out the reminders contained within the "Class
Presentation 'Last Minute' Checklist', found here: http://mhchem.org/cpcs Note that you must both present your work and submit your paper to receive any points on this assignment. All presentations over ten minutes in length and all papers with more than 10 pages of writing will suffer a point penalty.

If you have any questions, see this site (http://mhchem.org/cp222info) or contact the instructor.

CH 222 CLASS PRESENTATIONS ROUGH DRAFT PAPER

Staple this form to the top of your Rough Draft Class Presentation Paper for full credit

Lab Section:

Reserved Compound:

Directions:

- This assignment is worth 20 points out of the 100 points assigned to the Class Presentation assignment.
- Include at least two typed pages of your Class Presentation report with this form (more is fine!)
- Include at least one abstract from a peer reviewed scientific article with a proper citation included (more is fine!)
- This page should be stapled to the top of the other pages in this assignment to avoid a five-point penalty

Helpful Resources:

- The CH 222 Class Presentation Frequently Asked Questions handout:
- The CH 222 Citation Guide:
http://mhchem.org/faq2
http://mhchem.org/cg

Class Presentation Rough Draft Paper Due Dates:

- Section 01:
- Section H1:
- Section W1:

February 10 at 1:10 PM
February 12 at 1:10 PM February 12 at 11:59 PM

Section 01: The final Class Presentation paper is due at the time of your presentation on Monday, March 3.
Section H1: The final Class Presentation paper is due at the time of your presentation on Wednesday, March 5.
Section W1: The final Class Presentation paper and recorded presentation will be due by 11:59 PM on Wednesday, March 5.

Staying Connected in Chemistry 222 This Quarter

Success in Chemistry 222 often depends on staying connected with the flow of the course... here are some suggestions on how to be aware of what is happening each week:

- Discord is a wonderful medium for keeping students connected while in this class. Our Discord server will offer weekly assignment updates (with links to labs, problem sets, etc.) as well as links to video lectures, tips and hints from the instructor on how to conquer difficult problems, and more! Joining Discord is easy and free; go here (https://discord.gg/ZhrmjCS) and join the CH 222 server to get started.
- I'd be honored if you would subscribe to me on YouTube! (http://youtube.com/marsmars2) I create videos for more than just chemistry classes... :)

Additional Syllabus Materials for Chemistry 222 Available on the Internet

Some or all of these materials might prove useful to you in our class. All of them are available on the Chemistry 222 website (https://mhchem.org/222/classroom/ci.htm).

To access these materials (and more!), go to our website (http://mhchem.org/222) and select "Getting Started" then "Other Class Information" from the upper left corner. Additional materials include:

- The Extra-Credit Guide - a helpful guide containing some of the extra credit options available to you in this course
- Learning Outcomes for CH 222 - a list of "what you will learn" this quarter
- MHCC College Information - key information that you, as a student at Mt. Hood Community College, might wish to know, including the Student Code of Conduct and Internet Privacy Policy
- A Printable Periodic Table - this periodic table from ScienceNotes.org will certainly be useful in this course, and you will be able to use this type of periodic table on exams and quizzes.
- The Chemistry Smiles Generator - in case you need a smile :) with a chemistry theme.

In addition, the website has a plethora of other "goodies" which may be of assistance to you throughout this quarter... feel free to browse, and if you have questions, please do not hesitate to contact me.

[^0]
CH 222 Winter 2025:

 "Chromatography" (in

 "Chromatography" (in class) Lab - Instructions

Note: This is the lab for section 01 and $\mathbf{H 1}$ of CH 222 only.

- If you are taking section W1 of CH 222, please use this link:
http://mhchem.org/r/lb.htm

Step One:

Get a printed copy of this lab! You will need a printed (hard copy) version of pages Ia-1-2 through Ia-1-6 to complete this lab. If you do not turn in a printed copy of the lab, there will be a 2-point deduction.

Step Two:

Bring the printed copy of the lab with you on Monday, January 6 (section 01) or Wednesday, January 8 (section H1.) During lab in room AC 2507, you will use these sheets (with the valuable instructions!) to gather data, all of which will be recorded in the printed pages below.

Step Three:
Complete the lab work and calculations on your own, then turn it in (pages Ia-1-5 through Ia-1-6 only to avoid a point penalty) at the beginning of recitation to the instructor on Monday, January 13 (section 01) or Wednesday, January 15 (section H1.) The graded lab will be returned to you the following week during recitation.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Chromatography

Most of the substances we use everyday are mixtures of pure substances. Separating, detecting and identifying all of the components in a mixture is crucial for the successful chemist. Several techniques have been developed to do this all of which depend on the differing chemical and physical properties of the components in the mixture. Chromatography is a separation and identification technique that takes advantage of the difference in solubility of a pure substance in various solvents.

In a chromatographic separation, a mixture is deposited on a solid adsorbing substance called the stationary phase. The stationary phase can be a strip of filter paper, a thin film of silica gel on an inert surface, a column of silica gel, or a tube of small beads coated with a high molecular weight oil. A solvent is allowed to flow through the stationary phase either under pressure or by gravity or capillary action. As the solvent passes over the mixture, the components in the mixture dissolve in the solvent. A competition takes place between the adsorption of a component on the stationary phase and the dissolution of the component in the solvent (the mobile phase). The affinity of each of the components to the stationary phase or mobile phase will be different leading to a separation.

The name given to the various types of chromatography is based upon the type of stationary phase or the physical state of the mixture. Examples include column chromatography, paper chromatography, thin layer chromatography, vapor-phase chromatography, and high pressure liquid chromatography (HPLC).

In this experiment we will use paper chromatography to separate a mixture of metallic ions in an aqueous solution. A piece of filter paper is spotted with a drop of solution containing a mixture of ions, and the paper is allowed to dry. The paper is then suspended in a beaker (or jar) containing a solvent which moves up the paper by capillary action. Because each component of a mixture has its own characteristic affinities, each metal ion will travel up the paper at its own characteristic rate. If the paper is large enough, all the components will be separated and will appear as separate spots. If the components are highly colored the spots will be visible. You can convert weakly colored or colorless spots to highly colored ones by spraying them with substances that react to form colored compounds. The filter paper will now contain a vertical row of colored spots arranged according to their characteristic rate of ascent. The word chromatography, which is derived from to Greek words and literally means "written with color," was coined to describe this phenomenon.

The distance traveled by a component ("spot"), $\mathbf{D}_{\mathbf{x}}$, with respect to the distance traveled by the eluting solvent, $\mathbf{D}_{\mathbf{s}}$, is called the retention factor, $\mathbf{R}_{\mathbf{F}}$:

$$
R_{f}=\frac{D_{x}}{D_{s}}
$$

The R_{F} value is a characteristic property of a given component in a given solvent at a given temperature. Changing solvent or temperature implies a change in R_{F}. Note that the R_{F} will be a unitless number, and both D_{x} and D_{s} must be recorded in the same unit.

In this experiment you will use both the color of the spot and the calculated R_{F} value to identify the types of metal ions that are present in the solution.

PROCEDURE:

1. Obtain a piece of filter paper about 20 cm long by 12 cm wide. Placing the paper on a clean surface, draw a line using a straight edge and a pencil, 2 cm from one of the long edges.
2. Fold the filter paper so that the line that you have drawn is bisected. In the same manner fold the filter paper in half a second and third time. The line will have been divided into eight equal segments. Refold the paper so that it looks like an accordion, as shown below. Mark the center of each segment of the line with an X using pencil, and label each segment as shown below.

3. Obtain a small capillary tube. Using distilled water, practice spotting a scrap piece of filter paper. The maximum diameter of an acceptable spot is no larger than 0.5 cm .
4. When this procedure is satisfactory, use the appropriate known solutions of silver, cobalt, etc. to spot your chromatographic paper (2 drops each.) The standard (Std) should contain a spot from each of the four known solutions (four drops of liquid total). Be sure to allow each spot to dry before spotting it again. Hair dryers will facilitate a complete drying of the spots.
5. Each group will have two unknown (Unk) solutions to identify the ions present - be sure to write down their identity (letter) for the lab report. The unknown solutions are less concentrated than the metal ion solutions so you need to spot these two spots three times each.
6. For the last spot (pen), place a small dot from a felt pen on the X.
7. Add about 25 mL of the eluting solution (the mobile phase) to a 600 mL beaker and cover with plastic film (alternatively, a jar with a plastic lid can be used.) The eluting solution was made by mixing a solution of HCl with ethanol and butanol, two organic solvents known as alcohols.
8. When all spots are dry, carefully place the paper in the 600 mL beaker (or jar.) It is important that the solvent is below the 2 cm line on the paper. Cover the mouth of the beaker with plastic film (or put a lid on the jar) and allow the solvent to move up the paper.
9. While the experiment is proceeding, you can test the effect of the staining reagent on the metal ion solutions. Spot a piece of filter paper with each of the four known metal ion solutions and dry the paper as before. Some of the spots will be colored at this point; note the color of the unstained knowns in your lab. In a fume hood, place the filter paper on a paper towel and spray the paper evenly with the staining solution, getting the paper moist but not really wet. The staining reagent is a mixture of solutions of potassium ferrocyanide and potassium iodide and forms colored compounds with the metal ions. Note the color of each known metal ion spot in your lab.
10. When the eluting solution has risen to about 4 cm from the top of the chromatographic paper, remove the paper and immediately mark the paper with a line that is the solvent front. Dry the paper. Circle any cations that are visible by virtue of their colors. Place the paper on a paper towel and spray it with the staining reagent. Note the colors present. Dry the paper and circle the boundary of each spot since they may fade with time.
11. Measure the distance (to the tenth of a millimeter) from the straight line where you applied the spots to the solvent front. This distance is D_{s}, the distance traveled by the solvent. Measure the distance from the beginning line to the center of each spot. This distance is D_{x} for each metal cation. Calculate R_{f} for each of the metal cations. Be sure to include one sample calculation set up in your lab.
12. Report the R_{f} value for each metal cation as well as its color, the identity of the cations in your unknown solutions and any possible sources for error in this experiment.
13. Dispose of any remaining eluting solution in a waste bottle. Wash your hands before leaving the lab!

Chromatography

Known Solutions

Colors (Dry)

Colors (After staining)

Distance solvent moved

Distance cation moved
R_{f}

Known Mixture (Std or Mix)

Distance solvent moved

Distance cation moved
R_{f}

Unknown Mixture No.

Color (Dry)

Color (After staining)

Distance solvent traveled \qquad
\qquad
\qquad
\qquad

Distance cation traveled R_{f}

Unknown Mixture No.

\qquad
Color (Dry)

Color (After staining)

Distance solvent traveled \qquad
\qquad
\qquad

Distance cation traveled \qquad
\qquad
\qquad
\qquad
R_{F} \qquad
\qquad
\qquad

Chromatography Postlab Questions

1. Determine the R_{f} value for each spot on the following chromatogram.

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{f}}(\mathrm{~A})= \\
& \mathrm{R}_{\mathrm{f}}(\mathrm{~B})= \\
& \mathrm{R}_{\mathrm{f}}(\mathrm{C})= \\
& \mathrm{R}_{\mathrm{f}}(\mathrm{D})=
\end{aligned}
$$

2. Based on your calculations, is Compound D more likely to be identical to Compound A, Compound B , or Compound C? Explain.
3. Why are pencils used to mark the chromatographic paper rather than ink?
4. If a $1.0 \mathrm{~cm}^{2}$ spot of silver solution contains 10 . microliters of solution and the solution contains 11 g of Ag^{+} ions per liter of solution, what mass of silver ions are in one $1.0 \mathrm{~cm}^{2}$ spot?

Please note: The instructor will send you email throughout the term, so please check your email several times each week! The instructor will use your @saints.mhcc.edu address by default, but if you wish to use an alternate email address, send an email to mike.russell@mhcc.edu from your alternate email account and it will be changed promptly.

CH 222 Winter 2025:
 ${ }^{6}$ Lewis Structures (in class)" Lab - Instructions

Note: This is the lab for section 01 and $\mathbf{H 1}$ of CH 222 only.

- If you are taking section W1 of CH 222, please use this link:
http://mhchem.org/r/2b.htm

Step One:

Get a printed copy of this lab! You will need a printed (hard copy) version of pages Ia-2-7 through Ia-2-12 to complete this lab. If you do not turn in a printed copy of the lab, there will be a 2-point deduction.

Step Two:
Bring the printed copy of the lab with you on Monday, January 13 (section 01) or Wednesday, January 15 (section H1.) During lab in room AC 2507, you will use these sheets (with the valuable instructions!) to gather data, all of which will be recorded in the printed pages below.

Step Three:
Complete the lab work and calculations on your own, then turn it in (pages Ia-2-7 through Ia-2-12 only to avoid a point penalty.) Due dates: Section 01: Wednesday, January 22 at 9 AM in AC 1303 ($M L K$ day); section H1: Wednesday, January 22 at 1:10 PM in AC 2501. The graded lab will be returned to you the following week during recitation.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Lewis Structures - The Geometry of Covalent Molecules

The formulas of many covalent compounds, especially those involving only the elements of the first few periods of the periodic table, were brought within the framework of the octet rule. The octet rule states that a total of eight valence electrons, either shared or unshared, should be in the region of each atom beyond the first period. For hydrogen the desired number is two. Electrons that are shared between two atoms are bonding electrons and are to be counted toward the octet of each of the bonding atoms. A single covalent bond consists of a pair of shared electrons, a double bond has two shared pairs, and a triple bond has three shared pairs. Bond distances are shorter and bond energies are greater for multiple bonds than for single bonds.

Structural formulas, such as shown in Figure 1, represent the electron distributions in covalent molecules and ions. These structures are not meant to indicate actual bond angles in threedimensional varieties; they merely show the number of bonds connecting the various atoms. In Lewis formulas, a single line between two atoms represents a pair of shared electrons and a dot represents an unshared electron.

Methyl chloride

Ammonia

Ammonium ion

Hydroxide ion

Carbon dioxide

Figure 1
Two lines constitute a double bond, and three lines constitute a triple bond. The total number of electrons shown in such a molecular structure is equal to the sum of the numbers of valence (outershell) electrons in the free atoms: 1 for $\mathrm{H}, 4$ for $\mathrm{C}, 5$ for $\mathrm{N}, 6$ for O , and 7 for Cl . For an ionic structure, one additional electron must be added to this sum for each unit of negative charge on the whole ion, as in OH^{-}, and one electron must be subtracted from the sum for each unit of positive charge on the ion, as in $\mathrm{NH}_{4}{ }^{+}$. The number of pairs of electrons shared by an atom is called its covalence.

The covalence of hydrogen is always one. The covalence of oxygen is practically always one or two. The covalence of carbon is four in almost all its stable compounds. Thus each carbon is expected to form either four single bonds, a double bond and two single bonds, two double bonds, or a single and a triple bond. Although the octet rule is not a rigid rule of chemical bonding, it is obeyed for $\mathrm{C}, \mathrm{N}, \mathrm{O}$, and F in almost all their compounds. The octet is exceeded commonly for elements in the third and higher periods of the periodic table.

Isomerism: For some molecules with a given molecular formula, it is possible to satisfy the octet rule with different atomic arrangements. A simple example would be

and

The two molecules are called isomers of each other, and the phenomenon is called isomerism. Although the molecular formulas of both substances are the same, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, their properties differ because of the different atomic arrangement. Since several different types of isomerism can exist especially in organic molecules, these are called structural isomers.

When double bonds are present, isomerism can occur in very small molecules. For example:

These isomers (called geometric isomers) result from the fact that there is no rotation around a double bond, as in single bonds.

Resonance: Sometimes more than one satisfactory structure can be written and there is no reason to select one over another. In such cases a single structural formula is inadequate to represent a substance correctly, and several such diagrams must be written. The true structure is then said to be a resonance hybrid of the several diagrams.

For example, experiment has shown that the two terminal oxygens in ozone are equivalent; that is, they are equidistant from the central oxygen. If only one of the resonance diagrams in Fig.2(a) were written, it would appear that one of the terminal oxygens is bonded more strongly to the central oxygen by a double bond than is the other (by a single bond) and that the more strongly bonded atom should be closer to the central atom. The hybrid of the two ozone structures gives equal weight to the extra bonding of the two terminal oxygen atoms. Similarly, the three resonance structures of carbonate in Fig.2(b) are needed to account for the experimental fact that all three oxygens are equidistant from the central carbon.

Figure 2: a) ozone (left) and b) carbonate (right)
The total bond energy of a substance for which resonance structures are written is greater than would be expected if there were only one formal Lewis structure. This additional stabilization is called resonance energy. It arises from the principle that is responsible for covalent bond energy, the delocalization of electrons about the atoms forming the bond. As a result of resonance in ozone, for example, the electrons constituting the second pair of the double bond are delocalized around the 3 oxygen atoms. The writing of two or more resonance structures is a way of overcoming the inability of a single valencebond structure to show this delocalization.

Formal Charge: Although a molecule as a whole is electrically neutral, it is a matter of much current interest to know whether there are local charges which can be identified with particular parts of a molecule, the algebraic sum of which would equal zero. In an ion, the algebraic sum would equal the charge of the ion as a whole. In one approximate method of apportioning charges within a molecule or ion, the shared electrons in a covalent bond are arbitrarily divided equally between the two atoms forming the bond. Unshared valence electrons on an atom are assigned exclusively to that atom. Each atom is then assigned a formal charge which is equal to the number of valence electrons possessed by that atom in the neutral free state minus the number of valence electrons assigned to it in the structure. These charges may be written near the atoms on the structural diagrams.

Page Ia-2-3 / Lewis Structures Lab (in class) for Sections 01 and H1

Figure 3 shows a single resonance structure for ozone. The central oxygen is assigned just five electrons (two in the unshared pair plus half of the three pairs in the bonds); this atom, being one electron short of the complement of six in a free oxygen atom, is thus assigned a formal charge of $\mathbf{+ 1}$. The terminal oxygen connected by a single bond is assigned 7 (6 in the unshared pairs plus half of one pair in the bond); having one electron more than a neutral oxygen atom, this atom is assigned a formal charge of $\mathbf{- 1}$. The other terminal oxygen has no formal charge because six electrons are assigned to it (four in the unshared pairs plus half of the two shared pairs).

Figure 3: $\quad-1$ Formal charges on ozone
A rule useful in choosing one Lewis structure over another is that structures which minimize formal charge separation are favored. Especially to be avoided are formal charges of magnitude greater than 1 and structures in which appreciable formal charges of the same sign are located on adjacent atoms.

Dipole moments and electronegativity: There are some experimental procedures that give information about the actual distribution of charges within a molecule (as distinct from the arbitrary assignment of formal charges). One such is the measurement of dipole moment. An electric dipole is a neutral object that has a positive charge of magnitude q and a separately located, equal but opposite negative charge. The rotation of a dipole by an electric field is dependent upon and a measure of the dipole moment, defined as the product of q and the distance, d , separating the positive and negative charges.

In a covalent diatomic molecule, the dipole moment would be expected to be zero if the bonding electrons were shared truly equally by the two atoms. This is indeed the case in molecules of the type XX where two identical atoms are bonded. In the more general type XY, two different kinds of atoms are bonded, and a dipole moment is usually observed. This is explained by hypothesizing that one of the atoms, say Y, has a greater attraction for the shared electrons in the bond than does $\mathrm{X} . \mathrm{Y}$ is said to have a greater electronegativity than X. Electronegativity correlates with other atomic properties; in general, atoms with high ionization energies and/or high electron affinities tend to have high electronegativities. The most electronegative elements in order of decreasing electronegativity are $\mathbf{F}>\mathbf{O}>\mathbf{N}=\mathbf{C l} \quad \mathrm{C}$ is more electronegative than H . Metals are less electronegative than nonmetals.

HOW TO COMPLETE THIS LAB:

In this experiment you will be constructing models of molecules and ions containing atoms covalently bonded. If you have access to a model kit, use it! The model kit consists of plastic colored balls where each type of ball represents a certain species of atom; see the front cover of the model box to determine each atom type.

In assembling a molecular model of a molecule you should use a systematic approach keeping in mind the valence of the atoms in the molecule. Let us illustrate the recommended procedure with the following molecule, $\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}} \mathbf{O}_{\mathbf{2}}$:

1. Draw a correct Lewis structure, remembering that carbon will always have four bonds and oxygen usually just two. Unless otherwise informed assume the carbon atoms form a carbon - carbon bond. Count up the total number of valence electrons (24 e-). Those that are not bonding are nonbonding electrons. This leads to the following two isomers (other isomers exist as well):

2. Connect the balls and sticks to according to the Lewis structure. Use two bonds to represent the carbonoxygen double bond.
3. Determine the electron pair geometry (EPG) and molecular geometry (MG) of the molecule from the molecular model. For acetic acid we say that the molecule is tetrahedral at one carbon, trigonal planar at the other carbon and tetrahedral / bent at the oxygen.
4. Determine whether any isomers exist by changing the location of the atoms; however you must maintain the correct valence of each atom.
5. Resonance will most often exist when the central atom forms a double bond to one atom and a single bond to another atom of the same element.

PROCEDURE:

Use the procedure outlined above to construct Lewis structures of the molecules and ions listed below using the attached worksheet. Neatness counts! Be sure to include all lone pair electrons on your drawings. For each molecule:
i) Draw the Lewis structure, including all lone pair electrons.
ii) Describe the electron pair geometry and molecular geometry around the central atom. If more than one central atom, put a star $\left(^{*}\right)$ by the central atom you will use in your answer.
iii) Determine if the molecule is polar or nonpolar and list any bond angles.
iv) Draw the Lewis structures of isomers and resonance forms, if any.

1. CH_{4}	6. $\mathrm{NH}_{4}+1$	11. $\mathrm{C}_{2} \mathrm{H}_{2}$	16. SCN^{-}	21. $\mathrm{AsCl}_{3} \mathrm{Br}_{2}$
2. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	7. $\mathrm{CH}_{2} \mathrm{O}$	12. SO_{2}	17. $\mathrm{NO}_{3}{ }^{-1}$	22. PCl_{5}
3. $\mathrm{CH}_{4} \mathrm{O}$	8. NH_{3}	13. $\mathrm{C}_{2} \mathrm{H}_{4}$	18. $\mathrm{SO}_{4}{ }^{2-}$	23. $\mathrm{SiF}_{6}{ }^{2-}$
4. $\mathrm{H}_{2} \mathrm{O}$	9. $\mathrm{H}_{2} \mathrm{O}_{2}$	14. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$	19. CO_{2}	24. $\mathrm{SiF}_{4} \mathrm{Cl}_{2}{ }^{2-}$
5. BF_{3}	$10 . \mathrm{HNO}_{3}$	15. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$	20. SeF_{4}	25. $\mathrm{SiF}_{3} \mathrm{Cl}_{3}{ }^{2-}$

Also, on the last page, construct six possible isomers of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$.

Name:
Lewis Structures Worksheet - Hand drawn versions only, no computer generated structures
Be sure to include all lone pair electrons for full credit! Draw all resonance forms and isomers (if any).

Molecule/Ion	Lewis Structure	Geometry and Polarity	Resonance/Isomers? (draw)
		Electron Pair Geometry:	
CH_{4}		Molecular Geometry:	
		Polar or Nonpolar: Bond Angle(s):	

		Electron Pair Geometry:	
$\mathbf{C H}_{2} \mathbf{C l}_{2}$		Molecular Geometry:	
Polar or Nonpolar:			
Bond Angle(s):			

$\mathbf{C H}_{4} \mathrm{O}$ hint: put a star next to your central atom	Electron Pair Geometry:		
		Molecular Geometry:	
Polar or Nonpolar:			
Bond Angle(s):			

		Electron Pair Geometry:	
$\mathbf{H}_{2} \mathbf{O}$		Molecular Geometry:	
		Polar or Nonpolar: Bond Angle(s):	

| BF_{3} | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| Molecular Geometry: | | |
| Polar or Nonpolar: | | |
| Bond Angle(s): | | |

The Geometrical Structure Of Covalent Molecules Worksheet - Continued

Molecule/Ion	Lewis Structure	Geometry and Polarity	Resonance/Isomers? (draw)
$\mathrm{NH}_{4}{ }^{\mathbf{1}}$		Electron Pair Geometry:	
		Molecular Geometry:	
		Polar or Nonpolar:	
		Bond Angle(s):	

| $\mathbf{C H}_{2} \mathrm{O}$ | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| | Molecular Geometry: | |
| Polar or Nonpolar: | | |
| Bond Angle(s): | | |

$\mathbf{N H}_{3}$		Electron Pair Geometry:	
		Molecular Geometry:	
	Polar or Nonpolar:		
Bond Angle(s):			

| $\mathbf{H}_{2} \mathrm{O}_{2}$ | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| | Molecular Geometry: | |
| Polar or Nonpolar: | | |
| Bond Angle(s): | | |

The Geometrical Structure Of Covalent Molecules Worksheet - Continued

Molecule/Ion	Lewis Structure	Geometry and Polarity	Resonance/Isomers? (draw)
		Electron Pair Geometry:	
$\mathrm{C}_{2} \mathrm{H}_{2}$ hint: triple		Molecular Geometry:	
		Polar or Nonpolar:	
		Bond Angle(s):	

$\mathbf{S O}_{\mathbf{2}}$	

Electron Pair Geometry:

Molecular Geometry:

Polar or Nonpolar:
Bond Angle(s):

$\mathbf{C}_{2} \mathbf{H}_{\mathbf{4}}$
hint: double
bond

Electron Pair Geometry:

Molecular Geometry:

Polar or Nonpolar:
Bond Angle(s):

		Electron Pair Geometry:	
$\mathbf{C}_{2} \mathbf{H}_{2} \mathbf{C l}_{2}$		Molecular Geometry:	
		Polar or Nonpolar: Bond Angle(s):	

Electron Pair Geometry:

Molecular Geometry:

Polar or Nonpolar:
Bond Angle(s):

The Geometrical Structure Of Covalent Molecules Worksheet - Continued

Molecule/Ion	Lewis Structure	Geometry and Polarit	Resonance/Isomers? (draw)
$\mathbf{S C N}^{-1}$ C in middle		Electron Pair Geometry:	
		Molecular Geome	
		Polar or Nonpolar:	
		Bond Angle(s):	

$\mathbf{N O}_{3}{ }^{-1}$	

Electron Pair Geometry:

Molecular Geometry:

Polar or Nonpolar:
Bond Angle(s):

$\mathbf{S O}_{4}{ }^{-2}$	

Electron Pair Geometry:

Molecular Geometry:

Polar or Nonpolar:
Bond Angle(s):

		Electron Pair Geometry:	
CO_{2}		Molecular Geometry:	
	Polar or Nonpolar: Bond Angle(s):		

Electron Pair Geometry:

Molecular Geometry:

Polar or Nonpolar:
Bond Angle(s):

The Geometrical Structure Of Covalent Molecules Worksheet - Continued

Molecule/Ion	Lewis Structure	Geometry and Polarity	Resonance/Isomers? (draw)
		Electron Pair Geometry:	
$\mathbf{A s C l}_{3} \mathbf{B r}_{2}$ hint \cdot trigonal		Molecular Geometry:	
		Polar or Nonpolar:	

| | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| $\mathbf{P C l}_{5}$ | | Molecular Geometry: |
| | | |
| | Polar or Nonpolar: | |
| Bond Angle(s): | | |

		Electron Pair Geometry:			
SiF62-					
hint:octahedral			\quad		
:---	:---				
	Molecular Geometry:				
Polar or Nonpolar:					
Bond Angle(s):					

| | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| $\mathrm{SiF}_{4} \mathrm{Cl}_{2}{ }^{2-}$ | | Molecular Geometry: |
| | Polar or Nonpolar: | |
| Bond Angle(s): | | |

Finally, construct six possible isomers of $\mathbf{C}_{6} \mathbf{H}_{12} \mathbf{O}_{2}$ in the space provided below. For this question, carbon will always have four bonds and no lone pairs, and oxygen should always have two bonds (two single or one double) and two lone pairs.

CH 222 Winter 2025: "Valence Bond and Molecular Orbitals (in class)" Lab-Instructions

Note: This is the lab for section H1 of CH 222 only.

- If you are taking section 01 or section W1 of CH 222, please use this link: http://mhchem.org/r/3b.htm

Step One:

Get a printed copy of this lab! You will need a printed (hard copy) version of pages Ia-3-3 through Ia-3-12 to complete this lab. If you do not turn in a printed copy of the lab, there will be a 2-point deduction.

Step Two:
Bring the printed copy of the lab with you on Wednesday, January 22 (section H1.) During lab in room AC 2507, you will use these sheets (with the valuable instructions!) to gather data, all of which will be recorded in the printed pages below.

Step Three:
Complete the lab work and calculations on your own, then turn it in (pages Ia-3-5 through Ia-3-12 only to avoid a point penalty) at the beginning of recitation to the instructor on Wednesday, January 29 (section H1.) The graded lab will be returned to you the following week during recitation.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

VALENCE BOND (VB) THEORY

and

MOLECULAR ORBITAL (MO) THEORY

LAB

This lab contains a series of handouts that you should complete. Neatness counts!

Useful handouts from the Chemistry 222 website (http://mhchem.org/222):

- Geometry and Polarity Guide (http://mhchem.org/geopo/)
- MO Diagram - B_{2} through N_{2} (http://mhchem.org/MO)
- MO Diagram - O_{2} through Ne_{2} (http://mhchem.org/MO)

Molecular orbital diagrams for B, C, N (left) and O, F and Ne (right).
Notice that the 1s interactions are not included in these diagrams. Use [core electrons] if not showing the 1s interactions in your molecular orbital diagram.

This page left blank for printing purposes

VALENCE BOND THEORY and MOLECULAR ORBITAL THEORY LAB - Worksheet
Hand drawn versions only, no computer generated structures
Complete the sections below by providing the appropriate information in the spaces provided. Neatness counts!
Part One: Valence Bond Theory Complete the following sections using Valence Bond Theory.

Molecule/Ion Lewis Structure (\& Isomers, if any)

		Electron Pair Geometry:	Hybridization:
AsCl5		Molecular Geometry:	Bond Order:
		Polar or Nonpolar:	Resonance Forms? (Y/N)

Molecule/Ion Lewis Structure (\& Isomers, if any)

		Electron Pair Geometry:	Hybridization:
CO^{2-}		Molecular Geometry:	Bond Order:
	Polar or Nonpolar:	Resonance Forms? (Y/N)	

Molecule/Ion Lewis Structure (\& Isomers, if any)

		Electron Pair Geometry:	Hybridization:
$\mathbf{C l O}_{4}{ }^{-1}$		Molecular Geometry:	Bond Order:
	Polar or Nonpolar:	Resonance Forms? $(\mathbf{Y} / \mathbf{N})$	

Molecule/Ion Lewis Structure (\& Isomers, if any)

		Electron Pair Geometry:	Hybridization:
XeOF_{4}		Molecular Geometry:	Bond Order:
		Polar or Nonpolar:	Resonance Forms? (Y/N)

Part Two: Molecular Orbital Theory Complete the following sections using Molecular Orbital Theory. Draw a complete Molecular Orbital diagram to answer these questions (include all $1 s$ and $2 s$ interactions, no short hand notation) and provide the missing information.

Molecule / Ion: Li \mathbf{i}_{2}
Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad
(Circle) Paramagnetic or Diamagnetic

Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad
(Circle) Paramagnetic or Diamagnetic Should this molecule exist? (Circle) Yes or No

Molecule / Ion: \mathbf{B}_{2}

Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad
(Circle) Paramagnetic or Diamagnetic

Molecule / Ion: $\mathbf{N}_{\mathbf{2}}$

Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad
(Circle) Paramagnetic or Diamagnetic
Should this molecule exist? (Circle) Yes or No
Molecule / Ion: \mathbf{F}_{2}
Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad
(Circle) Paramagnetic or Diamagnetic
Should this molecule exist? (Circle) Yes or No

Molecule / Ion: $\mathbf{N e}_{2}$

Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad

Part Three: Theory Comparison Complete the following sections using both Valence Bond (VB) Theory and Molecular Orbital (MO) Theory. Shorthand notation for MO Diagrams is recommended, include $1 s$ and $2 s$ interactions.

Molecule / Ion: CN-1 (Use the MO Diagram for B, C and N on this problem)

Valence Bond Lewis Structure:	Bond Order (VB):	
	Bond Order (MO):	
	Number of sigma bonds (VB):	
Molecular Orbital Diagram:		
	Number of sigma bonds (MO):	
	Number of pi bonds (VB):	
	Number of pi bonds (MO):	
	(VB) Paramagnetic? (circle)	Yes No
	(MO) Paramagnetic? (circle)	Yes No

Molecule / Ion: NO ${ }^{+1}$ (Use the MO Diagram for O, F and Ne on this problem)

Valence Bond Lewis Structure:	Bond Order (VB):	Bond Order (MO):	Number of sigma bonds (VB):
Molecular Orbital Diagram:	Number of pi bonds (VB):	Number of pi bonds (MO):	(V) Paramagnetic? (circle)

Molecule / Ion: NO (Use the MO Diagram for O, F and Ne on this problem)

Molecule / Ion: $\mathbf{O}_{\mathbf{2}}$

Valence Bond Lewis Structure:	Bond Order (VB):	Nond Order (MO):	Number of sigma bonds (VB):

Molecule / Ion: $\mathbf{N e}_{2}{ }^{+2}$

Valence Bond Lewis Structure:		
	Bond Order (VB):	
	Bond Order (MO):	
	Number of sigma bonds (VB):	
Molecular Orbital Diagram:	Number of sigma bonds (MO):	
	Number of pi bonds (VB):	
	Number of pi bonds (MO):	
	(VB) Paramagnetic? (circle)	Yes No
	(MO) Paramagnetic? (circle)	Yes No

CH 222 Winter 2025:
 "Organic Chemistry" (in
 class) Lab - Instructions

Note: This is the lab for section $\mathbf{0 1}$ and $\mathbf{H 1}$ of CH 222 only.

- If you are taking section W1 of CH 222, please use this link:
http://mhchem.org/r/4b.htm

Step One:

Get a printed copy of this lab! You will need a printed (hard copy) version of pages Ia-4-2 through Ia-4-13 to complete this lab. If you do not turn in a printed copy of the lab, there will be a 2 -point deduction.

Step Two:
Bring the printed copy of the lab with you on Monday, January 27 (section 01) or Wednesday, January 29 (section H1.) During lab in room AC 2507, you will use these sheets (with the valuable instructions!) to gather data, all of which will be recorded in the printed pages below.

Step Three:
Complete the lab work and calculations on your own, then turn it in (pages Ia-4-9 through Ia-4-13 only to avoid a point penalty) at the beginning of recitation to the instructor on Monday, February 3 (section 01) or Wednesday, February 5 (section H1.) The graded lab will be returned to you the following week during recitation.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Organic Chemistry

The classification of chemical compounds in to the general areas of organic and inorganic derives from the use of the "mineral, vegetable and animal" designation by the early workers in chemistry. Those compounds derived from living systems were termed organic (about 1777) whereas those derived from mineral sources were termed inorganic. In modern times, organic compounds are classified as compounds of carbon containing either carbon-carbon or carbon-hydrogen bonds or both. Originally, organic compounds were thought to be imbued with a "vital essence" attainable only from God. Thus, it was believed that organic compounds could be prepared from sources that had once lived, as this would be the only way that this vital essence could be obtained by man. In 1828, Freidrich Wöhler prepared the organic compound urea (found in human urine) from entirely nonliving sources, thereby destroying the theory of organic vitalism. Since Wöhler's time, approximately 5 million organic compounds have been synthesized and characterized, many of which are not found in nature.

Why are there so many organic compounds? The reason is that carbon atoms have the ability to link to other carbon atoms (concatenate) to produce chains or rings of almost infinite size. Other elements do not concatenate nearly as well due to such factors as poor orbital overlap and lone pair-lone pair electronic repulsions. Other elements can also combine with carbon to form hetero-species, including hydrogen, oxygen, nitrogen, sulfur and the halogens.

The distinction between the organic and inorganic disciplines is not very sharp. The bonding of metals to carbon has resulted in the large, important and fast growing area of organometallic chemistry. Organometallic compounds containing metals and metalloids such as lithium, magnesium, copper, iron, boron, silicon, and other elements play major roles as synthetic reagents.

The purpose of this experiment is to prepare models of the more common organic compound types to enhance their three dimensional nature. Bond angles between atom groupings will become apparent as you build the models.

Saturated Hydrocarbons: The Alkanes

Alkanes are hydrocarbons (compounds with hydrogen and carbon atoms) linked with single bonds. All the carbon atoms are sp^{3} hybridized and are tetrahedrally bonded to four other carbon or hydrogen atoms. Members of this class have the general formula $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{\mathbf{2 n}+2}$, where \mathbf{n} is an integer. Examples of this class of organic compound include methane $\left(\mathrm{CH}_{4}, \mathrm{n}=1\right)$, ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{n}=2\right)$ and propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{n}=3\right)$. Structures of the first four straight chain compounds are shown below.
methane

CH_{4}
ethane

$\mathrm{CH}_{3} \mathrm{CH}_{3}$
propane

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

butane

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

These representations do not show the actual geometrical structure of these compounds. Due to the sp^{3} hybridization of the carbon atoms, all the bond angles in the molecules are close to 109.5° (tetrahedral) and thus, the carbon chain is nonlinear. The wedge-dash notation can be used to represent the nonlinear nature of these molecules. Examples of ethane and butane are given below using the wedge-dash notation.

ethane
butane

As you prepare models of the alkanes, note that each carbon atom can rotate about its respective carbon-carbon bond. Some conformations (arrangements of the bonds and groups relative to each other) are more stable than others, since in these arrangements there is less interference (steric repulsion) between the hydrogen atoms attached to nearby carbons.

An interesting aspect of the alkanes is that structural isomers can exist in compounds having more than three carbon atoms. Structural isomers are species that have the same molecular formula but possess different physical properties due to different arrangements of the carbon backbone. The two compounds below are an example of an isomeric pair of hydrocarbons. Both are butanes and have the formula $\mathrm{C}_{4} \mathrm{H}_{10}$, but their structures are different.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

n-butane

This figure relates several new points. First is the use of the skeleton formula. These structures represent the carbon backbone without the hydrogen atoms being shown and are often used as a shorthand method of representing the structures. The second point is the use of substituents in naming compounds. We can see that in methylpropane, one of the CH_{3} groups is a "twig" off of the main "branch" of the compounds. Such twigs are called alkyl groups. In the figure, the methyl group $\left(\mathrm{CH}_{3}\right)$ name is derived from the hydrocarbon methane $\left(\mathrm{CH}_{4}\right)$ having lost a hydrogen. The number of possible isomers increases rapidly as the number of carbon atoms increases in a compound. For example, the pentane system (five carbons) has three isomers, the heptane system (seven carbons) has nine isomers, and the decane system (ten carbons) has seventy-five isomers!

Alkanes can also exist as cyclic hydrocarbons where the carbon atoms are arranged in rings. The general molecular formula is $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{\mathbf{2}}$, where \mathbf{n} is an integer. These carbons are named identically to the alkanes except for the additional prefix cyclo. The structures for two cyclic hydrocarbons are given below.

cyclopropane

cyclopentane

In the smaller rings such as cyclopropane and cyclobutane, smaller bond angles (60° and 90°, respectively) are evident. Such angles are seen as being strained from their normal tetrahedral angle, and these compounds have less stability than their larger counterparts. The most stable cyclic compounds contain rings of five and six carbons (cyclopentane and cyclohexane, respectively).

Unsaturated Hydrocarbons: The Alkenes

Alkenes are hydrocarbons in which there are one or more carbon-carbon double bonds, $\mathrm{C}=\mathrm{C}$. The carbon atoms attached to the double bond are sp^{2} hybridized. One of the double bonds is a sigma bond (oriented along the internuclear axis) and the other is a pi bond (oriented perpendicular to the internuclear axis). Members of this class have the general formula $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{\mathbf{2}}$, where \mathbf{n} is an integer (note that this is the same formula as for the cycloalkanes.) Examples of alkenes include ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{n}=2\right.$, also known as ethylene), propene $\left(\mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{n}=3\right.$, also known as propylene) and butene $\left(\mathrm{C}_{4} \mathrm{H}_{8}, \mathrm{n}=4\right)$. Structures of several of the alkenes are shown below. Alkenes are named in the same fashion as the alkanes except that the ending -ene replaces the ending -ane. In cases where more than one structural isomer exists (such as butane, below), it is necessary to indicate the
location of the double bond by numbering the carbon atoms in the longest chain containing the double bond, and then giving it the lowest possible number.
ethene (ethylene)

propene (propylene)

$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$

1-butene
or but-1-ene
trans-2-butene
or trans-but-2-ene

Many kinds of isomerism exist in organic compounds. Since carbon atoms are free to rotate around the C-C single bonds but not around a $\mathrm{C}=\mathrm{C}$ double bond (this disrupts the overlap of the pi part of the double bond), it is possible to have two separate geometrical isomers of 2-butene. These are known as the cis- and trans- isomers and are shown below:

cis-2-butene
cis-but-2-ene

trans-2-butene
trans-but-2-ene

Cyclic structures containing $\mathrm{C}=\mathrm{C}$ bonds are also possible, and three examples follow.

cyclohexene

1,3,5,7-cyclooctatetraene

Unsaturated Hydrocarbons: The Alkynes

Hydrocarbons containing a carbon-carbon triple bond are named alkynes. The two carbon atoms forming the triple bond are joined by one sigma and two pi bonds and are sp hybridized. The alkynes have the general molecular formula $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{\mathbf{2 n} \mathbf{- 2}}$. Several representatives of this class are shown below. Alkynes are names in the same manner as alkenes except that the ending -yne replaces the ending -ene.

$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
ethyne (acetylene)	propyne	2-butyne

Aromatic Hydrocarbons

Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, is the most crucial member of this important class of hydrocarbons. The molecule contains a ring of six sp^{2} hybridized carbon atoms with the unhybridized p orbitals perpendicular to the ring system. The six electrons in the pi parts of the bonds are delocalized (spread evenly over the six carbon nuclei). Such molecules are often unusually stable. There are two equally valid ways of representing the structure of benzene. These two ways are called resonance forms, and the molecule is a resonance hybrid with the "true structure" of benzene lying midway between the two resonance forms. As an example, a mule is a genetic hybrid descendant of a male donkey and a female horse. The mule does not change back and forth, being a donkey half the time and a horse the other half. Thus, the properties of a resonance hybrid (such as benzene) are fixed.

There are many familiar hydrocarbon species which are based on the benzene structure that contain various functional groups. A few representative examples are given below. Note that the delocalized pi electrons can be represented by a circle in the ring. This is an alternate representation of the ring often used by chemists.

phenol

benzoic acid

oil of wintergreen

1,2-dimethylbenzene (ortho-xylene)
1,3-dimethylbenzene (meta-xylene)
1,4-dimethylbenzene (para-xylene)

benzophenone

2-chloroethylbenzene

There are also many important aromatic hydrocarbons that contain more than one fused benzene ring. Several are illustrated here.

naphthalene

anthracene

phenanthrene

Hydrocarbons Containing Functional Groups

The basic types of hydrocarbon compounds outlined above may have one or more of their hydrogen atoms replaced by a functional group. The substituted benzenes earlier illustrated a number of functionalities ($-\mathrm{CH}_{3}$, -OH , etc.) attached to the aromatic ring. Additional examples are shown in the table below.

Functional Group	Class of Compound	Example	Name
-OH	alcohol	$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{OH}$	ethanol (ethyl alcohol)
-O-	ether	$\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$	dimethyl ether
	amine	$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{3}$	methylamine
$\stackrel{O}{-\mathrm{O}-\mathrm{H}}$	aldehyde		ethanal (acetaldehyde)
	ketone		propanone (acetone)
	carboxylic acid		ethanoic acid (acetic acid)
	ester		methyl acetate
$-\mathrm{NO}_{2}$	nitro		nitromethane
$-\mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I})$	haloalkane	$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{Cl}$	chloroethane (ethyl chloride)

Name:
Organic Chemistry Worksheet - Hand drawn versions only, no computer generated structures
Answers to this lab should be provided in this worksheet. Neatness and attention to detail will count.

1. Alkanes and Cycloalkanes
a. Write the structural formula and name for each straight-chain alkane with between one and eight carbons.
b. What are the geometries, bond angles and hybridizations of the carbon atoms in the alkanes? What pattern do you notice for the relationship of carbon to hydrogen? (i.e. if an alkane has n carbons, how many hydrogen atoms are on the molecule?)
c. Draw and name the five structural isomers of the hexane molecule. Give a suitable name to each of the hexane isomers. For example, one of the isomers is named 3-methylpentane. (Remember that one of the isomers is n-hexane!)
d. Draw the structure for cyclohexane. What is the molecular formula of cyclohexane? What is the relationship between the number of carbon atoms and hydrogen atoms? Is cyclohexane an isomer of hexane? Explain.

Organic Chemistry Worksheet - Continued
2. Alkenes and Alkynes
a. Draw the structure and molecular formula for ethene. What is the geometry and bond angle around the double bond? What is the hybridization of the carbon atoms? What is the relationship between the number of carbon atoms and hydrogen atoms?
b. Construct four alkene isomers with four carbons each. Draw and name the structural formulas. Be sure to include cis and trans labels when appropriate.
c. Draw the structure and molecular formula for ethyne. What is the geometry and bond angle around the triple bond? What is the hybridization of the carbon atoms? What is the relationship between the number of carbon atoms and hydrogen atoms? How many sigma and pi bonds are in ethyne?
d. Construct models of the three five carbon alkyne isomers. Draw and name the isomers.
e. Draw cyclobutyne. Using your knowledge of bond angles and hybridization, would you expect cyclobutyne to be a stable compound? Explain.

Organic Chemistry Worksheet - Continued
3. Aromatic Compounds
a. Sketch the line structure of the aromatic compound benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$. Comment on the fact that measurement of the $\mathrm{C}-\mathrm{C}$ bond distances in benzene shows that all are the same length (1.397 Angstroms) and that the $\mathrm{C}-\mathrm{C}$ bond angles are all 120°. Is benzene a flat molecule?
b. Benzene was at one time used extensively as a solvent. However, since it has been found to be carcinogenic, it has largely been replaced by toluene. Toluene, which is formally known as methylbenzene, contains an aromatic ring substituted with a methyl group and has a molecular formula of $\mathrm{C}_{7} \mathrm{H}_{8}$. Sketch a possible structure for toluene. Do you think toluene would have a higher or lower boiling point than benzene? Explain.
c. Draw two resonance structures for naphthalene. (Hint: look in this lab for the naphthalene structure!)
d. There are three dichlorobenzene isomers. Draw and name them. Which one would you expect not to have a dipole moment? Explain.
4. Identify the functional group and/or class of compound in each of the following molecules. List the hybridization around the marked atom in each compound. Finally, name the compound.

5. Draw structures for acetone, formaldehyde and acetic acid. What are the bond angles around the $\mathrm{C}=\mathrm{O}$ carbon atom in each of these compounds?
6. Draw the structures for the following compounds:
a. 2,3-difluorohexane
g. cis,trans-octa-2,6-diene
b. dimethyl ether
h. 2-hexyne
c. butanone
i. 3-nitrotoluene
d. dimethylamine
j. 4-bromobenzoic acid
e. pentan-2-ol
k. 2,4,6-trinitrotoluene
f. 2,3-diethyltoluene

1. 2-chlorophenol

This page left blank for printing purposes

CH 222 Winter 2025: "Molar Mass of a Volatile Liquid (in class)" LabInstructions

Note: This is the lab for section 01 and $\mathbf{H 1}$ of CH 222 only.

- If you are taking section W1 of CH 222, please use this link:
http://mhchem.org/r/5b.htm
Step One:
Get a printed copy of this lab! You will need a printed (hard copy) version of pages Ia-5-2 through Ia-5-9 to complete this lab. If you do not turn in a printed copy of the lab, there will be a 2 -point deduction.

Step Two:

Bring the printed copy of the lab with you on Monday, February 3 (section 01) or Wednesday, February 5 (section H1.) During lab in room AC 2507, you will use these sheets (with the valuable instructions!) to gather data, all of which will be recorded in the printed pages below. Bring your safety glasses to this lab!

Step Three:
Complete the lab work and calculations on your own, then turn it in (pages Ia-5-5 through Ia-5-9 only to avoid a point penalty) at the beginning of recitation to the instructor on Monday, February 10 (section 01) or Wednesday, February 12 (section H1.) The graded lab will be returned to you the following week during recitation.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Molar Mass of a Volatile Liquid

The experimental determination of the molar mass of gases and vapors is one important application of the Ideal Gas Law. To determine the molar mass of a gas or vapor, we need to determine the mass (g, below) of the gas sample under known conditions of temperature (T), Volume (V) and pressure (\mathbf{P}). Assuming the gas obeys the Ideal Gas Law:

$$
\mathbf{P V}=\mathbf{n R T}
$$

and if pressure, temperature and volume are determined experimentally and \mathbf{R} is a constant $(\mathbf{0 . 0 8 2 0 5 7} \mathbf{~} \mathbf{~ a t m}$ $\mathbf{m o l}^{-1} \mathbf{K}^{-1}$), we can solve the equation for moles (\mathbf{n}) of gas. The molar mass (grams $/ \mathrm{mole}$, or $\mathbf{M M}$) of the gas or vapor can be determined based on the mass of the liquid remaining (\mathbf{g}) in the flask and the number of moles calculated from the ideal gas law; or you can use:

$$
\mathbf{M M}=\mathbf{g R T} / \mathbf{P V}
$$

In this experiment, the molar mass of a volatile liquid will be determined using the ideal gas law. A small amount of the liquid is introduced into a weighed flask. The flask is then placed in boiling water where the liquid will completely vaporize, driving out any air and filling the flask with vapor at barometric pressure and the temperature of the boiling water. The mass of the vapor can be determined by cooling the flask to condense the vapor. (Note: the thermometer does not need a separate clamp (as shown in Figure One, below); you can place the thermometer directly in the boiling water when a reading is required.)

Figure One

PROCEDURE:

Obtain a round bottom flask fitted with a glass cap with a capillary opening, and a cork ring should support the entire apparatus at all times. If necessary, wash the flask with a touch of acetone, then dry the flask and cap and record the mass of the empty, dry flask and cap to the nearest 0.001 g using the cork ring for support.

Obtain an unknown liquid and record the identification number. Pour approximately 5 mL of your unknown sample into the flask. (Note: the exact volume is not important; the mass of the final condensed vapor will be determined.) Assemble the apparatus as shown in Figure 1. It is important to have the round bottom flask immersed as deeply as possible in the 1000 mL water bath for uniform heating. Optionally, add 2-3 boiling chips to the water in the 1000 mL beaker to avoid 'hard' bubbles. Heat the water to the boiling point. Watch the liquid level in your flask; the level should gradually disappear as vapor expands and pushes first air from the flask, then as excess unknown vapor. Once all the liquid has disappeared, continue to heat the flask for 5 minutes to allow the vapor to reach the temperature of the boiling water. Measure and record the temperature of the boiling water. Also record the barometric pressure.

Turn off the burner and wait for the water to stop boiling (about 30 seconds). Remove the flask from the beaker of water and allow the flask to cool to room temperature and the vapor to condense. (You can speed up this process by running tap water over the stoppered flask.) Dry the outside of the flask and weigh the flask with the condensed vapor.

Repeat the procedure using another 5 mL sample of your liquid unknown. Do not empty or clean the flask between trials; just pour another 5 mL into the flask

Once the two trials are complete (and not before!), find the volume of the flask. Fill the flask and cap with water. Determine the mass of the flask filled with water, then determine the temperature of the water used to fill the flask. Using the Handbook of Chemistry and Physics, determine the density of the water to at least six sig figs. If the Handbook is difficult to read, use this link as an alternative: http://mhchem.org/den

Rinse the flask with a touch of acetone, then blow dry. Return the flask to the cart.

Using the density of water and the mass of water in the flask, calculate the volume of the flask. Be sure to subtract the empty mass of the flask first! When converting to atmospheres, use $\mathbf{1 0 1 3} \mathbf{~ m b a r}=\mathbf{1} \mathbf{~ a t m}$ (other conversions will not receive full credit), use $\mathbf{2 7 3 . 1 5}$ to convert to Kelvin temperatures, and use the complete version of \mathbf{R} (listed on the previous page.)

Determine the average molar mass of your liquid sample and parts per thousand

This page left blank for printing purposes

Molar Mass of a Volatile Liquid

Record all masses to the milligram $(0.001 \mathrm{~g})$
\qquad LAB PARTNER(s): \qquad

DATA:

empty flask (g): \qquad Include flask, stopper and cork ring

Unknown number: \qquad

Trial I

Boiling water temperature $\left({ }^{\circ} \mathrm{C}\right)$:
flask + condensed
vapor (g):
\qquad

Trial II

$$
\begin{array}{r}
\text { Boiling water } \\
\text { temperature }\left({ }^{\circ} \mathrm{C}\right) \text { : } \\
\text { flask + condensed } \\
\text { vapor }(\mathrm{g}):
\end{array}
$$

barometric pressure
(mbar):
flask filled with water (g): \qquad

Density of water $(\mathrm{g} / \mathrm{mL})$: \qquad from Handbook of Chemistry \& Physics or link

Density temperature $\left({ }^{\circ} \mathrm{C}\right)$: \qquad "cold" water temperature

Part A Calculations: Molar Mass Determination of a Volatile Liquid

Show all work, use significant figures and circle the final answer for full credit.

1. Using your data, determine the temperature of the gas in Kelvin for both Trials.

Trial I Temperature (K): \qquad

Trial II Temperature (K): \qquad
2. Using your data, determine the pressure of the gas in atmospheres for both Trials.

Trial I Pressure (atm): \qquad

Trial II Pressure (atm): \qquad
3. Using your data, determine the mass of the unknown liquid remaining at the end of the experiment for both Trials.

Trial I mass of liquid (g): \qquad

Trial II mass of liquid (g): \qquad
4. Using your data, calculate the volume (L) that the gas occupies in the flask (hint: use only the mass of water in the flask; this will be the same for both Trial I and Trial II.)

Volume of flask (L): \qquad
5. What is the value of R for this lab? Report to five significant figures and include units.

Value of R with units: \qquad
6. Using the previously recorded and calculated values, determine the molar mass of the gas for Trial I and Trial II. Calculate the average molar mass for both trials. Determine the average deviation and the parts per thousand using your molar mass values. Hint: do not average any values until you have calculated the molar mass values for the unknown liquid. Show all work!
molar mass (Trial I) (g/mol): \qquad molar mass (Trial II) ($\mathrm{g} / \mathrm{mol}$): \qquad
average molar mass ($\mathrm{g} / \mathrm{mol}$): \qquad average deviation: \qquad

Parts per thousand: \qquad

Postlab Questions:

Show all work, use significant figures and circle the final answer for full credit.

1. Use the data below to find the moles of unknown and the molar mass of the unknown. Show all work!

- mass of an empty flask and stopper $=55.441 \mathrm{~g}$
- 5 mL of unknown added and heated; boiling water bath at $100 .{ }^{\circ} \mathrm{C}$, all unknown liquid vaporized
- mass of the flask, stopper and condensed vapor $=56.039 \mathrm{~g}$.
- volume of the flask $=215.9 \mathrm{~mL}$
- barometric pressure $=1003 \mathrm{mbar}$
\qquad

2. Determine if each of the following procedural errors would increase, decrease, or have no effect on the molar mass calculations in this experiment. Explain your reasoning.
i. The flask was not dried before the final weighing with the condensed vapor inside.

Effect on molar mass:
Explain:
ii. The flask was removed from the boiling water before the vapor had reached the temperature of the boiling water. All the liquid had vaporized.

Effect on molar mass:
Explain:
iii. The volume of the cap was not measured with the volume of the flask.

Effect on molar mass:
Explain:
iv. The student uses 7.5 mL of liquid sample.

Effect on molar mass:
Explain:

This page left blank for printing purposes

CH 222 Winter 2025:

"Linear Regression \& The

Crystal Structures of Solids
(in class)" Lab - Instructions
Note: This is the lab for section 01 and $\mathbf{H 1}$ of CH 222 only.

- If you are taking section W1 of CH 222, please use this link:
http://mhchem.org/r/6b.htm
Step One:
Get a printed copy of this lab! You will need a printed (hard copy) version of pages Ia-6-2 through Ia-6-16 to complete this lab. If you do not turn in a printed copy of the lab, there will be a 2-point deduction.

Step Two:

Bring the printed copy of the lab with you on Monday, February 10 (section 01) or
Wednesday, February 12 (section H1.) During lab in room AC 2507 , you will use these sheets (with the valuable instructions!) to gather data, all of which will be recorded in the printed pages below.

Step Three:

Complete the lab work and calculations on your own, then turn it in (pages Ia-6-11 through Ia-6-16 only with computer generated graphs to avoid a point penalty) at the beginning of recitation to the instructor on Monday, February 17 (section 01) or Wednesday, February 19 (section H1.) The graded lab will be returned to you the following week during recitation.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Linear Regression \& The Crystal Structures of Solids

This lab will demonstrate the power of a linear regression analysis while graphing linear data. We will also explore the techniques used to analyze several common types of metals in crystallography.

An equation is a mathematical model used to describe the relationship between variables. We will focus on linear equations in this lab which use a horizontal (X) axis (the independent variable, the variable we input when we make a measurement) and a vertical (Y) axis (the dependent variable, the number we measure after we set the X value.) If the plotted data points form a straight line, this means we have a linear equation, and we can use: $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ where \mathbf{y} is the vertical axis value, \mathbf{x} is the horizontal axis value, \mathbf{m} is the slope of the line, and \mathbf{b} is the y -intercept.

Computer programs and calculators can perform a linear regression analysis by plotting the "best fit" line through the data and then writing the slope-intercept equation. The correlation coefficient (with the symbol " \mathbf{r} ") is a measure of how well the regression line fits with the observed data. A perfect fit produces a correlation coefficient of either +1.000 (positive slope) or -1.000 (negative slope), depending on if the line slopes up (a positive slope) or down (a negative slope.) The closer the correlation coefficient is to $+/-1.000$, the better the regression line expresses the data (the better fit for the data.) Note that R^{2} is slightly different than r !

Observing the crystals of an ordinary substance (such as table salt) using a magnifying glass, one sees many planes at right angles within the solid. This occurs in many common solids, and the regularity we see implies a deeper regularity in the arrangement of atoms or ions in the solid. The atomic nuclei are present in remarkably symmetrical arrays that continue for millions of units in three dimensions. Substances having a regular arrangement of atom-size particles in the solid are called crystalline, and the solid material consists of crystals. This lab deals with some of the simpler arrays in which atoms or ions occur in crystals and what these arrays can tell us about such properties as atomic sizes, densities of solids, and the efficiency of packing of particles.

Procedural Notes for the Linear Regression Lab: Complete the problems using the worksheets at the end
Each linear regression problem will require one or more computer generated graphs that will be stapled to the back of the worksheets. Recommended programs to graph your date include Microsoft Excel (free for MHCC students; see https://www.mhcc.edu/OfficeInstall/), Apple Numbers (free with a Mac computer, https:// www.apple.com/numbers/), or Google Sheets (https://www.google.com/sheets). Note that Excel Online (the online version of Excel) and $\mathrm{iPad} / \mathrm{iPhone} /$ Droid versions of these programs will generally not perform linear regressions, so try to use the "full" computer version instead. Calculators will perform linear regressions, but printing from a calculator might be difficult.

Use a X-Y scatter plot when graphing these data sets. The computer program will analyze the data and perform the linear regression analysis for you. Each program is different, but generally the user selects the actual data points on the X-Y Scatter plot and either right-clicks or control-clicks on the data to see a new menu.... you wish to "Add a Trendline" and "Display the R^{2} value". If an equation appears with an R^{2} value, you have performed your linear regression. Help on performing the linear regression lab can be acquired in the Learning Success Center / AVID Center at MHCC. You can also search YouTube for videos (i.e. search "linear regression Excel 2019" and almost inevitably a helpful video appears.)

Converting R^{2} to r is not difficult. Take the square root of R^{2} to get r. If the value of the slope is a negative number, then the value of r will also be negative.... watch for this in this lab! Calculators will often give both R^{2} and r values when linear regression techniques are applied. Information on making an acceptable graph in this class can be found here: https://mhchem.org/lab

The Linear Regression Problems:

Problem 1: The Relationship Between Celsius and Fahrenheit

In 1724 , the German scientist Gabriel Fahrenheit developed a temperature scale based on phenomenon he thought could be easily repeated in laboratories around the world. For his zero degree point, Fahrenheit chose the coldest mixture of ice, water, and salt that he could produce in his laboratory. For ninety-six degrees, he chose what he believed to be normal body temperature. Fahrenheit wanted a temperature scale that could be divided into twelfths. On this scale, pure water freezes at 32 degrees, and pure water boils at sea level at 212 degrees.

A few years later, in 1742, the Swedish scientist Anders Celsius developed a different temperature scale. This scale used pure water as its standard. Zero degrees was the temperature where pure water froze, and one hundred degrees was the temperature where pure water boiled at sea level. Because Celsius had one hundred degrees between the two reference points on his temperature scale, it was called the centigrade scale. Recently this was renamed the Celsius scale in honor of Anders Celsius.

A student measures the following data points in the laboratory using two thermometers:

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	20.0	40.0	60.0	80.0	100.0
Temperature $\left({ }^{\circ} \mathbf{F}\right)$	67.6	104.8	141.1	175.0	211.1

1. Construct and print a graph of degrees Fahrenheit (y) as a function of temperature in degrees Celsius (x).
2. Using your calculator, determine the mathematical equation of ${ }^{\circ} \mathrm{F}$ as a function of ${ }^{\circ} \mathrm{C}$ as well as the correlation coefficient, r . Record r to at least four significant figures.
3. Using the actual equation: ${ }^{\circ} \mathrm{F}=1.8^{\circ} \mathrm{C}+32$ and your experimental equation, convert $29.0{ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$. Calculate percent error $=($ difference $/$ actual value $) \times 100 \%$ Comment on discrepancies.

Problem 2: Solubility of Lead(II) Nitrate in Water

The solubility of lead(II) nitrate in water was measured as a function of temperature. The solubility is given in units of grams of lead(II) nitrate per 100 grams of water.

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	20.0	40.0	60.0	80.0	100.0
Solubility (g / 100 g water)	56.9	74.5	93.4	114.1	131.1

1. Graph and print the data; temperature will be the independent (x) variable.
2. Determine the equation of the best-fit line. Record the equation and correlation coefficient.
3. What is the solubility of lead(II) nitrate at $47.0^{\circ} \mathrm{C}$?

Problem 3: Colorimetry

The colors in the visible spectrum of light are shown by a rainbow. Colored substances absorb segments of the visible spectrum of light. Pink solutions, for example, are pink because they absorb green light and transmit all other colors of the visible spectrum. If light of the particular color absorbed is passed through a sample, the amount of light absorbed will be related to the number of absorbing molecules in the light beam. Dilute solutions absorb little light, concentrated solutions absorb more. Typically the amount of light transmitted through the solution is measured; transmittance is inversely proportional to absorbance. The following data was obtained for the transmittance of 525 nm light by solutions containing different concentrations of permanganate ion.

Concentration (mg/100 $\mathbf{~ m L}$)	1.00	2.00	3.00	4.00
Transmittance (unitless)	0.418	0.149	0.058	0.0260

1. Convert the Transmittance values to Absorbance using the following equation: $\mathbf{A}=\boldsymbol{\operatorname { l o g }}(\mathbf{1} / \mathbf{T})$, where $\mathrm{A}=$ Absorbance and $\mathrm{T}=$ Transmittance. Use 3 sig figs for your absorbance values.
2. Graph and print the Absorbance (y) versus Concentration (x) data. Perform a linear regression analysis. Record the equation and the correlation coefficient.
3. Predict the absorbance of 2.50 mg permanganate ion / 100 mL solution.

Problem 4: Kinetics

The branch of chemistry that studies the rate or speed of reactions is called kinetics. One must often plot concentration versus time data in a variety of mathematical formats to find a linear relationship; this assists in finding the order of reaction. We shall explore this topic more in CH 222 . The following data was collected at $25.6^{\circ} \mathrm{C}$ while measuring the disappearance of NH_{3} :

Concentration $\left[\mathbf{N H}_{3}\right](\mathbf{m o l} / \mathbf{L})$	$8.00 * 10^{-7}$	$6.75 * 10^{-7}$	$5.84 * 10^{-7}$	$5.15 * 10^{-7}$
Time (h)	0	25.0	50.0	75.0

1. Prepare a graph of $\ln \left[\mathrm{NH}_{3}\right]$ versus time (time is the x -axis). "ln" stands for natural logarithm which can be calculated easily on your calculator (for example, the value of $8.00 * 10^{-7}$ is -14.039 .) Perform a linear regression analysis on the $\ln \left[\mathrm{NH}_{3}\right]$ versus time data and find the equation and the correlation coefficient. Use at least 4 sig figs for your absorbance values.
2. Prepare a graph of $\mathbf{1} /\left[\mathbf{N H}_{3}\right]$ versus time (for example, $1 / 8.00 * 10^{-7}$ is $1.25 * 10^{6}$. Note: You may have to enter the data as "1.25E6" to make the program understand your values.) Time will be the x -axis. Perform a linear regression analysis and find the correlation coefficient and the values for the slope and the y -intercept.
3. Which graph gives a better linear regression? Why? Hint: look for the better correlation coefficient.
4. Plots of $\ln \left[\mathrm{NH}_{3}\right]$ versus time that are linear are called first order reactions while graphs of $1 /\left[\mathrm{NH}_{3}\right]$ versus time that are linear are called second order reactions. What order of reaction does the decomposition of NH_{3} follow? Hint: the better linear regression will determine the order of the reaction!

Procedural Notes for the Crystal Structures of Solids Lab: Complete the handouts found at the end of this lab and turn it in (with all relevant work displayed on adjacent pages) to your instructor. Help on completing the "Solids" questions can be acquired in the Learning Success Center / AVID Center at MHCC.

Many crystals are unbelievably complex, and we will limit ourselves to the simplest crystals that have cubic structures. Cubic structures imply 90° angles and sides of equal length (hence, a cube.) We will also limit ourselves to the study of only one kind of system (namely metal elements), yet they will exhibit many of the interesting properties of more complicated structures.

The Simple Cubic (SC) Crystal

The simple cubic unit cell is a cube with an edge length, \mathbf{d}_{0}, equal to the distance from the center of one atom to the center of the next (see Figure One). The volume of the cube is equal to $\left(\mathrm{d}_{0}\right)^{3}$, expressed as

$$
V=\left(d_{0}\right)^{3}
$$

and is very small since d 0 is on the order of 0.5 nm . Using $\mathrm{x}-$ ray diffraction we can measure the value of d0 easily to four significant figures. The number of atoms in a simple cubic unit cell is equal to one, for only $1 / 8$ of each corner atom is

Figure One: The Simple Cubic Crystal actually inside the cell.

Each atom in the simple cubic unit cell is actually connected to six other atoms in the cubic lattice; hence, we say that the coordination number of the atoms in this structure is equal to six.

Many diagrams displaying the simple cubic unit cell show a gap between adjoining atoms. In an actual crystal, we consider that the atoms that are closest are touching. It is on this assumption that we determine atomic radii, \mathbf{r}. In the SC crystal, if we know d_{0}, we can find the radius r of the atoms, since one side contains 2 atomic radii, or

$$
d_{0}=2 r
$$

for simple cubic crystals. Knowing the radius, we can calculate d0, and then we can calculate the volume of the unit cell. Knowing that one atom occupies the simple cubic cell, we can calculate the mass of the unit cell (using the molar mass and Avogadro's number), and from this we can determine the density using the volume of the cell.

Essentially no elements crystallize in the simple cubic structure, however, due to the inefficiency of the packing. The atoms in the simple cubic crystal are farther apart then they need to be, and inspection of the SC lattice will reveal a large hole in the center of the unit cell. Only about 52% of the cell volume is occupied by atoms, and more "empty space" means less stabilization for the crystal structure.

The Body Centered Cubic (BCC) Crystal

In a body centered cubic crystal, the unit cell still contains the corner atoms present in the SC structure, but the center of the cell now contains an additional atom. This means that every BCC crystal structure holds two net atoms (eight atoms are $1 / 8$ within the cell, and one whole atom within the center of the cell for two net atoms).

The edge length, d_{0}, can be determined using simple geometry from the cube diagonal (see Figure Two). The cube diagonal reaches across the cube, from an atom in the lower left front to an atom in the upper right back, or from any other appropriate combination. Geometry dictates the following relationship between the cube body diagonal and the edge length, d_{0} :

Figure Two: Body Centered Cubic Crystal

$$
\text { cube diagonal }=\sqrt{3} \cdot d_{0}
$$

The cube diagonal encompasses 4 radii lengths, and d_{0} can be expressed in terms of the radius of the atom:

$$
d_{0}=\frac{4 \mathrm{r}}{\sqrt{3}}
$$

The quantity d_{0} can be used to find the volume of the cube; this is important for BCC cubic systems.

In a BCC lattice, each atom touches eight other atoms, and the coordination number is eight. The BCC lattice is much more stable than the SC structure, in part due to the higher coordination number. Many metals at room temperature display the BCC lattice, including sodium, chromium, tungsten and iron. Note that there are two atoms per unit cell in the BCC crystal. BCC crystals are more efficient than SC crystals, occupying approximately 68% of the total available volume.

Close Packed Structures

Although many elements prefer the BCC crystal arrangement, still more prefer structures in which the atoms are close packed. In close packed structures there are layers of atoms in which each atom is in contact with six others, as in the sketch below:

Page Ia-6-6 / Linear Regression \& The Crystal Structures of Solids Lab (in class) for Sections 01 and H1

This is the way in which billiard balls lie in a rack or the honeycomb cells are arranged in a bees' nest. It is the most efficient way one can pack spheres, with about 74% of the volume in a close packed structure filled with atoms.

There is more than one way whereby close packed crystal structures can be stacked. One of the stacking methods is cubic and is called the Face Centered Cubic (FCC). The other is called Hexagonal ClosePacking. We shall look at both close packed structures.

The Face Centered Cubic (FCC) Crystal

In the face centered cubic crystal unit cell there are atoms in each corner of the cell (as in the SC cell discussed earlier) and there is another atom at the center of each of the six faces. This means that FCC cubic systems consist of four net atoms per unit cell (eight atoms are $1 / 8$ within the cell, and six faces hold an atom which is $1 / 2$ within the cell for four net atoms). See Figure Three.

The edge length d_{0} can be determined in an FCC crystal from the face diagonal which is defined as the distance across one face of the cube. Using geometry, we can find the edge length from the face diagonal using the following equation:

$$
\text { face diagonal }=\sqrt{2} \cdot d_{0}
$$

The face diagonal encompasses 4 radii lengths, and d_{0} can be expressed in terms of the radius r :

Figure Three: Face Centered Cubic Crystal

$$
d_{0}=\frac{4 \mathrm{r}}{\sqrt{2}}
$$

This expression can be used to find the volume of the cube; hence, this relationship is important for FCC cubic systems. The coordination number in an FCC lattice is 12, implying that FCC lattices are quite stable.

The close-packed layers of atoms in the FCC lattice are not parallel to the unit cell faces, but rather are perpendicular to the cell diagonal. If you look down the cell diagonal, you see six atoms in a close-packed triangle in the layer immediately behind the corner atom, and another layer of close-packed atoms below that, followed by another corner atom. The layers are indeed closely packed, and as one goes down the diagonal of this and succeeding cells, the layers repeat their positions in the order ABCABC.... This implies that atoms in every fourth layer lie below one another (see Figure Four (b)).

Hexagonal Close-Packing

There is another way to stack the layers as in the FCC lattice, above. The first and second layers will always be in the same relative positions, but the third layer could be below the first one if it were shifted properly. This results in a close-packed structure in which the order of the layers is ABABAB... (see Figure Four (a))

The crystal obtained from this arrangement of layers is not cubic but hexagonal. It is another common structure for metals. Cadmium, zinc and manganese have this structure. As you might expect, the stability of this structure is very
(a) Hexagonal close-packing
(b) Cubic close-packing = face centered cubic

Figure Four: Hexagonal Close Packing (left) and Cubic Close Packing (right) similar to that of FCC crystals. We find that simply changing the temperature often converts a metal from one form to another. Calcium, for example, is FCC at room temperature, but if heated to $450{ }^{\circ} \mathrm{C}$ it converts to close-packed hexagonal.

In CH 222 (and CH 223), we will consider "hexagonal close-packing" structures to be identical to FCC lattices, but technically there are many differences between the two systems.

Summary of Crystal Lattice Types

Figure Five shows the three main cubic unit crystal types that we will explore in this lab. Figure Six show a helpful methodology to solve problems like these in this lab.
Simple cubic

Simple Cubic
Body Centered Cubic
Face Centered Cubic

1	2	4
$\mathrm{~d}_{0}=2 \mathrm{r}$	$d_{0}=\frac{4 \mathrm{r}}{\sqrt{3}}$	$d_{0}=\frac{4 \mathrm{r}}{\sqrt{2}}$

Figure Five: Summary of the Three Cubic Unit Cell Types

$$
\text { conversion } \quad V=e d g e^{3} \quad \text { density } \quad \text { molar mass }(g / m o l) \quad \text { Avogadro }\left(6.022 \times 10^{23}\right)
$$

$$
\text { radius } \leftrightarrow \text { edge } \leftrightarrow \text { volume } \leftrightarrow \text { mass }(\mathrm{g}) \leftrightarrow \text { moles } \leftrightarrow \text { atoms / molecules }
$$

4 atoms $=1$ fcc cell, etc.

Figure Six: Helpful Conversion Methodology

This page left blank for printing purposes

Worksheet: Linear Regression \& The Crystal Structures of Solids

Name:

All final answers must be provided on this worksheet. Include computer generated graphs (from Excel or a similar program) along with any necessary calculations needed for the lab in your submission. Values of r should be recorded to three or more significant figures. This page will be placed at the front of your lab, with your first and last name included, to prevent a point penalty.

Linear Regression:

- Problem 1: The Relationship Between ${ }^{\circ} \boldsymbol{C}$ and ${ }^{\circ} \boldsymbol{F}$ - see page Ia-6-3 for data and questions

Linear Regression equation: $\mathbf{y}=$ \qquad
$\mathbf{r}=$ \qquad Percent Error: \qquad

- Problem 2: Solubility of Lead(II) Nitrate in Water - see page Ia-6-3 for data and questions

Linear Regression equation: $\mathbf{y}=$ \qquad
$\mathbf{r}=\quad$ Solubility of lead(II) nitrate at $47.0^{\circ} \mathrm{C}$: \qquad

- Problem 3: Colorimetry - see page Ia-6-4 for data and questions

Linear Regression equation: $\mathbf{y}=$ \qquad $\mathbf{r}=$ \qquad

Absorbance of 2.50 mg permanganate in 100 mL solution: \qquad

Linear Regression: Continued

- Problem 4: Kinetics - see page Ia-6-4 for data and questions

Linear Regression (ln $\left[\mathrm{NH}_{3}\right]$ vs. time) equation: $\mathbf{y}=$ \qquad $\mathbf{r}=$ \qquad

Linear Regression (1/[$\left.\mathrm{NH}_{3}\right]$ vs. time) equation: $\mathbf{y}=$ \qquad $\mathbf{r}=$ \qquad

Which regression gives a better linear regression? Why?

Does this data behave as a first order reaction or a second order reaction?

- Problem 5 (Perform in the lab): Experimentally determine the density of an unknown metal solid to at least three significant figures using any equipment found in your lab drawer. Explain the process (and show calculations) used to determine the density in three sentences or less on this sheet. Hint: use the displacement method. What liquid did you use?
density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)=$ \qquad unknown letter used = \qquad

Relevant calculations:

The Crystal Structures of Solids:

- Problem 6: What element forms a face centered cubic cell, has a density of $8.92 \mathrm{~g} / \mathrm{cm}^{3}$, and a radius of 128 pm ?

[^1]
The Crystal Structures of Solids: Continued

- Problem 7: Chromium forms a body centered cubic crystal. If the length of an edge is 2.884 angstroms, calculate the density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ and the radius of a chromium atom in angstroms.
density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)=$ \qquad
\qquad Show relevant work below.

The Crystal Structures of Solids: Continued

- Problem 8: Sodium (radius $=186 \mathrm{pm}$) forms a body centered cubic crystal. Calculate the density (g/ cm^{3}) of sodium metal. Propose a simple experiment to confirm your calculated density of sodium in the lab.
density $\left(\mathbf{g} / \mathrm{cm}^{3}\right)=$ \qquad
Show relevant work below.

Proposed simple experiment:

The Crystal Structures of Solids: Continued

- Problem 9: Aluminum crystallizes in a face centered cubic unit cell. In addition, aluminum has an atomic radius of 143 pm . What is the density of aluminum?
density $\left(\mathbf{g} / \mathrm{cm}^{3}\right)=$ \qquad
Show relevant work below

CH 222 Winter 2025:
 "Molar Mass Determination by Freezing Point Depression (in class)" Lab-Instructions

Note: This is the lab for section 01 and $\mathbf{H 1}$ of CH 222 only.

- If you are taking section W1 of CH 222, please use this link:
http://mhchem.org/r/7b.htm

Step One:
Get a printed copy of this lab! You will need a printed (hard copy) version of pages Ia-7-2 through Ia-7-11 to complete this lab. If you do not turn in a printed copy of the lab, there will be a 2 -point deduction.

Step Two:
Bring the printed copy of the lab with you on Monday, February 17 (section 01) or Wednesday, February 19 (section H1.) During lab in room AC 2507, you will use these sheets (with the valuable instructions!) to gather data, all of which will be recorded in the printed pages below.

Step Three:

Complete the lab work and calculations on your own, then turn it in (pages Ia-7-7 through Ia-7-11 only to avoid a point penalty) at the beginning of recitation to the instructor on Monday, February 24 (section 01) or Wednesday, February 26 (section H1.) The graded lab will be returned to you the following week during recitation.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Molar Mass Determination by Freezing Point Depression

If a nonvolatile solute is added to a liquid, a number of physical properties of the pure substance change, including vapor pressure depression, freezing point depression, and boiling point elevation. These alterations are collectively known as colligative properties of solutions. The colligative properties of a solution change in proportion to the concentration of solute dissolved in solvent and depend only on the number of solute particles present in a given amount of solvent and not on the type of particles dissolved. Therefore, the concentration of the solute is most conveniently expressed in terms of molality (m) or moles of solute / kg of solvent.

The change in the freezing point $\left(\Delta \mathrm{T}_{\mathrm{f}}\right)$ in ${ }^{\circ} \mathrm{C}$ for a nonvolatile organic solvent can be determined using the following equation, where $\mathbf{k}_{\boldsymbol{f}}$ is characteristic for the solvent used: $\Delta \mathbf{T}_{\mathbf{f}}=\mathbf{k}_{\boldsymbol{f}} \boldsymbol{m}$

We can determine the molar mass of the solute using this equation by measuring the change in the freezing point of the solution and solving the equation for molality. The calculated molality can be used to determine the moles of solute that in turn can be used to calculate the molar mass (grams / mole) of the solute.

When a pure substance is heated to a liquid state and allowed to cool, initially the temperature will fall quite rapidly. As the substance approaches its freezing point, solid will begin to form and the temperature will begin to level. The freezing point of the pure liquid is the constant temperature observed while the liquid is solidifying.

The cooling behavior of a solution is somewhat different from that of a pure liquid. The temperature at which the solution begins to freeze is lower (i.e. depressed) than for the pure solvent. Additionally, there is a slow gradual fall in temperature as freezing proceeds. The change in temperature, $\Delta \mathbf{T}$, between the freezing point of the pure substance and the freezing point of the solution is used to calculate the molality of the solution.

In both the pure liquid and the solution, a supercooling effect may be seen. As the solid begins to form, the temperature may drop below the actual freezing point initially and then come back up to the freezing point temperature as the solid forms. Supercooling is usually not observed if adequate churning of the sample is provided. When determining the freezing point, the super-cooling effect should be ignored.

In this experiment, you will first determine the freezing point of a pure solvent, lauric acid $\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}\right)$. Next, you will use a known solute, benzoic acid, to depress the freezing point of the solvent and calculate the molar mass of the benzoic acid.

This picture should also include a hot plate under the beaker and a "swizzle stick" around the thermometer

PROCEDURE: Part A: Determining the Freezing Point for Lauric Acid

1. Set up ring stand and test tube clamp beside the hot plate
2. Fill a large beaker about $3 / 4$ full with tap water and heat on hot plate.
3. Mass $10.000-12.000 \mathrm{~g}$ of solid lauric acid $\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}\right)$ and record the mass. Add the lauric acid to a large test tube.
4. Place the test tube in the beaker and heat until the lauric acid is completely melted. Put a "swizzle stick" around a thermometer and place it into the liquid. Gently stir with the swizzle stick (not the thermometer!) to uniformity. Do not overheat - you will need to cool it in step 5 (perhaps read ahead?) You may need to readjust your thermometer so it remains in the solution.
5. Remove the test tube from the hot water and allow it to cool. Once the temperature reaches $50{ }^{\circ} \mathbf{C}$, begin to record the temperature every 30 seconds until the temperature plateaus for 3 minutes or reaches $35^{\circ} \mathrm{C}$. (This should take 5-10 minutes). Mix gently to maintain uniformity (test tubes are glass! Careful!) The biggest source of error in this lab is the temperature so use care in reading. Make sure you record the temperature to the correct number of significant figures - if unsure, ask!

PROCEDURE: Part B: Determination of the Molar Mass for Benzoic Acid

6. Mass $1.000-1.200 \mathrm{~g}$ of benzoic acid and record the mass. Add to the test tube with the lauric acid. Be careful not to lose any sample of lauric acid that may have solidified to the thermometer or swizzle stick.
7. Place test tube in hot water and melt the mixture, stirring to uniformity.
8. Remove the test tube from the hot water and allow it to cool. Once the temperature reaches $50^{\circ} \mathrm{C}$, begin to record the temperature every 30 seconds until the temperature plateaus for 3 minutes or reaches $35^{\circ} \mathrm{C}$. (This should take 5-10 minutes). Mix gently to maintain uniformity (test tubes are glass! Careful!)
9. Repeat steps 6 through 8, adding an additional 1.000-1.200 grams of benzoic acid to the solution. Do NOT make a new solution!
10. Time to clean up! To clean up, re-melt your solid and pour into waste container. You may need to add a tiny bit of hot water along the sides of the tube to help melt the solid. Wipe the thermometer and swizzle stick with a wee bit of acetone and/or methanol if needed.

CALCULATIONS: Determining the Molar Mass of the Benzoic Acid

Once you have completed your experiment, you will need to create a graph in Excel (or a similar program; no hand drawn graphs will be accepted.) Use time as the x -axis and temperature as the y -axis. Plot the data from your pure lauric acid experiment (Part A) and also the data from each of the benzoic acid solutions (Part B) using the same graph. Label the axes and use different colors and/or marking symbols to distinguish the trials.

Important: your graph should take up an entire page of paper (no small graphs, print in "landscape" mode), and the \mathbf{y}-axis should not start at zero (i.e. if your data points end around $25^{\circ} \mathrm{C}$, have the minimum yaxis value be $20^{\circ} \mathrm{C}$, not zero ${ }^{\circ} \mathrm{C}$ (which is what these programs often default to when creating graphs.)

Determine the freezing point for each trial graphically; draw a circle on your graph representing the freezing point in each trial. Remember, the freezing points can be found at the intersection between the "steep" cooling curve and the "gradual" cooling curve.

The $\mathbf{k}_{\mathbf{f}}$ value for lauric acid is $\mathbf{3 . 9 0}{ }^{\circ} \mathbf{C} / \mathbf{m}$. Using the data from Part A and Part B, calculate the molar mass of benzoic acid in each trial. Show how you calculated these values in your lab report.

Average the two molar mass values and calculate the parts per thousand.

Using the Internet or a textbook, determine the structure of benzoic acid and include a Lewis structure for benzoic acid in your lab report. (Hand drawn Lewis structures are ok.)

Determine the actual molar mass of benzoic acid using the Lewis structure. Calculate the percent error of benzoic acid using your average molar mass value and the accepted molar mass value. Recall: Percent error = absolute value $\{($ actual - experimental)/ actual $\} \boldsymbol{*} \mathbf{1 0 0 \%}$.

Molar Mass Determination by Freezing Point Depression

Record all masses to the milligram $(0.001 \mathrm{~g})$ and temperatures to at least $0.1^{\circ} \mathrm{C}$

LAB PARTNER(s):

\qquad

DATA:

lauric acid mass (g): \qquad

1st benzoic acid mass (g): \qquad

2nd benzoic acid mass (g): \qquad

Record temperatures on next page.

$\begin{aligned} & \begin{array}{c} \text { Time } \\ \text { (minutes) } \end{array} \\ & \hline \end{aligned}$	pure lauric acid (deg C)	$\frac{\text { lauric acid + 1st benzoic }}{\underline{\text { acid }(\operatorname{deg} C)}}$	$\xrightarrow{\underline{\text { benzic acid + both }}}$
0.5			
1.0			
1.5			
2.0			
2.5			
3.0			
3.5			
4.0			
4.5			
5.0			
5.5			
6.0			
6.5			
7.0			
7.5			
8.0			
8.5			
9.0			
9.5			
10.0			
10.5			
11.0			
11.5			
12.0			

Note: you may not need all of the spaces in the above chart... you might also need more, depending on your solution. Feel free to include an additional page of data if needed (but most labs should probably fit in the above area.)

ANALYSIS:

Graph your freezing point data in Excel, Numbers, Sheets or a similar computer program (hand drawn graphs will not be accepted for credit.) Use Time (minutes) as your x -axis and Temperature ${ }^{\circ} \mathbf{C}$ as your y-axis. The graph should take up an entire piece of paper (about 8.5×11 inches, print in landscape mode) - no small graphs!

- You will have three different data streams on the same graph. Label the data streams as:
a. Lauric Acid (pure solvent)
b. Solution I (lauric acid and the first benzoic acid sample) and
c. Solution II (lauric acid and both benzoic acid samples)
- The data streams will use a common \mathbf{x} axis; use a color or point marking system to differentiate the different data streams.
- Ensure that your temperature axis reflects an appropriate range of values for the data provided (i.e. do not start at zero!) Attach the graph to this lab when turning it in to the instructor.
- On your graph, determine the freezing point for the "Lauric Acid", "Solution I" and "Solution II" curves. Look for the spot where two slopes on the same line come together; this is the official freezing point. Mark the graph at the freezing point (pen or pencil is ok), and enter the actual numbers below.

Freezing Point of Lauric Acid $\left({ }^{\circ} \mathrm{C}\right)$:

\qquad

Freezing Point of "Solution I" $\left({ }^{\circ} \mathbf{C}\right)$: \qquad

Freezing Point of "Solution II" $\left({ }^{\circ} \mathbf{C}\right)$: \qquad

- Using the internet, include a Lewis structure for both lauric acid and benzoic acid. (hand drawn ok!)
- Using the mass of lauric acid, the mass of benzoic acid (1st sample only), and the freezing points of the pure lauric acid and "Solution I", determine the experimental molar mass of benzoic acid from the "Solution I" data. ($\mathbf{k}_{\mathbf{f p}}$ for lauric acid $=\mathbf{3 . 9 0}{ }^{\circ} \mathbf{C} / \mathbf{m}$) Show work!
- Using the mass of lauric acid, the mass of benzoic acid (both samples together), and the freezing points of the pure lauric acid and "Solution II", determine the experimental molar mass of benzoic acid from the "Solution II" data. ($\mathbf{k}_{\mathbf{f p}}$ for lauric acid $=\mathbf{3 . 9 0}{ }^{\circ} \mathbf{C} / \mathbf{m}$) Show work!

Benzoic acid molar mass value from Solution II ($\mathrm{g} / \mathrm{mol}$):

Average the two molar mass values and calculate the parts per thousand. Show work!

Determine the actual molar mass of benzoic acid using the Lewis structure, above.

Calculate the percent error of your benzoic acid molar mass calculation using your average molar mass value and the actual molar mass value.

Recall: Percent error $=$ absolute value $\{($ actual $-\operatorname{experimental}) /$ actual $\} * \mathbf{1 0 0 \%}$.

POSTLAB QUESTIONS:

1. Determine the effect of the following on the final molar mass calculation in a freezing point depression experiment. Briefly give your reasoning. Indicate if the effect on molar mass will be higher, lower or not change.
i. The thermometer you were using read temperatures consistently $1.2{ }^{\circ} \mathrm{C}$ higher than the real temperature.

Effect on molar mass:
Explain:
ii. You knowingly added 3 g of unknown solute during your freezing point determination instead of 2 g . Effect on molar mass: Explain:
iii. In adding your unknown solute to your solvent, you spilled some solute onto the table after weighing.

Effect on molar mass:
Explain:
2. A student performs a freezing point analysis. She determines that the freezing point of 21.00 g of stearic $\operatorname{acid}\left(\right.$ where $\mathrm{k}_{\mathrm{f}}=4.89^{\circ} \mathrm{C} / \mathrm{m}$) is $68.20^{\circ} \mathrm{C}$. She adds 2.07 grams of an unknown compound to her sample and determines the freezing point to be $65.53{ }^{\circ} \mathrm{C}$. She adds an additional 1.97 g of the unknown compound and determines the new freezing point to be $63.03^{\circ} \mathrm{C}$.
a. Determine the molar mass of the unknown compound using the 2.07 g of sample.
b. Determine the molar mass of the unknown compound using the combined samples (hint: $2.07+1.97$ $=4.04 \mathrm{~g}$ total solute)
c. Determine the average molar mass of the compound and the parts per thousand for the two trials.

This page left blank for printing purposes

CH 222 Winter 2025:
 ''Kinetics I - The Iodination Of
 Acetone (in class)" Lab - Instructions

Note: This is the lab for section 01 and $\mathbf{H 1}$ of CH 222 only.

- If you are taking section W1 of CH 222, please use this link:
http://mhchem.org/r/8b.htm

Step One:
Get a printed copy of this lab! You will need a printed (hard copy) version of pages Ia-8-2 through Ia-8-15 to complete this lab. If you do not turn in a printed copy of the lab, there will be a 2 -point deduction.

Step Two:
Bring the printed copy of the lab with you on Monday, February 24 (section 01) or Wednesday, February 26 (section H1.) During lab in room AC 2507, you will use these sheets (with the valuable instructions!) to gather data, all of which will be recorded in the printed pages below.

Step Three:

Complete the lab work and calculations on your own, then turn it in (pages Ia-8-5 through Ia-8-15 only to avoid a point penalty) at the beginning of recitation to the instructor on Monday, March 3 (section 01) or Wednesday, March 5 (section H1.) The graded lab will be returned to you the following week during recitation.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

The rate of a chemical reaction depends on several factors: the nature of the reaction, the concentrations of the reactants, the temperature, and the presence of a possible catalyst. In Part One of this experiment we will determine the rate law for a reaction by changing some of the above variables and measuring the rate of the reaction. During Part Two, we will explore the relation between the rate constant and temperature to discover the activation energy for this reaction.

In this experiment, we will study the kinetics of the reaction between iodine and acetone:

The rate of this reaction is found to depend on the concentration of the hydrogen ion (acid, HCl) as well as the concentrations of the reactants (acetone and iodine). The rate law for this reaction is

$$
\text { rate }=k[\text { acetone }]^{\mathrm{m}}\left[\mathbf{H}^{+}\right]^{\mathrm{n}}\left[\mathbf{I}_{2}\right]^{\mathrm{p}}
$$

where \mathbf{k} is the rate constant for the reaction and \mathbf{m}, \mathbf{n}, and \mathbf{p} are the orders of the reaction with respect to acetone, hydrogen ions (acid), and iodine, respectively. Although orders of reaction can be any value, for this lab we will be looking only for integer values for the orders of reaction ($0,1,2$ are acceptable but not $0.5,1.3$, etc.)

The rate of the reaction can also be expressed as the change in the concentration of a reactant divided by the time interval:

$$
\text { rate }=\frac{-\Delta\left[I_{2}\right]}{\Delta t}
$$

The iodination of acetone is easily investigated because iodine (I_{2}) has a deep yellow/brown color. As the acetone is iodinated and the iodine converted to the iodide anion, this color will disappear, allowing the rate of the reaction to be easily monitored.

We can study the rate of this reaction by simply making I_{2} the limiting reactant in a large excess of acetone and H^{+}ion. By measuring the time required for the initial concentration of iodine $\left(\mathrm{I}_{2}\right)$ to be used up completely, the rate of the reaction can be determined by the equation

$$
\text { rate }=\frac{-\Delta\left[\mathrm{I}_{2}\right]}{\Delta \mathrm{t}}=\frac{-\left(\left[I_{2}\right]_{\text {final }}-\left[I_{2}\right]_{\text {initial }}\right)}{\mathrm{t}_{\text {final }}-t_{\text {initial }}}=\frac{-\left(0-\left[I_{2}\right]_{\text {initial }}\right)}{\mathrm{t}_{\text {final }}-0}=\frac{\left[I_{2}\right]_{\text {initial }}}{\mathrm{t}_{\text {final }}}
$$

or simply as

$$
\text { rate }=\frac{\left[I_{2}\right]}{\text { time }}
$$

From the rate information, we can determine the orders with respect to acetone (\mathbf{m}), acid (\mathbf{n}) and iodine (\mathbf{p}) by varying the amounts of reactants and measuring the effect on the rate. Once the orders of reaction are known, we will be able to calculate the rate constant, k. In Part One of this experiment you will determine the rates of reactions, the orders of the reactants, and finally the rate constant at room temperature.

DIRECTIONS:

You will collect data during lab and complete the worksheets at the end. No formal typed lab report is required as long as your writing is legible and easy to read. You will perform a series of experiments that will examine the relationship between the concentration of reactants and the time for the iodination of acetone reaction.

For each trial listed below: measure out the appropriate quantities of $1.0 \mathrm{M} \mathrm{HCl}, 4.0 \mathrm{M}$ acetone and water using a 10.00 mL graduated cylinder and place them in a 125 mL Erlenmeyer flask. Now measure out the appropriate amount of $\mathbf{0 . 0 0 5 0} \mathbf{M}$ iodine in a 10.00 mL graduated cylinder.

Start a timer (stopwatch) as you add the iodine to the 125 mL flask with the other chemicals. Swirl the flask until the yellow color disappears, then halt the timer. It may help to place the flask on a white piece of paper to help discern when the color disappears. Record the time elapsed in seconds.

Repeat this reaction mixture until two trials are within 20 seconds of each other.
Repeat this process for each of the four trials listed in the table below. Waste can be placed in the drain or in a waste bottle (probably the better option!)

This page left blank for printing purposes

Kinetics I - The Iodination Of Acetone

Part I: Changing Concentration to Find the Rate Constant - Complete in the Lab

For each mixture listed below, add all of the chemicals but iodine to a 125 mL Erlenmeyer flask. Add the iodine last, starting a stopwatch and measuring how long the reaction takes to turn the solution clear. Time should be recorded in seconds. Repeat each reaction mixture until two trials are within 20 seconds of each other.... repeat the trial again if the times vary too much.

Trial \#1:

$\mathbf{H C l}(\mathbf{m L})$	Acetone (mL)	$\mathbf{I}_{\mathbf{2}}(\mathbf{m L})$	Water $(\mathbf{m L})$	Total Volume (mL)
5	5	5	10	25.00

Time in seconds for yellow color to disappear, first time: \qquad seconds

Time in seconds for yellow color to disappear, second time: \qquad seconds

Time in seconds for yellow color to disappear, third time (if necessary): \qquad seconds

Trial \#2:

$\mathbf{H C l}(\mathbf{m L})$	Acetone (mL)	$\mathbf{I}_{\mathbf{2}}(\mathbf{m L})$	Water $(\mathbf{m L})$	Total Volume (mL)
5	5	10	5	25.00

Time in seconds for yellow color to disappear, first time: \qquad seconds

Time in seconds for yellow color to disappear, second time: \qquad seconds

Time in seconds for yellow color to disappear, third time (if necessary): \qquad seconds

Trial \#3:

$\mathbf{H C l}(\mathbf{m L})$	Acetone (mL)	$\mathbf{I}_{\mathbf{2}}(\mathbf{m L})$	Water $(\mathbf{m L})$	Total Volume (mL)
5	10	5	5	25.00

Time in seconds for yellow color to disappear, first time: \qquad seconds

Time in seconds for yellow color to disappear, second time: \qquad seconds

Time in seconds for yellow color to disappear, third time (if necessary): \qquad seconds

Trial \#4:

$\mathbf{H C l}(\mathbf{m L})$	Acetone (mL)	$\mathbf{I}_{\mathbf{2}}(\mathbf{m L})$	Water $(\mathbf{m L})$	Total Volume (mL)
10	5	5	5	25.00

Time in seconds for yellow color to disappear, first time: \qquad seconds

Time in seconds for yellow color to disappear, second time: \qquad seconds

Time in seconds for yellow color to disappear, third time (if necessary): \qquad seconds

Before you leave, check your data. Trial \#1 should be about half the time of trial \#2, and trial \#3 and trial \#4 should both be about the same time elapsed. If you don't see this trend, contact the instructor before leaving lab.

You are now ready to complete the Kinetics I lab!

Kinetics I - The Iodination Of Acetone - Worksheet

These steps can be done at home and do not need to be completed in the lab. Show your work for each step

The ultimate goal of this section is to find the best value of the rate constant, k , for the iodination of acetone at room temperature. To get there, we need to first find the rates of each reaction, then the order of the reactants (acetone, HCl and iodine), and then finally, the rate constant k .
a. Find the average time in seconds for each Trial in Part One.

Example: the first experiment took 230 seconds, the second experiment took 250 seconds.

The average time would be: $(230+250) / 2=\mathbf{2 4 0}$ seconds

Record your reaction times from Part I (which were within 20 seconds of each other) and the final average times here:

> Experiment \#1 (s) Experiment \#2 (s) Average time (s)

Trial \#1 \qquad
\qquad

Trial \#2 \qquad
\qquad

Trial \#3 \qquad
\qquad

Trial \#4 \qquad
\qquad

Show an example of how you got the average values in seconds here:
b. Find the concentration of each reactant (acetone, HCl and iodine) before the reaction started.

Your group took bulk reactants (which were, as a reminder: $1.0 \mathrm{M} \mathrm{HCl}, 4.0 \mathrm{M}$ acetone, and $\mathbf{0 . 0 0 5 0} \mathrm{M}$ iodine) then placed them (with water) in an Erlenmeyer flask. The final volume was always 25.00 mL . Mixing chemicals dilutes the concentrations from the "bulk" value to a smaller value.

We can determine these diluted values using: $\mathbf{M}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{M}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$
Example: Determine the concentration of iodine in trial \#1.
Let $\mathbf{M}_{\mathbf{1}}=$ initial (undiluted) concentration of iodine (0.0050 M), $\mathbf{V}_{\mathbf{1}}=5.00 \mathrm{~mL}$ (of undiluted iodine added to the mixture), and $\mathbf{V}_{\mathbf{2}}=25.00 \mathrm{~mL}$ (the total volume of the diluted solution once HCl , acetone and water are added). Solving for M_{2}, the concentration of iodine in the diluted solution, one gets:
$\mathbf{M}_{\mathbf{2}}=0.0050 \mathrm{M} * 5.00 \mathrm{~mL} / 25.00 \mathrm{~mL}=\mathbf{0 . 0 0 1 0} \mathbf{M}$, which is the concentration of iodine used in the reaction in trial \#1.

Example: Determine the concentration of iodine in trial \#2.

Solution: Since $\mathbf{M}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$ are the same as in the previous example, we see that only $\mathbf{V}_{\mathbf{1}}$ has changed to 10.00 mL . Rearranging for $\mathbf{M}_{\mathbf{2}}$ as before:
$\mathbf{M}_{\mathbf{2}}=0.0050 \mathrm{M}^{*} 10.00 \mathrm{~mL} / 25.00 \mathrm{~mL}=\mathbf{0 . 0 0 2 0} \mathbf{M}$, the concentration of iodine used in the reaction in trial \#2.
i. Calculate the concentration of acetone (\mathbf{M}_{2}) used in Trial 1 - Trial 4.

The concentration of acetone was 4.0 M in the "bulk" solution (the " \mathbf{M}_{1} " value.)
The final volume $\left(\mathbf{V}_{\mathbf{2}}\right)$ is always 25.00 mL .
Trial 1, Trial 2 and Trial 4 used 5.00 mL of acetone from the bulk solution, but Trial 3 used 10.00 $m L$ (your " $\mathbf{V}_{\mathbf{1}}$ " values)

	volume acetone $(\mathbf{m L})$	Bulk Acetone (M)	Total Volume $(\mathbf{m L})$	acetone (M)
Trial \#1	5.00	4.0 M	25.00	-
Trial \#2	5.00	4.0 M	25.00	-
Trial \#3	10.00	4.0 M	25.00	
Trial \#4	5.00	4.0 M	25.00	

ii. Calculate the concentration of $\mathbf{H C l}\left(\mathbf{M}_{2}\right)$ used in Trial 1 - Trial 4.

The concentration of HCl was 1.0 M in the "bulk" solution (the " $\mathbf{M}_{\mathbf{1}}$ " value.)
The final volume $\left(\mathbf{V}_{\mathbf{2}}\right)$ is always 25.00 mL .
Trial 1, Trial 2 and Trial 3 used 5.00 mL of acetone from the bulk solution, but Trial 4 used 10.00 mL (your " $\mathbf{V}_{\mathbf{1}}$ " values)

volume	Bulk HCl	Total Volume
$\mathrm{HCl}(\mathrm{mL})$	(M)	(mL)

$\mathrm{HCl}(\mathrm{M})$

Trial \#1	5.00	1.0 M	25.00
Trial \#2	5.00	1.0 M	25.00
Trial \#3	5.00	1.0 M	25.00
Trial \#4	10.00	1.0 M	25.00

iii. Complete the following table showing the diluted concentrations of all reactants used in each trial. The I_{2} concentrations have been completed for you (see the examples at the beginning of part b , above.)
acetone (M) $\quad \mathbf{H C l}(\mathbf{M})$
step i, above step ii, above
Trial \#1
Trial \#2

Trial \#3

Trial \#4
\square
\qquad
\qquad
\qquad
I_{2} (M)
0.0010
\qquad
\qquad
\qquad
\qquad

\qquad

Use this area to show relevant calculations and at least one example as to how you found a diluted concentration.

c. Find the rate of each trial

In this lab, rate is best described by: rate $=\left[\mathbf{I}_{2}\right] /($ average time in seconds) (see first page of lab) Find the rate for each reaction by using the calculated iodine concentration then dividing by the average time for that trial (Part Three, section a, above).

Example: Trial \#1 required an average of 240 seconds to go to completion. Trial \#2 required an average of 496 seconds to go to completion. Find the rate of reaction for both trial \#1 and trial \#2.

Solution: The rate of reaction is equal to the concentration of iodine divided by the average time elapsed for the reaction. (your values are in Part Three, section a.)

In this example, the first two times are 240 s and 496 s . Using the appropriate concentrations, we can calculate rate:

```
rate \((\) trial \(\# 1)=\left[\mathrm{I}_{2}\right] /(\) average time in seconds \()=0.0010 \mathrm{M} / 240 \mathrm{~s}=\mathbf{4 . 2} * \mathbf{1 0} \mathbf{0}^{\mathbf{6}} \mathbf{M ~ s}^{\mathbf{- 1}}\).
rate \((\) trial \(\# 2)=\left[\mathrm{I}_{2}\right] /(\) average time in seconds \()=0.0020 \mathrm{M} / 496 \mathrm{~s}=\mathbf{4 . 0} * \mathbf{1 0 - 6} \mathbf{M ~ s}^{\mathbf{- 1}}\).
```

Now, calculate your rate values by filling in the table below:

	$\mathbf{I}_{\mathbf{2}}(\mathbf{M})$	average time (s)	rate $\left(\mathbf{M ~ s ~ s}^{\mathbf{- 1}}\right)$
Trial \#1	0.0010	-	
Trial \#2	0.0020	-	
Trial \#3	0.0010	-	
Trial \#4	0.0010		

Use this space to show at least one example of how you calculated the rate of the reaction.
d. Find the order of the reaction with respect to each reactant (\mathbf{m}, \mathbf{n}, and \mathbf{p})

To find the order of each reactant, we need to localize the effect that each reactant had on the rate. This is expressed in a rate order which, for CH 222 and CH 223 , can only be equal to zero, one or two (no fractions, negative numbers, etc.)

In this lab, it is safe to assume that water does not affect the rate, so we can ignore its contribution to any changes that the rate might exhibit.

Notice that trial 2 has twice as much iodine as trial 1. Any changes to the rates of trial 1 and trial 2 are a direct result of the iodine (HCl and acetone are constant), and we will use these trials to calculate p, the reaction order for iodine.

Also notice that trial 3 has twice as much acetone as trial 1, so any changes to the rates of trials 3 and 1 will be the result of acetone only (HCl and iodine are constant), and we will use these trials to calculate \mathbf{m}, the reaction order for acetone.

Lastly, notice that trial $\mathbf{4}$ has twice as much $\mathbf{H C l}$ as trial $\mathbf{1}$, yet acetone and iodine concentrations remain constant; we will use these trials to calculate \mathbf{n}, the reaction order for $\mathbf{H C l}$.

Example: Find the order of reaction with respect to iodine (p) if these values are used:

$$
\begin{aligned}
& \boldsymbol{r a t e}(\text { trial } \# 1)=\left[\mathrm{I}_{2}\right] /(\text { average time in seconds })=0.0010 \mathrm{M} / 240 \mathrm{~s}=\mathbf{4 . 2} * \mathbf{1 0}^{\mathbf{- 6}} \mathbf{M ~ s} \mathbf{s}^{\mathbf{1}} . \\
& \boldsymbol{\operatorname { r a t e }}(\text { trial } \# 2)=\left[\mathrm{I}_{2}\right] /(\text { average time in seconds })=0.0020 \mathrm{M} / 496 \mathrm{~s}=\mathbf{4 . 0} * \mathbf{1 0}^{\mathbf{- 6}} \mathbf{~ M ~ s} \mathbf{s}^{\mathbf{1}} .
\end{aligned}
$$

Solution: Notice how in trial \#2 we doubled the concentration of [I_{2}] while leaving the other reactants' concentrations (HCl , acetone) unchanged. An effect upon the rate of the reaction will reflect the influence of the iodine only, and this will allow us to determine \mathbf{p}.

In these sample calculations, doubling the concentration of iodine (to 0.0020 M from 0.0010 M) spawned a negligible change in the rate $\left(4.0 * 10^{-6} \mathrm{M} \mathrm{s}^{-1}\right.$ versus $\left.4.2 * 10^{-6} \mathrm{M} \mathrm{s}^{-1}\right)$. Because we are only concerned with whole integer values of rate orders, this implies a zero order reactant, and $\mathbf{p}=\mathbf{0}$.

A more formal approach to determining p would be as follows: divide the expression for rate 2 by the expression for rate 1 ; this results in the following:

$$
\frac{\text { rate } 2}{\text { rate } 1}=\frac{\mathrm{k}[\text { acetone }]^{\mathrm{m}}[\mathrm{HCl}]^{\mathrm{n}}\left[\mathrm{I}_{2}\right]^{\mathrm{p}}}{\mathrm{k}[\text { acetone }]^{\mathrm{m}}[\mathrm{HCl}]^{\mathrm{n}}\left[\mathrm{I}_{2}\right]^{\mathrm{p}}}
$$

The values of k , [acetone] and $[\mathrm{HCl}]$ remain constant between trial 1 and trial 2 (only [$\left.\mathrm{I}_{2}\right]$ changes), so the expression reduces to

$$
\frac{\operatorname{rate} 2}{\text { rate } 1}=\frac{4.0 * 10^{-6}}{4.2 * 10^{-6}}=\frac{[0.0020]^{p}}{[0.0010]^{\mathrm{p}}}=2^{\mathrm{p}}
$$

$$
0.95=(2)^{\mathrm{p}}
$$

Taking the logarithm of both sides leads to

$$
\log 0.95=\log 2 \mathrm{p}=\mathrm{p} \log 2
$$

and solving for p :

$$
\mathrm{p}=\frac{\log 0.95}{\log 2}=-0.074 \approx 0
$$

Therefore, the order with respect to iodine equals zero, or $\mathbf{p}=\mathbf{0}$.
Now, find the order of each reactant by filling in the tables below. Note: rate values from Part 3 section c; concentration (M) values from Part 3, section b, subsection iii. Show your work on the following page. Remember that m, n and p can be $\mathbf{0}$, $\mathbf{1}$, or $\mathbf{2}$ only! Round your answers as necessary!

For $I_{2}(p):$

	$\mathbf{I}_{\mathbf{2}}(\mathbf{M})$	rate $\left(\mathbf{M ~ s ~ s}^{\mathbf{- 1}}\right)$
Trial \#1	0.0010	
Trial \#2	0.0020	-

My value of p is:

For acetone (m):
acetone (M) \quad rate $\left(\mathrm{M} \mathrm{s}^{-1}\right) \quad$ My value of m is:
Trial \#1 \qquad
\qquad
\qquad
Trial \#3 \qquad
\qquad

For $\mathrm{HCl}(\mathrm{n}):$

$$
\mathrm{HCl}(\mathrm{M})
$$

$$
\text { rate }\left(\mathbf{M ~ s}^{-1}\right)
$$

My value of \mathbf{n} is:
Trial \#1 \qquad
Trial \#4 \qquad
\qquad
\qquad

Use this space to show how you got each of the orders of reaction (m, n and p):
e. Find the value of \mathbf{k}, the rate constant for the iodination of acetone reaction.

You now have all the necessary information to calculate the rate constant, k, for each trial. For this reaction,

$$
\text { rate }=\mathrm{k}[\text { acetone }]^{\mathrm{m}}[\mathrm{HCl}]^{\mathrm{n}}\left[\mathrm{I}_{2}\right]^{\mathrm{p}}
$$

Rate values appear in Part 3 section c [acetone], [HCl] and [I2] are the concentrations for each trial (Part 3, section b, subsection iii) m, n and p are the orders of reaction (Part 3, section d)

Example: Find the value of k for trial \#1 if the rate $=4.2 \times 10^{-6} \mathrm{M} \mathrm{s}^{-1}$ and assuming that the order with respect to acetone (m) and $\mathrm{HCl}(\mathrm{n})$ is two and the order with respect to $\mathrm{I}_{2}(\mathrm{p})$ is zero.

Solution: In trial \#1, the diluted concentration of acetone is 0.80 M , the HCl is 0.20 M and I_{2} is 0.0010 M. Using the given values, we can calculate k from the following equation:

$$
\begin{aligned}
& \text { rate }=\mathrm{k}[\text { acetone }]^{\mathrm{m}}[\mathrm{HCl}]^{\mathrm{n}}\left[\mathrm{I}_{2}\right]^{\mathrm{p}} \\
& 4.2 * 10^{-6}=\mathrm{k}[0.80]^{2}[0.20]^{2}[0.0010]^{0} \\
& \mathrm{k}=4.2 * 10^{-6} /[0.80]^{2}[0.20]^{2}
\end{aligned}
$$

and solving for k we get a value of $k=1.6 * \mathbf{1 0}^{-4} \mathbf{M}^{-1} \mathbf{s}^{\mathbf{- 1}}$

Now find the rate constant \mathbf{k} for each trial by completing the table:

My value of $\mathrm{m}=\quad$ (these can be found in section d, above)
My value of $n=$ \qquad
My value of $p=$ \qquad
acetone (M) $\quad \mathbf{H C l}(M) \quad I_{2}(M) \quad$ rate $\left(M^{\mathbf{- 1}}\right) \quad$ value of k

Trial \#1	0.0010
Trial \#2	0.0020
Trial \#3	0.0010
Trial \#4	0.0010

Concentrations in section b, subsection iii
Rate values in section c

Average value of k :

parts per thousand of your four k values: \qquad

Use this space to show a sample calculation for \mathbf{k} and also relevant parts per thousand calculations:
f. You are done! Finish the postlab questions (which are similar to the work you just completed) and you are good to go!

Kinetics I - The Iodination Of Acetone - Postlab Questions:

1. In a reaction involving the iodination of acetone, the following reaction mixture was used: 5.00 mL 4.0 M acetone, $5.00 \mathrm{~mL} 1.0 \mathrm{M} \mathrm{HCl}, 5.00 \mathrm{~mL} 0.0050 \mathrm{M} \mathrm{I}_{2}$, and 10.0 mL water.
a. What was the molarity of the acetone in the reaction mixture? (Recall that $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$)
b. The color of the above reaction mixture disappeared in 250 seconds. What was the rate of the reaction? (Hint: First determine the initial concentration of the iodine, then use the equation for rate from the lab.)
2. A second reaction mixture was made: 10.00 mL acetone, $5.00 \mathrm{~mL} \mathrm{HCl}, 5.00 \mathrm{~mL} \mathrm{I}_{2}$, and 5.00 mL of $\mathrm{H}_{2} \mathrm{O}$.
a. What was the molarity of the acetone in this reaction mixture?
b. The iodine color disappeared in 120 seconds. What was the rate of the reaction?
c. Determine the order of the reaction (m) with respect to acetone using the information from question 1 and 2. (Round off the value of m to the nearest integer)
3. A third reaction mixture is made: 10.00 mL acetone, $5.00 \mathrm{~mL} \mathrm{HCl}, 10.00 \mathrm{~mL} \mathrm{I}_{2}$. If the reaction is zero order with respect to iodine, how long will it take for the iodine color to disappear? (Hint: rate $=\left[I_{2}\right] /$ time, use the rate from question $2 b$ and the new [$\left.I_{2}\right]$ to solve for the time elapsed.)

This page left blank for printing purposes

CH 222 Winter 2025:
 'Kinetics II - The Iodination Of
 Acetone (in class)" Lab-Instructions

Note: This is the lab for section 01 and $\mathbf{H 1}$ only.

- If you are taking section W1 of CH 222, please use this link:
http://mhchem.org/r/9b.htm

Step One:

Get a printed copy of this lab! You will need a printed (hard copy) version of pages Ia-9-2 through Ia-9-11 to complete this lab. If you do not turn in a printed copy of the lab, there will be a 2 -point deduction.

Step Two:
Bring the printed copy of the lab with you on Monday, March 10 (section 01) or Wednesday, March 12 (section H1.) During lab in room AC 2507, you will use these sheets (with the valuable instructions!) to gather data, all of which will be recorded in the printed pages below.

Step Three:
Complete the lab work and calculations on your own, then turn it in (pages Ia-9-5 through Ia-9-11 only to avoid a point penalty) to the instructor at the time of your Lecture Final (tentatively Wednesday, March 19.) Be sure to include any necessary computer generated graphs as well.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

The rate of a chemical reaction depends on several factors: the nature of the reaction, the concentrations of the reactants, the temperature, and the presence of a possible catalyst. In Part One of this experiment we determined the rate law for a reaction by changing the concentrations and measuring the rate of the reaction. During Part Two, we will explore the relation between the rate constant and temperature to discover the activation energy for this reaction.

In this experiment, we continue to study the kinetics of the reaction between iodine and acetone:

In last week's lab, you discovered the average rate constant, \mathbf{k}, value, as well as the orders of reaction (\mathbf{m}, \mathbf{n} and \mathbf{p}) which apply to the rate law for this reaction:

$$
\text { rate }=\mathbf{k}[\text { acetone }]^{\mathrm{m}}\left[\mathbf{H}^{+}\right]^{\mathrm{n}}\left[\mathbf{I}_{2}\right]^{\mathbf{p}}
$$

In this experiment, you will study the rate of the reaction at different temperatures to find its activation energy, $\mathbf{E}_{\mathbf{a}}$. The temperature at which the reaction occurs influences the rate of the reaction. An increase in temperature increases the rate.

As with concentration, there is a quantitative relation between reaction rate and temperature, but here the relation is somewhat more complicated. This relation is based on the idea that to react, the reactant species must have a certain minimum amount of energy present (and the correct geometry, if appropriate) at the time the reactants collide in the reaction step.

This amount of energy, which is typically furnished by the kinetic energy of the species present, is called the activation energy ($\mathbf{E}_{\mathbf{a}}$, also known as the energy of activation) for the reaction. The formula (called the Arrhenius equation) relating the rate constant k to absolute Kelvin temperature T and E_{a} is:

$$
\ln \mathrm{k}=\frac{-E_{a}}{R T}+\ln \mathrm{A}
$$

In this equation, \mathbf{R} is the gas constant ($\mathbf{8 . 3 1 4 5} \mathbf{J} / \mathbf{m o l e} \mathbf{K}$), and natural logarithms ($\mathbf{l n}$) need to be used (do not use base $10 \operatorname{logs!}$) The quantity \mathbf{A} is referred to as the collision frequency and A can be used to determine the fraction of molecules present with sufficient energy and geometry to become products at a given instant in time.

By measuring k at different temperatures, we can graphically determine the activation energy for a reaction. In Part Two of this experiment you will determine the effect of temperature on rate and calculate the activation energy for the reaction.

DIRECTIONS:

You will collect data during lab and complete the worksheets at the end. No formal typed lab report is required as long as your writing is legible and easy to read. In this experiment, you will see the effect of temperature upon the reaction.

We shall measure one of the reactions from the "Kinetics I" lab at different temperatures. You do not need to repeat these experiments twice (to be within 20 seconds of each other) as in Part One.

For each entry in trial \#5 listed below: measure out the appropriate quantities of $1.0 \mathrm{M} \mathrm{HCl}, 4.0 \mathrm{M}$ acetone and water using a 10.00 mL graduated cylinder and place them in a 125 mL Erlenmeyer flask. Now measure out the appropriate amount of $\mathbf{0 . 0 0 5 0} \mathbf{M}$ iodine in a 10.00 mL graduated cylinder.

Using ice and/or a hot plate, get the solution to a desired temperature before adding the iodine. Record the temperature, then add the iodine to the Erlenmeyer, start a stopwatch and measure how long the reaction takes to turn the solution clear. Time should be recorded in seconds. The iodine does not need to be at the same temperature as the solution in the Erlenmeyer flask.

Temperatures need to be higher than $15^{\circ} \mathrm{C}$ (too slow!) and lower than $60^{\circ} \mathrm{C}$ (keep the acetone from boiling), and the interval between measurements needs to be at least $5^{\circ} \mathrm{C}$ apart.

Waste can be placed in the drain or in a waste bottle (which is probably the better option!) Get a stamp in your lab notebook before leaving lab.

This page left blank for printing purposes

Kinetics II - The Iodination Of Acetone

Part Two: The Effect of Temperature on the Rate Constant - Complete in the Lab
As before, add all the chemicals but iodine to a 125 mL Erlenmeyer flask. Using ice and/or a hot plate, get the solution to a desired temperature before adding the iodine. Record the temperature, then add the iodine to the Erlenmeyer, start a stopwatch and measure how long the reaction takes to turn the solution clear. Time should be recorded in seconds. The iodine does not need to be at the same temperature as the solution in the Erlenmeyer flask.

* Record one trial at room temperature. Hint: you may be able to use some of your data from Part I!
* Record one trial at a temperature lower than room temperature, but above 15 degrees Celsius.
* Record three trials at temperatures higher than room temperature, but under $\mathbf{6 0}$ degrees Celsius.

Temperature differences should be at least 5 degrees Celsius apart (i.e. spread out your temperatures!)

Trial \#5:

$\mathbf{H C l}(\mathbf{m L})$	Acetone (mL)	$\mathbf{I}_{\mathbf{2}}(\mathbf{m L})$	Water $(\mathbf{m L})$	Total Volume (mL)
5	5	5	10	25.00

| Temperature $\left({ }^{\circ} \mathrm{C}\right):$ | | Time (seconds): | |
| :--- | :--- | :--- | :--- | :--- |
| Temperature $\left({ }^{\circ} \mathrm{C}\right):$ | \square | | Time (seconds): |
| Temperature $\left({ }^{\circ} \mathrm{C}\right):$ | \square | | Time (seconds): |
| Temperature $\left({ }^{\circ} \mathrm{C}\right):$ | | | |
| Temperature $\left({ }^{\circ} \mathrm{C}\right):$ | | Time (seconds): | |

Hint: As temperature increases, the reaction time should decrease. If you do not see this trend, repeat one or more experiments.

You are now ready to complete the Kinetics II lab!

Kinetics II - The Iodination Of Acetone - Worksheet

These steps can be done at home and do not need to be completed in the lab. Show your work for each step

Earlier you determined the time elapsed for a given set of concentrations as the temperature was altered. We shall use that information and techniques similar to that of the "Kinetics Part I" lab to determine the energy of activation and collision frequency for the iodination of acetone reaction using the Arrhenius equation.
a. Find the inverse Kelvin temperature for each value in Trial \#5.

Convert your temperatures from ${ }^{\circ} \mathrm{C}$ to K , then take the inverse of your Kelvin temperatures.
Example: Convert $37.5^{\circ} \mathrm{C}$ to an inverse Kelvin temperature.
Solution: $37.5^{\circ} \mathrm{C}=310.7 \mathrm{~K}$. To find the inverse, calculate $(310.7 \mathrm{~K})^{-1}=\mathbf{3 . 2 1 9} * \mathbf{1 0}^{-\mathbf{3}} \mathbf{K}^{-\mathbf{1}}$

Complete the table below. The first column (Temperature $\left({ }^{\circ} \mathrm{C}\right)$ comes from your data collected in Part Two, Trial \#5, while in lab.

Temperature $\left({ }^{\circ} \mathbf{C}\right) \quad$ Temperature (K) Temperature ${ }^{-1}\left(\mathrm{~K}^{-1}\right)$

Temp \#1

Temp \#2

Temp \#3

Temp \#4

Temp \#5

Use this space to show a sample calculation for getting from Temperature $\left({ }^{\circ} \mathrm{C}\right)$ to an inverse Kelvin temperature:
b. Find the rate for each temperature value in Trial \#5.

Recall from the "Kinetics Part I" lab that, for this experiment:
rate $=\left[I_{2}\right] /($ time in seconds)
Use this equation to find the rate of reaction (in $\mathrm{M} \mathrm{s}^{-1}$) for each temperature. Time values come from Trial \#5, above:
$I_{2}(M) \quad$ time (s) rate $\left(\mathrm{M} \mathrm{s}^{-1}\right)$

Trial \#1	0.0010	-	
Trial \#2	0.0010	-	
Trial \#3	0.0010	-	
Trial \#4	0.0010	-	
Trial \#5	0.0010		

Use this space to show at least one example of how you calculated the rate of the reaction.
c. Find the value of the rate constant, \mathbf{k}, for each temperature value in Trial \#5.

We will use the process developed in "Kinetics Part I" lab to help us find the values of k for each temperature.
i. First, we need the diluted concentrations: (these can be found in section b of the "Kinetics Part I" lab)

Concentration (M) of acetone when 5.00 mL was used:
Concentration (M) of $\mathbf{H C l}$ when 5.00 mL was used: \qquad

Concentration (M) of $\mathbf{I}_{\mathbf{2}}$ when 5.00 mL was used: \qquad
ii. Next, we need the reaction orders for each reactant: ("Kinetics Part I", section d)

$$
\begin{array}{c}\text { My value of } \mathrm{m}(\text { acetone })= \\ \\ \text { My value of } \mathrm{n}(\mathrm{HCl})= \\ \text { My value of } \mathrm{p}\left(\mathrm{I}_{2}\right)= \\ \text { If you do not have } m=1, n=1, p=0, \text { talk to the instructor! }\end{array}
$$

iii. Now use the techniques from in Kinetics I', section e, to find the value of k, and then $\ln k$.

Use the rates from section \mathbf{b} (above) and the values for concentration and order (m, n and p) to find \mathbf{k}. The only variable that will change is the rate; the orders and concentrations remain constant. Take the natural $\log (\mathbf{l n})$ of each \mathbf{k} value as well (i.e. $\left.\ln \left(2.6^{*} 10^{-5}\right)=\mathbf{- 1 0 . 5 6}\right)$ (Note: report your $\ln k$ values to the hundredths place to satisfy significant figures.)
rate ($\mathbf{M ~ s}^{-1}$)
k
\qquad
Trial \#1

Trial \#2

Trial \#3

Trial \#4

Trial \#5 \qquad

Show a sample calculation for these steps on the next page.

Use this space to show at least one example of how you calculated the rate constant k and $\ln \mathrm{k}$.
d. Create a graph of $\ln \mathrm{k}$ versus inverse Kelvin temperature values

You will be creating a graph of $\ln \mathrm{k}$ versus inverse temperature to find the energy of activation.
First, collect your inverse temperature (the x -axis) and $\ln \mathrm{k}$ values (the y -axis) here. Inverse Kelvin temperature values come from section a in this lab. $\ln \mathrm{k}$ values come from section c , subsection iii, in this lab.

Temperature ${ }^{-1}\left(\mathbf{K}^{-1}\right)$

$\ln k$

Trial \#1

Trial \#2

Trial \#3

Trial \#4

Trial \#5

Using Excel or a similar program, create a graph of your $\ln \mathrm{k}$ values versus the inverse Kelvin temperature values. Make the graph at least as big as half a sheet of paper, and be sure to include unit labels ($\ln \mathrm{k}$ for the y -axis and (Temperature) ${ }^{-1}$ for the x -axis. Note that when using your graphing program, you may need to enter values as decimals, i.e. enter 0.00315 instead of 3.15×10^{-3}.

Staple / attach the graph to the end of this lab report packet.

e. Find the energy of activation for the iodination of acetone using the data in Trial \#5.

The data points on the graph from the last section should correspond roughly to a straight line with a negative slope. This is the behavior predicted by the Arrhenius equation:

$$
\ln \mathrm{k}=\frac{-E_{a}}{R T}+\ln \mathrm{A}
$$

where $\ln \mathbf{k}$ is the y -axis, (Temperature in Kelvin) ${ }^{\mathbf{- 1}}$ is the x -axis, $-\mathbf{E}_{\mathbf{a}} / \mathbf{R}$ is the slope, $\mathbf{R}=\mathbf{8 . 3 1 4 5} \mathbf{J ~ K}^{-1}$ $\mathbf{m o l}^{-1}$ (the "energy" gas constant), $\mathbf{E}_{\mathbf{a}}$ is the energy of activation, and \mathbf{A} is the collision frequency.

Perform a linear regression analysis using your calculator or graphing program (inverse Kelvin temperatures will be your x -axis, $\ln \mathrm{k}$ values will be your y -axis.) Record the values that you collected here:

Slope $=\square \quad y$-intercept $=$ correlation coefficient $(\mathrm{r})=$ \qquad

The energy of activation, E_{a}, can be determined from the slope. From the value of the slope determined through linear regression, calculate the activation energy.

Energy of activation $=-\mathbf{R} *$ slope $=$ \qquad

Units for your Energy of activation value = \qquad

The collision frequency, A, can be determined from the y-intercept. From the value of the y-intercept determined through linear regression, calculate the collision frequency.

Collision frequency $=\mathbf{e}^{\mathrm{y} \text {-int }}=$ \qquad
Note that e is the anti natural logarithm.
f. You are done! Finish the postlab question (which is similar to the work you just completed) and you are good to go!

Kinetics II - The Iodination Of Acetone - Postlab Questions:

The following reaction

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

was studied at several temperatures, and the following values of k were obtained:
$\underline{k\left(s^{-1}\right)} \quad \underline{T}\left({ }^{\circ} \mathbf{C}\right)$

$2.0 * 10^{-5}$	20.0
$7.3 * 10^{-5}$	30.0
$2.7 * 10^{-4}$	40.0
$9.1 * 10^{-4}$	50.0
$2.9 * 10^{-3}$	60.0

Using linear regression and the techniques developed in this lab, calculate the activation energy and collision frequency for this reaction. Include a computer generated graph of $\ln \mathrm{k}$ versus (T$)^{-1}$. Hint: make sure you use inverse Kelvin temperatures! Make sure the x -axis lists " 0.003 " numbers (and not whole integers, etc.)

Slope $=$ \qquad y-intercept $=$ \qquad correlation coefficient $(\mathrm{r})=$ \qquad

Energy of activation $=$ \qquad

Units for your Energy of activation value = \qquad

Collision frequency $=$ \qquad

This page left blank for printing purposes

"Introduce Yourself" Lab for Chemistry 222 Section W1
 Create a video, sign the form below and turn in via email to mike.russell@mhcc.edu by 9 AM, Friday, January 10. Remember to turn in the video link to me as well!

Note: This is the lab for section W1 of CH 222 only.

- If you are taking section 01 or section H 1 of CH 222 , please use this link: http://mhchem.org/r/1a.htm

Welcome to Chemistry 222! I am glad you enrolled in CH 222 this quarter, and I look forward to an exciting term with you!

This class will be quite different from previous Chemistry 222 classes taught at Mt. Hood Community College... it will be taught exclusively online; there will be no "face to face" lectures, labs, office hours, exams, etc. So.... let's make the best of it, ok? :)

The goal of this "lab" is to "meet you." I want to know a bit about you, so I want you to make a short (about 3 minutes or so) video (preferably on YouTube or a similar platform) about yourself. Show yourself talking (no pictures, etc. - just show you!) and tell me a bit about yourself. Maybe you could tell me about your college goals - why are you taking CH 222? Or maybe you could tell me about a cool movie you watched, or a book you read, or a music band you're enjoying.... it's totally up to you, but it will help me get a better idea as to "who you are", and this is important to me! Email me a link to the video.

I also want you to read the "Memorandum" page (which is found below), then initial, sign and return the "Memorandum" page to me electronically (i.e. email to mike.russell@mhcc.edu).

I have suggestions for completing both assignments on the next several pages.

How to Create a Video for this Assignment:

Making a video should not be a difficult assignment for you. I do not expect a "Hollywood quality" video; instead, I just want to see YOU and hear some of your stories. This MUST be an original and current video - do not re-use a video made from a previous class.

To create the video, I recommend creating a video on your phone, then using the YouTube app to upload the video. Connect your gmail/Google account in YouTube, select the "plus" symbol (which is at the bottom middle of the screen) to start uploading the video (and make sure you set the video to "unlisted", not "private".) Once ready, email me a link (use the "Share" - "Copy Link" function)... and then you're done!

You do not have to edit your video - it can be pretty rough! And if you don't like your video, record a new version and start again.

How to Fill Ou the "Memorandum" for this Assignment:

The final page of this assignment has the "Memorandum" which I also want you to submit to me via email. All assignments must be submitted to the instructor via email (mike.russell@mhcc.edu) as a PDF file, written by hand (no typed assignments except for the Class Presentation materials) and only in one file (i.e. if the assignment is five pages, submit all five pages as one file and not five individual files.)

How you do this depends on you... here are some suggestions:
1 - If you have a printer and wish to complete the work "by hand".

- print the assignment and fill out as usual. You cannot print at MHCC currently (hopefully this will change soon) so this must be done on your own.
- On your phone (Android or iPhone), use a free program like CamScammer to make pdf scans and combine into one file. Alternatively you can use CombinePDF (https://combinepdf.com) to automatically convert multiple picture (.jpg or .png) files into a single PDF file. These services should be free - do not pay for any upgrades or extras!
- Email the PDF to the instructor! done! (and again, I really like CamScanner!)

2 - If you have a tablet (iPad, Surface, etc.) and can write directly on the screen:

- Download the PDF file (to the desktop, Google Drive, etc.)
- Use a program which allows you to import the PDF and write directly on the tablet. Examples include (but are not limited to): GoodNotes (my current favorite), Notability, Apple Notes, Evernote, Google Keep, Typora or Microsoft OneNote Some of these programs might have a cost associated with them.
- Email the completed PDF assignment to the instructor... you're done!

Note that as a MHCC student, you can access Microsoft Office for free on both Windows and Mac platforms. More info: https://mhcc.edu/OfficeInstall/

You pick which of these methods works well for you, and use it complete all assignments in
CH 222 this quarter. CH 222 this quarter.

And if you have questions on anything, please email me (mike.russell@mhcc.edu) - I'm happy to help!

Good luck, and I look forward to having you in my classroom this quarter! Peace, Michael
p.s. Want to know more about me? https://mhchem.org/221/russellm/index.htm

This page left blank for printing purposes

Memorandum for Chemistry 222 Section W1

Create a video, sign the form below and turn in everything via email to mike.russell@mhcc.edu by 9 AM, Friday, January 10. Also remember to turn in the video link

* Please note: if you plan on taking Organic Chemistry in the future, you really should sign up for Section 01 or Section H1 of CH 222. You will be missing out on essential lab skills and procedures which will be missed if you take Organic Chemistry. Email me if you have questions, I might be able to switch you to Section 01 or Section H1 this term.
* I agree to turn in all assignments via email as PDF files. All assignments will be submitted as a single file (do not submit one assignment as multiple files) and hand written (ie do not type the assignments.)
* I understand that problem sets, labs, quizzes and most assignments are due on Wednesdays by 11:59 PM or Fridays by 9 AM via email (check the syllabus for exact due dates.) Late assignments (even due to technology reasons) will incur a point penalty. Quizzes and exams will be worth zero points if turned in late. Email assignments early if you worry about the quality of your internet connection.
* I understand that all assignments will be returned via email to your MHCC @saints account. This address will be used to discus items related to our class during the term.
* If you cannot complete the midterm or final exam (i.e. vacation, etc.), you will need to complete a make up exam in person on the main MHCC campus in Gresham.... so for the duration of the term, try to focus on the class and not be away from your computer and phone, ok?
* I will try to have a sense of humor as the instructor frantically tries to keep up with the changes of this class :). I will email the instructor if I have any questions!
* I have read this document and will stay informed with the class through the instructor's email messages and class syllabus.

Signature

Printed name

Date

CH 222 Winter 2025:
 'Lewis Structures (online)" Lab - Instructions

Note: This is the lab for section W1 of CH 222 only.

- If you are taking section 01 or section H1 of CH 222, please use this link:
http://mhchem.org/r/2a.htm

Step One:
Watch the lab video for the "Lewis Structures" lab, found here:
http://mhchem.org/y/2.htm
There is no data to record at the end of the video.

Step Two:
Complete pages Ib-2-7 through Ib-2-12 using the "Lewis Structures" video and the actual lab instructions on pages $\mathrm{Ib}-2-2$ through $\mathrm{Ib}-2-6$. Include your name on page Ib-2-7!

Step Three:
Submit your lab (pages $\mathrm{Ib}-2-7$ through $\mathrm{Ib}-2-12$ only to avoid a point penalty) as a single PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, January 22 by 11:59 PM. I recommend a free program (ex: CamScanner, https://camscanner.com) or a website (ex: CombinePDF, https:// combinepdf.com) to convert your work to a PDF file.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Lewis Structures - The Geometry of Covalent Molecules

The formulas of many covalent compounds, especially those involving only the elements of the first few periods of the periodic table, were brought within the framework of the octet rule. The octet rule states that a total of eight valence electrons, either shared or unshared, should be in the region of each atom beyond the first period. For hydrogen the desired number is two. Electrons that are shared between two atoms are bonding electrons and are to be counted toward the octet of each of the bonding atoms. A single covalent bond consists of a pair of shared electrons, a double bond has two shared pairs, and a triple bond has three shared pairs. Bond distances are shorter and bond energies are greater for multiple bonds than for single bonds.

Structural formulas, such as shown in Figure 1, represent the electron distributions in covalent molecules and ions. These structures are not meant to indicate actual bond angles in threedimensional varieties; they merely show the number of bonds connecting the various atoms. In Lewis formulas, a single line between two atoms represents a pair of shared electrons and a dot represents an unshared electron.

Figure 1
Two lines constitute a double bond, and three lines constitute a triple bond. The total number of electrons shown in such a molecular structure is equal to the sum of the numbers of valence (outershell) electrons in the free atoms: 1 for $\mathrm{H}, 4$ for $\mathrm{C}, 5$ for $\mathrm{N}, 6$ for O , and 7 for Cl . For an ionic structure, one additional electron must be added to this sum for each unit of negative charge on the whole ion, as in OH^{-}, and one electron must be subtracted from the sum for each unit of positive charge on the ion, as in $\mathrm{NH}_{4}+$. The number of pairs of electrons shared by an atom is called its covalence.

The covalence of hydrogen is always one. The covalence of oxygen is practically always one or two. The covalence of carbon is four in almost all its stable compounds. Thus each carbon is expected to form either four single bonds, a double bond and two single bonds, two double bonds, or a single and a triple bond. Although the octet rule is not a rigid rule of chemical bonding, it is obeyed for $\mathrm{C}, \mathrm{N}, \mathrm{O}$, and F in almost all their compounds. The octet is exceeded commonly for elements in the third and higher periods of the periodic table.

Isomerism: For some molecules with a given molecular formula, it is possible to satisfy the octet rule with different atomic arrangements. A simple example would be

and

The two molecules are called isomers of each other, and the phenomenon is called isomerism. Although the molecular formulas of both substances are the same, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, their properties differ because of the different atomic arrangement. Since several different types of isomerism can exist especially in organic molecules,
these are called structural isomers.

When double bonds are present, isomerism can occur in very small molecules. For example:

and

and

These isomers (called geometric isomers) result from the fact that there is no rotation around a double bond, as in single bonds.

Resonance: Sometimes more than one satisfactory structure can be written and there is no reason to select one over another. In such cases a single structural formula is inadequate to represent a substance correctly, and several such diagrams must be written. The true structure is then said to be a resonance hybrid of the several diagrams.

For example, experiment has shown that the two terminal oxygens in ozone are equivalent; that is, they are equidistant from the central oxygen. If only one of the resonance diagrams in Fig.2(a) were written, it would appear that one of the terminal oxygens is bonded more strongly to the central oxygen by a double bond than is the other (by a single bond) and that the more strongly bonded atom should be closer to the central atom. The hybrid of the two ozone structures gives equal weight to the extra bonding of the two terminal oxygen atoms. Similarly, the three resonance structures of carbonate in Fig.2(b) are needed to account for the experimental fact that all three oxygens are equidistant from the central carbon.

Figure 2: a) ozone (left) and b) carbonate (right)
The total bond energy of a substance for which resonance structures are written is greater than would be expected if there were only one formal Lewis structure. This additional stabilization is called resonance energy. It arises from the principle that is responsible for covalent bond energy, the delocalization of electrons about the atoms forming the bond. As a result of resonance in ozone, for example, the electrons constituting the second pair of the double bond are delocalized around the 3 oxygen atoms. The writing of two or more resonance structures is a way of overcoming the inability of a single valencebond structure to show this delocalization.

Formal Charge: Although a molecule as a whole is electrically neutral, it is a matter of much current interest to know whether there are local charges which can be identified with particular parts of a molecule, the algebraic sum of which would equal zero. In an ion, the algebraic sum would equal the charge of the ion as a whole. In one approximate method of apportioning charges within a molecule or ion, the shared electrons in a covalent bond are arbitrarily divided equally between the two atoms forming the bond. Unshared valence electrons on an atom are assigned exclusively to that atom. Each atom is then assigned a
formal charge which is equal to the number of valence electrons possessed by that atom in the neutral free state minus the number of valence electrons assigned to it in the structure. These charges may be written near the atoms on the structural diagrams.

Figure 3 shows a single resonance structure for ozone. The central oxygen is assigned just five electrons (two in the unshared pair plus half of the three pairs in the bonds); this atom, being one electron short of the complement of six in a free oxygen atom, is thus assigned a formal charge of $\mathbf{+ 1}$. The terminal oxygen connected by a single bond is assigned 7 (6 in the unshared pairs plus half of one pair in the bond); having one electron more than a neutral oxygen atom, this atom is assigned a formal charge of $\mathbf{- 1}$. The other terminal oxygen has no formal charge because six electrons are assigned to it (four in the unshared pairs plus half of the two shared pairs).

Figure 3: $\quad-1$ Formal charges on ozone

A rule useful in choosing one Lewis structure over another is that structures which minimize formal charge separation are favored. Especially to be avoided are formal charges of magnitude greater than 1 and structures in which appreciable formal charges of the same sign are located on adjacent atoms.

Dipole moments and electronegativity: There are some experimental procedures that give information about the actual distribution of charges within a molecule (as distinct from the arbitrary assignment of formal charges). One such is the measurement of dipole moment. An electric dipole is a neutral object that has a positive charge of magnitude q and a separately located, equal but opposite negative charge. The rotation of a dipole by an electric field is dependent upon and a measure of the dipole moment, defined as the product of q and the distance, d , separating the positive and negative charges.

In a covalent diatomic molecule, the dipole moment would be expected to be zero if the bonding electrons were shared truly equally by the two atoms. This is indeed the case in molecules of the type XX where two identical atoms are bonded. In the more general type XY, two different kinds of atoms are bonded, and a dipole moment is usually observed. This is explained by hypothesizing that one of the atoms, say Y , has a greater attraction for the shared electrons in the bond than does X . Y is said to have a greater electronegativity than X. Electronegativity correlates with other atomic properties; in general, atoms with high ionization energies and/or high electron affinities tend to have high electronegativities. The most electronegative elements in order of decreasing electronegativity are $\mathbf{F}>\mathbf{O}>\mathbf{N}=\mathbf{C l} \quad \mathrm{C}$ is more electronegative than H . Metals are less electronegative than nonmetals.

HOW TO COMPLETE THIS LAB:

In this experiment you will be constructing models of molecules and ions containing atoms covalently bonded. If you have access to a model kit, use it! The model kit consists of plastic colored balls where each type of ball represents a certain species of atom; see the front cover of the model box to determine each atom type.

In assembling a molecular model of a molecule you should use a systematic approach keeping in mind the valence of the atoms in the molecule. Let us illustrate the recommended procedure with the following molecule, $\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}} \mathbf{O}_{\mathbf{2}}$:

1. Draw a correct Lewis structure, remembering that carbon will always have four bonds and oxygen usually just two. Unless otherwise informed assume the carbon atoms form a carbon - carbon bond. Count up the total number of valence electrons (24 e-). Those that are not bonding are nonbonding electrons. This leads to the following two isomers (other isomers exist as well):

2. Connect the balls and sticks to according to the Lewis structure. Use two bonds to represent the carbonoxygen double bond.
3. Determine the electron pair geometry (EPG) and molecular geometry (MG) of the molecule from the molecular model. For acetic acid we say that the molecule is tetrahedral at one carbon, trigonal planar at the other carbon and tetrahedral / bent at the oxygen.
4. Determine whether any isomers exist by changing the location of the atoms; however you must maintain the correct valence of each atom.
5. Resonance will most often exist when the central atom forms a double bond to one atom and a single bond to another atom of the same element.

PROCEDURE:

Use the procedure outlined above to construct Lewis structures of the molecules and ions listed below using the attached worksheet. Neatness counts! Be sure to include all lone pair electrons on your drawings. For each molecule:
i) Draw the Lewis structure, including all lone pair electrons.
ii) Describe the electron pair geometry and molecular geometry around the central atom. If more than one central atom, put a star $\left(^{*}\right)$ by the central atom you will use in your answer.
iii) Determine if the molecule is polar or nonpolar and list any bond angles.
iv) Draw the Lewis structures of isomers and resonance forms, if any.

1. CH_{4}	6. $\mathrm{NH}_{4}+1$	11. $\mathrm{C}_{2} \mathrm{H}_{2}$	16. SCN^{-}	21. $\mathrm{AsCl}_{3} \mathrm{Br}_{2}$
2. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	7. $\mathrm{CH}_{2} \mathrm{O}$	12. SO_{2}	17. $\mathrm{NO}_{3}{ }^{-1}$	22. PCl_{5}
3. $\mathrm{CH}_{4} \mathrm{O}$	8. NH_{3}	13. $\mathrm{C}_{2} \mathrm{H}_{4}$	18. $\mathrm{SO}_{4}{ }^{2-}$	23. $\mathrm{SiF}_{6}{ }^{2-}$
4. $\mathrm{H}_{2} \mathrm{O}$	9. $\mathrm{H}_{2} \mathrm{O}_{2}$	14. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$	19. CO_{2}	24. $\mathrm{SiF}_{4} \mathrm{Cl}_{2}{ }^{2-}$
5. BF_{3}	$10 . \mathrm{HNO}_{3}$	15. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$	20. SeF_{4}	25. $\mathrm{SiF}_{3} \mathrm{Cl}_{3}{ }^{2-}$

Also, on the last page, construct six possible isomers of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$.

Name:
Lewis Structures Worksheet - Hand drawn versions only, no computer generated structures
Be sure to include all lone pair electrons for full credit! Draw all resonance forms and isomers (if any).

Molecule/Ion	Lewis Structure	Geometry and Polarity	Resonance/Isomers? (draw)
CH_{4}		Electron Pair Geometry:	
		Molecular Geometry:	
		Polar or Nonpolar:	
		Bond Angle(s):	

		Electron Pair Geometry:	
$\mathbf{C H}_{2} \mathbf{C l}_{2}$		Molecular Geometry:	
Polar or Nonpolar:			
Bond Angle(s):			

| $\mathbf{C H}_{4} \mathrm{O}$ |
| :---: | :--- | :--- | :--- |
| hint: put a star |
| next to your |
| central atom |\quad| Electron Pair Geometry: | |
| :--- | :--- |
| | Molecular Geometry: |
| Bolar or Nonpolar: | |

		Electron Pair Geometry:	
$\mathbf{H}_{2} \mathbf{O}$		Molecular Geometry:	
		Polar or Nonpolar: Bond Angle(s):	

	BF3 $_{3}$		Electron Pair Geometry:
Molecular Geometry:			
Polar or Nonpolar:			
Bond Angle(s):			

The Geometrical Structure Of Covalent Molecules Worksheet - Continued

Molecule/Ion	Lewis Structure	Geometry and Polarity	Resonance/Isomers? (draw)
$\mathrm{NH}_{4}{ }^{\mathbf{1}}$		Electron Pair Geometry:	
		Molecular Geometry:	
		Polar or Nonpolar:	
		Bond Angle(s):	

| $\mathbf{C H}_{2} \mathrm{O}$ | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| | Molecular Geometry: | |
| Polar or Nonpolar: | | |
| Bond Angle(s): | | |

$\mathbf{N H}_{3}$		Electron Pair Geometry:	
		Molecular Geometry:	
	Polar or Nonpolar:		
Bond Angle(s):			

| $\mathbf{H}_{2} \mathrm{O}_{2}$ | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| | Molecular Geometry: | |
| Polar or Nonpolar: | | |
| Bond Angle(s): | | |

The Geometrical Structure Of Covalent Molecules Worksheet - Continued

Molecule/Ion	Lewis Structure	Geometry and Polarity	Resonance/Isomers? (draw)
		Electron Pair Geometry:	
$\mathrm{C}_{2} \mathrm{H}_{2}$ hint: triple		Molecular Geometry:	
		Polar or Nonpolar:	

| | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| SO_{2} | | Molecular Geometry: |
| | Polar or Nonpolar: | |
| Bond Angle(s): | | |\quad.

		Electron Pair Geometry:				
$\mathbf{C}_{2} \mathbf{H}_{4}$						
hint: double						
bond				\quad		
:---	:---					
	Molecular Geometry:					
Polar or Nonpolar:						
Bond Angle(s):						

| | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| $\mathbf{C}_{2} \mathbf{H}_{2} \mathbf{C l}_{2}$ | | Molecular Geometry: |
| | Polar or Nonpolar:
 Bond Angle(s): | |

| $\mathbf{C}_{2} \mathbf{H}_{4} \mathbf{B r}_{2}$ | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| | Molecular Geometry: | |
| Polar or Nonpolar: | | |
| Bond Angle(s): | | |,

The Geometrical Structure Of Covalent Molecules Worksheet - Continued

Lewis Structure	Geometry and Polarity	Resonance/Isomers? (draw)	
		Electron Pair Geometry:	
SCN-1		Molecular Geometry:	
C in middle		Polar or Nonpolar:	
		Bond Angle(s):	

		Electron Pair Geometry:	
$\mathbf{N O}_{3} \mathbf{- 1}$		Molecular Geometry:	
		Polar or Nonpolar:	
Bond Angle(s):			

		Electron Pair Geometry:	
$\mathrm{SO}_{4} \mathbf{- 2}^{2}$		Molecular Geometry:	
		Polar or Nonpolar: Bond Angle(s):	

		Electron Pair Geometry:	
$\mathbf{C O}_{2}$		Molecular Geometry:	
		Polar or Nonpolar: Bond Angle(s):	

		Electron Pair Geometry:	
SeF_{4}		Molecular Geometry:	
Polar or Nonpolar:			
Bond Angle(s):			

The Geometrical Structure Of Covalent Molecules Worksheet - Continued

Molecule/Ion	Lewis Structure	Geometry and Polarity	Resonance/Isomers? (draw)
		Electron Pair Geometry:	
$\mathbf{A s C l}_{3} \mathbf{B r}_{2}$ hint \cdot trigonal		Molecular Geometry:	
		Polar or Nonpolar:	

| | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| $\mathbf{P C l}_{5}$ | | Molecular Geometry: |
| | | |
| | Polar or Nonpolar: | |
| Bond Angle(s): | | |

		Electron Pair Geometry:			
SiF62-					
hint:octahedral			\quad		
:---	:---				
	Molecular Geometry:				
Polar or Nonpolar:					
Bond Angle(s):					

| | | Electron Pair Geometry: |
| :--- | :--- | :--- | :--- |
| $\mathrm{SiF}_{4} \mathrm{Cl}_{2}{ }^{2-}$ | | Molecular Geometry: |
| | Polar or Nonpolar: | |
| Bond Angle(s): | | |

Finally, construct six possible isomers of $\mathbf{C}_{6} \mathbf{H}_{12} \mathbf{O}_{2}$ in the space provided below. For this question, carbon will always have four bonds and no lone pairs, and oxygen should always have two bonds (two single or one double) and two lone pairs.

CH 222 Winter 2025: "Valence Bond and

Molecular Orbitals (online)" Lab-Instructions

Note: This is the lab for section 01 and section W1 of CH 222 only.

- If you are taking section 01 or section $\mathrm{H1}$ of CH 222 , please use this link:
http://mhchem.org/r/3a.htm

Step One:
Watch the lab video for the "VB and MO" lab, found here: http://mhchem.org/y/3.htm There is no data to record at the end of the video.

Step Two:
Complete pages Ib-3-5 through Ib-3-12 using the "VB and MO" video and the actual lab instructions on pages $\mathrm{Ib}-3-2$ through $\mathrm{Ib}-3-3$. Include your name on page $\mathrm{Ib}-3-5$!

Step Three:
Section 01: Submit your lab during recitation in AC 2501 at 1:10 PM on Monday, January 27. A printed copy is required for full credit; emailed labs will invoke a point penalty.

Section W1: Submit your lab (pages Ib-2-7 through Ib-2-12 only to avoid a point penalty) as a single PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, January 29 by 11:59 PM. I recommend a free program (ex: CamScanner, https://camscanner.com) or a website (ex: CombinePDF, https://combinepdf.com) to convert your work to a PDF file.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

VALENCE BOND (VB) THEORY

and

MOLECULAR ORBITAL (MO) THEORY

LAB

This lab contains a series of handouts that you should complete. Neatness counts!

Useful handouts from the Chemistry 222 website (http://mhchem.org/222):

- Geometry and Polarity Guide (http://mhchem.org/geopo/)
- MO Diagram - B_{2} through N_{2} (http://mhchem.org/MO)
- MO Diagram - O_{2} through Ne_{2} (http://mhchem.org/MO)

Molecular orbital diagrams for B, C, N (left) and O, F and Ne (right).
Notice that the 1s interactions are not included in these diagrams.
Use [core electrons] if not showing the 1s interactions in your molecular orbital diagram.

This page left blank for printing purposes

VALENCE BOND THEORY and MOLECULAR ORBITAL THEORY LAB - Worksheet
Hand drawn versions only, no computer generated structures
Complete the sections below by providing the appropriate information in the spaces provided. Neatness counts!
Part One: Valence Bond Theory Complete the following sections using Valence Bond Theory.

Molecule/Ion Lewis Structure (\& Isomers, if any)

		Electron Pair Geometry:	Hybridization:
AsCl5		Molecular Geometry:	Bond Order:
		Polar or Nonpolar:	Resonance Forms? (Y/N)

Molecule/Ion Lewis Structure (\& Isomers, if any)

		Electron Pair Geometry:	Hybridization:
CO^{2-}		Molecular Geometry:	Bond Order:
	Polar or Nonpolar:	Resonance Forms? (Y/N)	

Molecule/Ion Lewis Structure (\& Isomers, if any)

		Electron Pair Geometry:	Hybridization:
$\mathbf{C l O}_{4}{ }^{-1}$		Molecular Geometry:	Bond Order:
	Polar or Nonpolar:	Resonance Forms? $(\mathbf{Y} / \mathbf{N})$	

Molecule/Ion Lewis Structure (\& Isomers, if any)

		Electron Pair Geometry:	Hybridization:
XeOF_{4}		Molecular Geometry:	Bond Order:
		Polar or Nonpolar:	Resonance Forms? (Y/N)

Part Two: Molecular Orbital Theory Complete the following sections using Molecular Orbital Theory. Draw a complete Molecular Orbital diagram to answer these questions (include all $1 s$ and $2 s$ interactions, no short hand notation) and provide the missing information.

Molecule / Ion: Li \mathbf{i}_{2}
Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad
(Circle) Paramagnetic or Diamagnetic
Should this molecule exist? (Circle) Yes or No

Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad
(Circle) Paramagnetic or Diamagnetic Should this molecule exist? (Circle) Yes or No

Molecule / Ion: \mathbf{B}_{2}

Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad
(Circle) Paramagnetic or Diamagnetic

Molecule / Ion: $\mathbf{N}_{\mathbf{2}}$
Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad
(Circle) Paramagnetic or Diamagnetic
Should this molecule exist? (Circle) Yes or No
Molecule / Ion: \mathbf{F}_{2}
Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad

Molecular Orbital Diagram:

Bond Order: \qquad Number of sigma bonds: \qquad Number of pi bonds: \qquad
(Circle) Paramagnetic or Diamagnetic
Should this molecule exist? (Circle) Yes or No

Part Three: Theory Comparison Complete the following sections using both Valence Bond (VB) Theory and Molecular Orbital (MO) Theory. Shorthand notation for MO Diagrams is recommended, include $1 s$ and $2 s$ interactions.

Molecule / Ion: CN-1 (Use the MO Diagram for B, C and N on this problem)

Molecule / Ion: NO ${ }^{+1}$ (Use the MO Diagram for O, F and Ne on this problem)

Valence Bond Lewis Structure:	Bond Order (VB):	Bond Order (MO):	Number of sigma bonds (VB):
Molecular Orbital Diagram:	Number of pi bonds (VB):	Number of pi bonds (MO):	(V) Paramagnetic? (circle)

Molecule / Ion: NO (Use the MO Diagram for O, F and Ne on this problem)

Valence Bond Lewis Structure:	Bond Order (VB):	Bond Order (MO):	Number of sigma bonds (VB):
Molecular Orbital Diagram:	Number of sigma bonds (MO):	Number of pi bonds (MO):	(VB) Paramagnetic? (circle)

Molecule / Ion: $\mathbf{O}_{\mathbf{2}}$

Molecule / Ion: $\mathbf{N e}_{2}{ }^{+2}$

Valence Bond Lewis Structure:	Bond Order (VB):	
	Bond Order (MO):	
	Number of sigma bonds (VB):	
Molecular Orbital Diagram:	Number of sigma bonds (MO):	
	Number of pi bonds (VB):	
	Number of pi bonds (MO):	
	(VB) Paramagnetic? (circle)	Yes No
	(MO) Paramagnetic? (circle)	Yes No

CH 222 Winter 2025:
 "Organic Chemistry"
 (online) Lab-Instructions

Note: This is the lab for section W1 of CH 222 only.

- If you are taking section 01 or section H 1 of CH 222 , please use this link: http://mhchem.org/r/4a.htm

Step One:

Watch the lab video for the "Organic Chemistry" lab, found here:
http://mhchem.org/y/4.htm
There is no data to record at the end of the video.
Step Two:
Complete pages Ib-4-9 through Ib-4-13 using the "Organic Chemistry" video and the actual lab instructions on pages $\mathrm{Ib}-4-2$ through $\mathrm{Ib}-4-8$. Include your name on page Ib-4-9!

Step Three:
Submit your lab (pages Ib-4-9 through Ib-4-13 only to avoid a point penalty) as a single PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, February 5 by 11:59 PM. I recommend a free program (ex: CamScanner, https:// camscanner.com) or a website (ex: CombinePDF, https://combinepdf.com) to convert your work to a PDF file.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Organic Chemistry

The classification of chemical compounds in to the general areas of organic and inorganic derives from the use of the "mineral, vegetable and animal" designation by the early workers in chemistry. Those compounds derived from living systems were termed organic (about 1777) whereas those derived from mineral sources were termed inorganic. In modern times, organic compounds are classified as compounds of carbon containing either carbon-carbon or carbon-hydrogen bonds or both. Originally, organic compounds were thought to be imbued with a "vital essence" attainable only from God. Thus, it was believed that organic compounds could be prepared from sources that had once lived, as this would be the only way that this vital essence could be obtained by man. In 1828, Freidrich Wöhler prepared the organic compound urea (found in human urine) from entirely nonliving sources, thereby destroying the theory of organic vitalism. Since Wöhler's time, approximately 5 million organic compounds have been synthesized and characterized, many of which are not found in nature.

Why are there so many organic compounds? The reason is that carbon atoms have the ability to link to other carbon atoms (concatenate) to produce chains or rings of almost infinite size. Other elements do not concatenate nearly as well due to such factors as poor orbital overlap and lone pair-lone pair electronic repulsions. Other elements can also combine with carbon to form hetero-species, including hydrogen, oxygen, nitrogen, sulfur and the halogens.

The distinction between the organic and inorganic disciplines is not very sharp. The bonding of metals to carbon has resulted in the large, important and fast growing area of organometallic chemistry. Organometallic compounds containing metals and metalloids such as lithium, magnesium, copper, iron, boron, silicon, and other elements play major roles as synthetic reagents.

The purpose of this experiment is to prepare models of the more common organic compound types to enhance their three dimensional nature. Bond angles between atom groupings will become apparent as you build the models.

Saturated Hydrocarbons: The Alkanes

Alkanes are hydrocarbons (compounds with hydrogen and carbon atoms) linked with single bonds. All the carbon atoms are sp^{3} hybridized and are tetrahedrally bonded to four other carbon or hydrogen atoms. Members of this class have the general formula $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{\mathbf{2 n}+2}$, where \mathbf{n} is an integer. Examples of this class of organic compound include methane $\left(\mathrm{CH}_{4}, \mathrm{n}=1\right)$, ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{n}=2\right)$ and propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{n}=3\right)$. Structures of the first four straight chain compounds are shown below.
methane

CH_{4}
ethane

$\mathrm{CH}_{3} \mathrm{CH}_{3}$
propane

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

butane

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

These representations do not show the actual geometrical structure of these compounds. Due to the sp^{3} hybridization of the carbon atoms, all the bond angles in the molecules are close to 109.5° (tetrahedral) and thus, the carbon chain is nonlinear. The wedge-dash notation can be used to represent the nonlinear nature of these molecules. Examples of ethane and butane are given below using the wedge-dash notation.

ethane
butane

As you prepare models of the alkanes, note that each carbon atom can rotate about its respective carbon-carbon bond. Some conformations (arrangements of the bonds and groups relative to each other) are more stable than others, since in these arrangements there is less interference (steric repulsion) between the hydrogen atoms attached to nearby carbons.

An interesting aspect of the alkanes is that structural isomers can exist in compounds having more than three carbon atoms. Structural isomers are species that have the same molecular formula but possess different physical properties due to different arrangements of the carbon backbone. The two compounds below are an example of an isomeric pair of hydrocarbons. Both are butanes and have the formula $\mathrm{C}_{4} \mathrm{H}_{10}$, but their structures are different.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

n-butane

This figure relates several new points. First is the use of the skeleton formula. These structures represent the carbon backbone without the hydrogen atoms being shown and are often used as a shorthand method of representing the structures. The second point is the use of substituents in naming compounds. We can see that in methylpropane, one of the CH_{3} groups is a "twig" off of the main "branch" of the compounds. Such twigs are called alkyl groups. In the figure, the methyl group $\left(\mathrm{CH}_{3}\right)$ name is derived from the hydrocarbon methane $\left(\mathrm{CH}_{4}\right)$ having lost a hydrogen. The number of possible isomers increases rapidly as the number of carbon atoms increases in a compound. For example, the pentane system (five carbons) has three isomers, the heptane system (seven carbons) has nine isomers, and the decane system (ten carbons) has seventy-five isomers!

Alkanes can also exist as cyclic hydrocarbons where the carbon atoms are arranged in rings. The general molecular formula is $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{\mathbf{2}}$, where \mathbf{n} is an integer. These carbons are named identically to the alkanes except for the additional prefix cyclo. The structures for two cyclic hydrocarbons are given below.

cyclopropane

cyclopentane

In the smaller rings such as cyclopropane and cyclobutane, smaller bond angles (60° and 90°, respectively) are evident. Such angles are seen as being strained from their normal tetrahedral angle, and these compounds have less stability than their larger counterparts. The most stable cyclic compounds contain rings of five and six carbons (cyclopentane and cyclohexane, respectively).

Unsaturated Hydrocarbons: The Alkenes

Alkenes are hydrocarbons in which there are one or more carbon-carbon double bonds, $\mathrm{C}=\mathrm{C}$. The carbon atoms attached to the double bond are sp^{2} hybridized. One of the double bonds is a sigma bond (oriented along the internuclear axis) and the other is a pi bond (oriented perpendicular to the internuclear axis). Members of this class have the general formula $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{\mathbf{2}}$, where \mathbf{n} is an integer (note that this is the same formula as for the cycloalkanes.) Examples of alkenes include ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{n}=2\right.$, also known as ethylene), propene $\left(\mathrm{C}_{3} \mathrm{H}_{6}, \mathrm{n}=3\right.$, also known as propylene) and butene $\left(\mathrm{C}_{4} \mathrm{H}_{8}, \mathrm{n}=4\right)$. Structures of several of the alkenes are shown below. Alkenes are named in the same fashion as the alkanes except that the ending -ene replaces the ending -ane. In cases where more than one structural isomer exists (such as butane, below), it is necessary to indicate the
location of the double bond by numbering the carbon atoms in the longest chain containing the double bond, and then giving it the lowest possible number.
ethene (ethylene)

propene (propylene)

$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$

1-butene
or but-1-ene
trans-2-butene
or trans-but-2-ene

Many kinds of isomerism exist in organic compounds. Since carbon atoms are free to rotate around the C-C single bonds but not around a $\mathrm{C}=\mathrm{C}$ double bond (this disrupts the overlap of the pi part of the double bond), it is possible to have two separate geometrical isomers of 2-butene. These are known as the cis- and trans- isomers and are shown below:

cis-2-butene
cis-but-2-ene

trans-2-butene
trans-but-2-ene

Cyclic structures containing $\mathrm{C}=\mathrm{C}$ bonds are also possible, and three examples follow.

cyclohexene

1,3,5,7-cyclooctatetraene

Unsaturated Hydrocarbons: The Alkynes

Hydrocarbons containing a carbon-carbon triple bond are named alkynes. The two carbon atoms forming the triple bond are joined by one sigma and two pi bonds and are sp hybridized. The alkynes have the general molecular formula $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{\mathbf{2 n} \mathbf{- 2}}$. Several representatives of this class are shown below. Alkynes are names in the same manner as alkenes except that the ending -yne replaces the ending -ene.

$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
ethyne (acetylene)	propyne	2-butyne

Aromatic Hydrocarbons

Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, is the most crucial member of this important class of hydrocarbons. The molecule contains a ring of six sp^{2} hybridized carbon atoms with the unhybridized p orbitals perpendicular to the ring system. The six electrons in the pi parts of the bonds are delocalized (spread evenly over the six carbon nuclei). Such molecules are often unusually stable. There are two equally valid ways of representing the structure of benzene. These two ways are called resonance forms, and the molecule is a resonance hybrid with the "true structure" of benzene lying midway between the two resonance forms. As an example, a mule is a genetic hybrid descendant of a male donkey and a female horse. The mule does not change back and forth, being a donkey half the time and a horse the other half. Thus, the properties of a resonance hybrid (such as benzene) are fixed.

There are many familiar hydrocarbon species which are based on the benzene structure that contain various functional groups. A few representative examples are given below. Note that the delocalized pi electrons can be represented by a circle in the ring. This is an alternate representation of the ring often used by chemists.

phenol

benzoic acid

oil of wintergreen

Page Ib-4-6 / Organic Chemistry Lab (online) for Chemistry 222 Section W1

1,2 -dimethylbenzene	1,3-dimethylbenzene (ortho-xylene)	1,4-dimethylbenzene (para-xylene)

benzophenone

2-chloroethylbenzene

There are also many important aromatic hydrocarbons that contain more than one fused benzene ring. Several are illustrated here.

naphthalene

anthracene

phenanthrene

Hydrocarbons Containing Functional Groups

The basic types of hydrocarbon compounds outlined above may have one or more of their hydrogen atoms replaced by a functional group. The substituted benzenes earlier illustrated a number of functionalities (- CH_{3}, -OH , etc.) attached to the aromatic ring. Additional examples are shown in the table below.

Functional Group	Class of Compound	Example	Name
-OH	alcohol	$\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{OH}$	ethanol (ethyl alcohol)
-O-	ether	$\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$	dimethyl ether
	amine	$\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{3}$	methylamine
	aldehyde		ethanal (acetaldehyde)
	ketone		propanone (acetone)
	carboxylic acid		ethanoic acid (acetic acid)
	ester		methyl acetate
$-\mathrm{NO}_{2}$	nitro		nitromethane

$-\mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}) \quad$ haloalkane $\quad \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{Cl} \quad$| chloroethane |
| :---: |
| (ethyl chloride) |

Name: \qquad
Organic Chemistry Worksheet - Hand drawn versions only, no computer generated structures

Answers to this lab should be provided in this worksheet. Neatness and attention to detail will count.

1. Alkanes and Cycloalkanes
a. Write the structural formula and name for each straight-chain alkane with between one and eight carbons.
b. What are the geometries, bond angles and hybridizations of the carbon atoms in the alkanes? What pattern do you notice for the relationship of carbon to hydrogen? (i.e. if an alkane has n carbons, how many hydrogen atoms are on the molecule?)
c. Draw and name the five structural isomers of the hexane molecule. Give a suitable name to each of the hexane isomers. For example, one of the isomers is named 3-methylpentane. (Remember that one of the isomers is n-hexane!)
d. Draw the structure for cyclohexane. What is the molecular formula of cyclohexane? What is the relationship between the number of carbon atoms and hydrogen atoms? Is cyclohexane an isomer of hexane? Explain.

Organic Chemistry Worksheet - Continued
2. Alkenes and Alkynes
a. Draw the structure and molecular formula for ethene. What is the geometry and bond angle around the double bond? What is the hybridization of the carbon atoms? What is the relationship between the number of carbon atoms and hydrogen atoms?
b. Construct four alkene isomers with four carbons each. Draw and name the structural formulas. Be sure to include cis and trans labels when appropriate.
c. Draw the structure and molecular formula for ethyne. What is the geometry and bond angle around the triple bond? What is the hybridization of the carbon atoms? What is the relationship between the number of carbon atoms and hydrogen atoms? How many sigma and pi bonds are in ethyne?
d. Construct models of the three five carbon alkyne isomers. Draw and name the isomers.
e. Draw cyclobutyne. Using your knowledge of bond angles and hybridization, would you expect cyclobutyne to be a stable compound? Explain.

Organic Chemistry Worksheet - Continued
3. Aromatic Compounds
a. Sketch the line structure of the aromatic compound benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$. Comment on the fact that measurement of the $\mathrm{C}-\mathrm{C}$ bond distances in benzene shows that all are the same length (1.397 Angstroms) and that the $\mathrm{C}-\mathrm{C}$ bond angles are all 120°. Is benzene a flat molecule?
b. Benzene was at one time used extensively as a solvent. However, since it has been found to be carcinogenic, it has largely been replaced by toluene. Toluene, which is formally known as methylbenzene, contains an aromatic ring substituted with a methyl group and has a molecular formula of $\mathrm{C}_{7} \mathrm{H}_{8}$. Sketch a possible structure for toluene. Do you think toluene would have a higher or lower boiling point than benzene? Explain.
c. Draw two resonance structures for naphthalene. (Hint: look in this lab for the naphthalene structure!)
d. There are three dichlorobenzene isomers. Draw and name them. Which one would you expect not to have a dipole moment? Explain.
4. Identify the functional group and/or class of compound in each of the following molecules. List the hybridization around the marked atom in each compound. Finally, name the compound.

5. Draw structures for acetone, formaldehyde and acetic acid. What are the bond angles around the $\mathrm{C}=\mathrm{O}$ carbon atom in each of these compounds?
6. Draw the structures for the following compounds:
a. 2,3-difluorohexane
g. cis,trans-octa-2,6-diene
b. dimethyl ether
h. 2-hexyne
c. butanone
i. 3-nitrotoluene
d. dimethylamine
j. 4-bromobenzoic acid
e. pentan-2-ol
k. 2,4,6-trinitrotoluene
f. 2,3-diethyltoluene

1. 2-chlorophenol

This page left blank for printing purposes

CH 222 Winter 2025: "Molar Mass of a Volatile Liquid (online)" Lab Instructions

Note: This is the lab for section W1 of CH 222 only.

- If you are taking section 01 or section Hl of CH 222 , please use this link:
http://mhchem.org/r/5a.htm
Step One:
Watch the lab video for the "Volatile Liquid" lab, found here:
http://mhchem.org/y/5.htm
Record the data found at the end of the lab video on page $\mathrm{Ib}-5-5$.
Step Two:
Complete pages Ib-5-5 through Ib-5-9 using the "Volatile Liquid" video and the actual lab instructions on pages $\mathrm{Ib}-5-2$ through $\mathrm{Ib}-5-5$. Include your name on page Ib-5-5!

Step Three:
Submit your lab (pages $\mathrm{Ib}-5-5$ through $\mathrm{Ib}-5-9$ only to avoid a point penalty) as a single PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, February 12 by 11:59 PM. I recommend a free program (ex: CamScanner, https://camscanner.com) or a website (ex: CombinePDF, https:// combinepdf.com) to convert your work to a PDF file.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Molar Mass of a Volatile Liquid

The experimental determination of the molar mass of gases and vapors is one important application of the Ideal Gas Law. To determine the molar mass of a gas or vapor, we need to determine the mass (g, below) of the gas sample under known conditions of temperature (T), Volume (V) and pressure (\mathbf{P}). Assuming the gas obeys the Ideal Gas Law:

$$
\mathbf{P V}=\mathbf{n R T}
$$

and if pressure, temperature and volume are determined experimentally and \mathbf{R} is a constant $(\mathbf{0 . 0 8 2 0 5 7} \mathbf{~} \mathbf{~ a t m}$ $\mathbf{m o l}^{-1} \mathbf{K}^{-1}$), we can solve the equation for moles (\mathbf{n}) of gas. The molar mass (grams $/ \mathrm{mole}$, or $\mathbf{M M}$) of the gas or vapor can be determined based on the mass of the liquid remaining (g) in the flask and the number of moles calculated from the ideal gas law; or you can use:

$$
\mathbf{M M}=\mathbf{g R T} / \mathbf{P V}
$$

In this experiment, the molar mass of a volatile liquid will be determined using the ideal gas law. A small amount of the liquid is introduced into a weighed flask. The flask is then placed in boiling water where the liquid will completely vaporize, driving out any air and filling the flask with vapor at barometric pressure and the temperature of the boiling water. The mass of the vapor can be determined by cooling the flask to condense the vapor. (Note: the thermometer does not need a separate clamp (as shown in Figure One, below); you can place the thermometer directly in the boiling water when a reading is required.)

Figure One

PROCEDURE:

Obtain a round bottom flask fitted with a glass cap with a capillary opening, and a cork ring should support the entire apparatus at all times. If necessary, wash the flask with a touch of acetone, then dry the flask and cap and record the mass of the empty, dry flask and cap to the nearest 0.001 g using the cork ring for support.

Obtain an unknown liquid and record the identification number. Pour approximately 5 mL of your unknown sample into the flask. (Note: the exact volume is not important; the mass of the final condensed vapor will be determined.) Assemble the apparatus as shown in Figure 1. It is important to have the round bottom flask immersed as deeply as possible in the 1000 mL water bath for uniform heating. Add a few boiling chips to the water in the 1000 mL beaker and heat the water to the boiling point. Watch the liquid level in your flask; the level should gradually disappear as vapor expands and pushes first air from the flask then excess vapor. Once all the liquid has disappeared, continue to heat the flask for 5 minutes to allow the vapor to reach the temperature of the boiling water. Measure and record the temperature of the boiling water. Also record the barometric pressure.

Turn off the burner and wait for the water to stop boiling (about 30 seconds). Remove the flask from the beaker of water and allow the flask to cool to room temperature and the vapor to condense. (You can speed up this process by running tap water over the stoppered flask.) Dry the outside of the flask and weigh the flask with the condensed vapor.

Repeat the procedure using another 5 mL sample of your liquid unknown. Do not empty or clean the flask between trials; just pour another 5 mL into the flask

Once the two trials are complete (and not before!), find the volume of the flask. Fill the flask and cap with water. Determine the mass of the flask filled with water, then determine the temperature of the water used to fill the flask. Using the Handbook of Chemistry and Physics, determine the density of the water to at least six sig figs. If the Handbook is difficult to read, use this link as an alternative: http://mhchem.org/den

Rinse the flask with a touch of acetone, then blow dry. Return the flask to the cart.

Using the density of water and the mass of water in the flask, calculate the volume of the flask. Be sure to subtract the empty mass of the flask first! When converting to atmospheres, use $\mathbf{1 0 1 3} \mathbf{~ m b a r}=\mathbf{1} \mathbf{~ a t m}$ (other conversions will not receive full credit), use $\mathbf{2 7 3 . 1 5}$ to convert to Kelvin temperatures, and use the complete version of \mathbf{R} (listed on the previous page.)

Determine the average molar mass of your liquid sample and parts per thousand.

This page left blank for printing purposes

Molar Mass of a Volatile Liquid

YOUR NAME:

\qquad

DATA: Watch the video (http://mhchem.org/y/5.htm) to get these values using the data at the very end:
empty flask (g): \qquad Density of water $(\mathrm{g} / \mathrm{mL})$: \qquad
flask filled with water (g): \qquad

Trial I

Boiling water temperature $\left({ }^{\circ} \mathrm{C}\right)$:
vapor (g): \qquad
barometric pressure (mbar): \qquad

Trial II

$$
\begin{array}{r}
\text { Boiling water } \\
\text { temperature }\left({ }^{\circ} \mathrm{C}\right) \text { : } \\
\text { flask + condensed } \\
\text { vapor }(\mathrm{g}): \\
\text { barometric pressure } \\
\text { (mbar): }
\end{array}
$$

Part A Calculations: Molar Mass Determination of a Volatile Liquid

Show all work, use significant figures and circle the final answer for full credit.

1. Using the data from the video, determine the temperature of the gas in Kelvin for both Trials.

Trial I Temperature (K):

\qquad

Trial II Temperature (K): \qquad
2. Using the data from the video, determine the pressure of the gas in atmospheres for both Trials.

Trial I Pressure (atm): \qquad

Trial II Pressure (atm): \qquad
3. Using the data from the video, determine the mass of the unknown liquid remaining at the end of the experiment for both Trials.

Trial I mass of liquid (g): \qquad

Trial II mass of liquid (g): \qquad
4. Using the data from the video, calculate the volume (L) that the gas occupies in the flask (hint: use only the mass of water in the flask; this will be the same for both Trial I and Trial II.)

Volume of flask (L): \qquad
5. What is the value of R for this lab? Report to five significant figures and include units.

Value of R with units: \qquad
6. Using the previously recorded and calculated values, determine the molar mass of the gas for Trial I and Trial II. Calculate the average molar mass for both trials. Determine the average deviation and the parts per thousand using your molar mass values. Hint: do not average any values until you have calculated the molar mass values for the unknown liquid. Show all work!
molar mass (Trial I) (g/mol): \qquad molar mass (Trial II) (g/mol): \qquad
average molar mass ($\mathrm{g} / \mathrm{mol}$): \qquad average deviation: \qquad

Parts per thousand: \qquad

Postlab Questions:

Show all work, use significant figures and circle the final answer for full credit.

1. Use the data below to find the moles of unknown and the molar mass of the unknown. Show all work!

- mass of an empty flask and stopper $=55.441 \mathrm{~g}$
- 5 mL of unknown added and heated; boiling water bath at $100 .{ }^{\circ} \mathrm{C}$, all unknown liquid vaporized
- mass of the flask, stopper and condensed vapor $=56.039 \mathrm{~g}$.
- volume of the flask $=215.9 \mathrm{~mL}$
- barometric pressure $=1003 \mathrm{mbar}$
\qquad

2. Determine if each of the following procedural errors would increase, decrease, or have no effect on the molar mass calculations in this experiment. Explain your reasoning.
i. The flask was not dried before the final weighing with the condensed vapor inside.

Effect on molar mass:
Explain:
ii. The flask was removed from the boiling water before the vapor had reached the temperature of the boiling water. All the liquid had vaporized.

Effect on molar mass:
Explain:
iii. The volume of the cap was not measured with the volume of the flask.

Effect on molar mass:
Explain:
iv. The student uses 7.5 mL of liquid sample.

Effect on molar mass:
Explain:

This page left blank for printing purposes

CH 222 Winter 2025: "Linear Regression \& The Crystal Structures of Solids (online)" Lab - Instructions

Note: This is the lab for section W1 of CH 222 only.

- If you are taking section 01 or section Hl of CH 222 , please use this link: http://mhchem.org/r/6a.htm

Step One:
Watch the lab video for the "Linear Regression / Crystals" lab, found here: http://mhchem.org/y/6.htm
Record the data found at the end of the lab video on page Ib-6-12.
Step Two:
Complete pages Ib-6-11 through Ib-6-16 using the "Linear Regression / Crystals" video and the actual lab instructions on pages $\mathrm{Ib}-6-2$ through $\mathrm{Ib}-6-9$.

Step Three:
Submit your lab (pages Ib-6-11 through Ib-6-16 only with computer generated graphs to avoid a point penalty) as a single PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, February 19 by 11:59 PM. I recommend a free program (ex: CamScanner, https://camscanner.com) or a website (ex: CombinePDF, https://combinepdf.com) to convert your work to a PDF file. Do not include graphs as separate file(s).... have all documents in one file to avoid a point penalty.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Linear Regression \& The Crystal Structures of Solids

This lab will demonstrate the power of a linear regression analysis while graphing linear data. We will also explore the techniques used to analyze several common types of metals in crystallography.

An equation is a mathematical model used to describe the relationship between variables. We will focus on linear equations in this lab which use a horizontal (X) axis (the independent variable, the variable we input when we make a measurement) and a vertical (Y) axis (the dependent variable, the number we measure after we set the X value.) If the plotted data points form a straight line, this means we have a linear equation, and we can use: $\mathbf{y}=\mathbf{m x}+\mathbf{b}$ where \mathbf{y} is the vertical axis value, \mathbf{x} is the horizontal axis value, \mathbf{m} is the slope of the line, and \mathbf{b} is the y -intercept.

Computer programs and calculators can perform a linear regression analysis by plotting the "best fit" line through the data and then writing the slope-intercept equation. The correlation coefficient (with the symbol " \mathbf{r} ") is a measure of how well the regression line fits with the observed data. A perfect fit produces a correlation coefficient of either +1.000 (positive slope) or -1.000 (negative slope), depending on if the line slopes up (a positive slope) or down (a negative slope.) The closer the correlation coefficient is to $+/-1.000$, the better the regression line expresses the data (the better fit for the data.) Note that R^{2} is slightly different than r !

Observing the crystals of an ordinary substance (such as table salt) using a magnifying glass, one sees many planes at right angles within the solid. This occurs in many common solids, and the regularity we see implies a deeper regularity in the arrangement of atoms or ions in the solid. The atomic nuclei are present in remarkably symmetrical arrays that continue for millions of units in three dimensions. Substances having a regular arrangement of atom-size particles in the solid are called crystalline, and the solid material consists of crystals. This lab deals with some of the simpler arrays in which atoms or ions occur in crystals and what these arrays can tell us about such properties as atomic sizes, densities of solids, and the efficiency of packing of particles.

Procedural Notes for the Linear Regression Lab: Complete the problems using the worksheets at the end
Each linear regression problem will require one or more computer generated graphs that will be stapled to the back of the worksheets. Recommended programs to graph your date include Microsoft Excel (free for MHCC students; see https://www.mhcc.edu/OfficeInstall/), Apple Numbers (free with a Mac computer, https:// www.apple.com/numbers/), or Google Sheets (https://www.google.com/sheets). Note that Excel Online (the online version of Excel) and $\mathrm{iPad} / \mathrm{iPhone} /$ Droid versions of these programs will generally not perform linear regressions, so try to use the "full" computer version instead. Calculators will perform linear regressions, but printing from a calculator might be difficult.

Use a X-Y scatter plot when graphing these data sets. The computer program will analyze the data and perform the linear regression analysis for you. Each program is different, but generally the user selects the actual data points on the X-Y Scatter plot and either right-clicks or control-clicks on the data to see a new menu.... you wish to "Add a Trendline" and "Display the R^{2} value". If an equation appears with an R^{2} value, you have performed your linear regression. Help on performing the linear regression lab can be acquired in the Learning Success Center / AVID Center at MHCC. You can also search YouTube for videos (i.e. search "linear regression Excel 2019" and almost inevitably a helpful video appears.)

Converting R^{2} to r is not difficult. Take the square root of R^{2} to get r. If the value of the slope is a negative number, then the value of r will also be negative.... watch for this in this lab! Calculators will often give both R^{2} and r values when linear regression techniques are applied. Information on making an acceptable graph in this class can be found here: https://mhchem.org/lab

The Linear Regression Problems:

Problem 1: The Relationship Between Celsius and Fahrenheit

In 1724 , the German scientist Gabriel Fahrenheit developed a temperature scale based on phenomenon he thought could be easily repeated in laboratories around the world. For his zero degree point, Fahrenheit chose the coldest mixture of ice, water, and salt that he could produce in his laboratory. For ninety-six degrees, he chose what he believed to be normal body temperature. Fahrenheit wanted a temperature scale that could be divided into twelfths. On this scale, pure water freezes at 32 degrees, and pure water boils at sea level at 212 degrees.

A few years later, in 1742, the Swedish scientist Anders Celsius developed a different temperature scale. This scale used pure water as its standard. Zero degrees was the temperature where pure water froze, and one hundred degrees was the temperature where pure water boiled at sea level. Because Celsius had one hundred degrees between the two reference points on his temperature scale, it was called the centigrade scale. Recently this was renamed the Celsius scale in honor of Anders Celsius.

A student measures the following data points in the laboratory using two thermometers:

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	20.0	40.0	60.0	80.0	100.0
Temperature $\left({ }^{\circ} \mathbf{F}\right)$	67.6	104.8	141.1	175.0	211.1

1. Construct and print a graph of degrees Fahrenheit (y) as a function of temperature in degrees Celsius (x).
2. Using your calculator, determine the mathematical equation of ${ }^{\circ} \mathrm{F}$ as a function of ${ }^{\circ} \mathrm{C}$ as well as the correlation coefficient, r . Record r to at least four significant figures.
3. Using the actual equation: ${ }^{\circ} \mathrm{F}=1.8^{\circ} \mathrm{C}+32$ and your experimental equation, convert $29.0{ }^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$. Calculate percent error $=($ difference $/$ actual value $) \times 100 \%$ Comment on discrepancies.

Problem 2: Solubility of Lead(II) Nitrate in Water

The solubility of lead(II) nitrate in water was measured as a function of temperature. The solubility is given in units of grams of lead(II) nitrate per 100 grams of water.

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	20.0	40.0	60.0	80.0	100.0
Solubility (g / 100 g water)	56.9	74.5	93.4	114.1	131.1

1. Graph and print the data; temperature will be the independent (x) variable.
2. Determine the equation of the best-fit line. Record the equation and correlation coefficient.
3. What is the solubility of lead(II) nitrate at $47.0^{\circ} \mathrm{C}$?

Problem 3: Colorimetry

The colors in the visible spectrum of light are shown by a rainbow. Colored substances absorb segments of the visible spectrum of light. Pink solutions, for example, are pink because they absorb green light and transmit all other colors of the visible spectrum. If light of the particular color absorbed is passed through a sample, the amount of light absorbed will be related to the number of absorbing molecules in the light beam. Dilute solutions absorb little light, concentrated solutions absorb more. Typically the amount of light transmitted through the solution is measured; transmittance is inversely proportional to absorbance. The following data was obtained for the transmittance of 525 nm light by solutions containing different concentrations of permanganate ion.

Concentration (mg/100 $\mathbf{~ m L}$)	1.00	2.00	3.00	4.00
Transmittance (unitless)	0.418	0.149	0.058	0.0260

1. Convert the Transmittance values to Absorbance using the following equation: $\mathbf{A}=\boldsymbol{\operatorname { l o g }}(\mathbf{1} / \mathbf{T})$, where $\mathrm{A}=$ Absorbance and $\mathrm{T}=$ Transmittance. Use 3 sig figs for your absorbance values.
2. Graph and print the Absorbance (y) versus Concentration (x) data. Perform a linear regression analysis. Record the equation and the correlation coefficient.
3. Predict the absorbance of 2.50 mg permanganate ion / 100 mL solution.

Problem 4: Kinetics

The branch of chemistry that studies the rate or speed of reactions is called kinetics. One must often plot concentration versus time data in a variety of mathematical formats to find a linear relationship; this assists in finding the order of reaction. We shall explore this topic more in CH 222 . The following data was collected at $25.6^{\circ} \mathrm{C}$ while measuring the disappearance of NH_{3} :

Concentration $\left[\mathbf{N H}_{3}\right](\mathbf{m o l} / \mathbf{L})$	$8.00 * 10^{-7}$	$6.75 * 10^{-7}$	$5.84 * 10^{-7}$	$5.15 * 10^{-7}$
Time (h)	0	25.0	50.0	75.0

1. Prepare a graph of $\ln \left[\mathrm{NH}_{3}\right]$ versus time (time is the x -axis). "ln" stands for natural logarithm which can be calculated easily on your calculator (for example, the value of $8.00 * 10^{-7}$ is -14.039 .) Perform a linear regression analysis on the $\ln \left[\mathrm{NH}_{3}\right]$ versus time data and find the equation and the correlation coefficient. Use at least 4 sig figs for your absorbance values.
2. Prepare a graph of $\mathbf{1} /\left[\mathbf{N H}_{3}\right]$ versus time (for example, $1 / 8.00 * 10^{-7}$ is $1.25 * 10^{6}$. Note: You may have to enter the data as "1.25E6" to make the program understand your values.) Time will be the x -axis. Perform a linear regression analysis and find the correlation coefficient and the values for the slope and the y-intercept.
3. Which graph gives a better linear regression? Why? Hint: look for the better correlation coefficient.
4. Plots of $\ln \left[\mathrm{NH}_{3}\right]$ versus time that are linear are called first order reactions while graphs of $1 /\left[\mathrm{NH}_{3}\right]$ versus time that are linear are called second order reactions. What order of reaction does the decomposition of NH_{3} follow? Hint: the better linear regression will determine the order of the reaction!

Procedural Notes for the Crystal Structures of Solids Lab: Complete the handouts found at the end of this lab and turn it in (with all relevant work displayed on adjacent pages) to your instructor. Help on completing the "Solids" questions can be acquired in the Learning Success Center / AVID Center at MHCC.

Many crystals are unbelievably complex, and we will limit ourselves to the simplest crystals that have cubic structures. Cubic structures imply 90° angles and sides of equal length (hence, a cube.) We will also limit ourselves to the study of only one kind of system (namely metal elements), yet they will exhibit many of the interesting properties of more complicated structures.

The Simple Cubic (SC) Crystal

The simple cubic unit cell is a cube with an edge length, \mathbf{d}_{0}, equal to the distance from the center of one atom to the center of the next (see Figure One). The volume of the cube is equal to $\left(\mathrm{d}_{0}\right)^{3}$, expressed as

$$
V=\left(d_{0}\right)^{3}
$$

and is very small since d 0 is on the order of 0.5 nm . Using x ray diffraction we can measure the value of d0 easily to four significant figures. The number of atoms in a simple cubic unit cell is equal to one, for only $1 / 8$ of each corner atom is

Figure One: The Simple Cubic Crystal actually inside the cell.

Each atom in the simple cubic unit cell is actually connected to six other atoms in the cubic lattice; hence, we say that the coordination number of the atoms in this structure is equal to six.

Many diagrams displaying the simple cubic unit cell show a gap between adjoining atoms. In an actual crystal, we consider that the atoms that are closest are touching. It is on this assumption that we determine atomic radii, \mathbf{r}. In the SC crystal, if we know d_{0}, we can find the radius r of the atoms, since one side contains 2 atomic radii, or

$$
d_{0}=2 r
$$

for simple cubic crystals. Knowing the radius, we can calculate d0, and then we can calculate the volume of the unit cell. Knowing that one atom occupies the simple cubic cell, we can calculate the mass of the unit cell (using the molar mass and Avogadro's number), and from this we can determine the density using the volume of the cell.

Essentially no elements crystallize in the simple cubic structure, however, due to the inefficiency of the packing. The atoms in the simple cubic crystal are farther apart then they need to be, and inspection of the SC lattice will reveal a large hole in the center of the unit cell. Only about 52% of the cell volume is occupied by atoms, and more "empty space" means less stabilization for the crystal structure.

The Body Centered Cubic (BCC) Crystal

In a body centered cubic crystal, the unit cell still contains the corner atoms present in the SC structure, but the center of the cell now contains an additional atom. This means that every BCC crystal structure holds two net atoms (eight atoms are $1 / 8$ within the cell, and one whole atom within the center of the cell for two net atoms).

The edge length, d_{0}, can be determined using simple geometry from the cube diagonal (see Figure Two). The cube diagonal reaches across the cube, from an atom in the lower left front to an atom in the upper right back, or from any other appropriate combination. Geometry dictates the following relationship between the cube body diagonal and the edge length, d_{0} :

Figure Two: Body Centered Cubic Crystal

$$
\text { cube diagonal }=\sqrt{3} \cdot d_{0}
$$

The cube diagonal encompasses 4 radii lengths, and d_{0} can be expressed in terms of the radius of the atom:

$$
d_{0}=\frac{4 \mathrm{r}}{\sqrt{3}}
$$

The quantity d_{0} can be used to find the volume of the cube; this is important for BCC cubic systems.

In a BCC lattice, each atom touches eight other atoms, and the coordination number is eight. The BCC lattice is much more stable than the SC structure, in part due to the higher coordination number. Many metals at room temperature display the BCC lattice, including sodium, chromium, tungsten and iron. Note that there are two atoms per unit cell in the BCC crystal. BCC crystals are more efficient than SC crystals, occupying approximately 68% of the total available volume.

Close Packed Structures

Although many elements prefer the BCC crystal arrangement, still more prefer structures in which the atoms are close packed. In close packed structures there are layers of atoms in which each atom is in contact with six others, as in the sketch below:

This is the way in which billiard balls lie in a rack or the honeycomb cells are arranged in a bees' nest. It is the most efficient way one can pack spheres, with about 74% of the volume in a close packed structure filled with atoms.

There is more than one way whereby close packed crystal structures can be stacked. One of the stacking methods is cubic and is called the Face Centered Cubic (FCC). The other is called Hexagonal ClosePacking. We shall look at both close packed structures.

The Face Centered Cubic (FCC) Crystal

In the face centered cubic crystal unit cell there are atoms in each corner of the cell (as in the SC cell discussed earlier) and there is another atom at the center of each of the six faces. This means that FCC cubic systems consist of four net atoms per unit cell (eight atoms are $1 / 8$ within the cell, and six faces hold an atom which is $1 / 2$ within the cell for four net atoms). See Figure Three.

The edge length d_{0} can be determined in an FCC crystal from the face diagonal which is defined as the distance across one face of the cube. Using geometry, we can find the edge length from the face diagonal using the following equation:

$$
\text { face diagonal }=\sqrt{2} \cdot d_{0}
$$

The face diagonal encompasses 4 radii lengths, and d_{0} can be expressed in terms of the radius r :

Figure Three: Face Centered Cubic Crystal

$$
d_{0}=\frac{4 \mathrm{r}}{\sqrt{2}}
$$

This expression can be used to find the volume of the cube; hence, this relationship is important for FCC cubic systems. The coordination number in an FCC lattice is 12, implying that FCC lattices are quite stable.

The close-packed layers of atoms in the FCC lattice are not parallel to the unit cell faces, but rather are perpendicular to the cell diagonal. If you look down the cell diagonal, you see six atoms in a close-packed triangle in the layer immediately behind the corner atom, and another layer of close-packed atoms below that, followed by another corner atom. The layers are indeed closely packed, and as one goes down the diagonal of this and succeeding cells, the layers repeat their positions in the order ABCABC.... This implies that atoms in every fourth layer lie below one another (see Figure Four (b)).

Hexagonal Close-Packing

There is another way to stack the layers as in the FCC lattice, above. The first and second layers will always be in the same relative positions, but the third layer could be below the first one if it were shifted properly. This results in a close-packed structure in which the order of the layers is ABABAB... (see Figure Four (a))

The crystal obtained from this arrangement of layers is not cubic but hexagonal. It is another common structure for metals. Cadmium, zinc and manganese have this structure. As you might expect, the stability of this structure is very
(a) Hexagonal close-packing

(b) Cubic close-packing = face centered cubic

Figure Four: Hexagonal Close Packing (left) and Cubic Close Packing (right) similar to that of FCC crystals. We find that simply changing the temperature often converts a metal from one form to another. Calcium, for example, is FCC at room temperature, but if heated to $450^{\circ} \mathrm{C}$ it converts to close-packed hexagonal.

In CH 222 (and CH 223), we will consider "hexagonal close-packing" structures to be identical to FCC lattices, but technically there are many differences between the two systems.

Summary of Crystal Lattice Types

Figure Five shows the three main cubic unit crystal types that we will explore in this lab. Figure Six show a helpful methodology to solve problems like these in this lab.
Simple cubic

Simple Cubic
Body Centered Cubic
Face Centered Cubic

1	2	4
$\mathrm{~d}_{0}=2 \mathrm{r}$	$d_{0}=\frac{4 \mathrm{r}}{\sqrt{3}}$	$d_{0}=\frac{4 \mathrm{r}}{\sqrt{2}}$

Figure Five: Summary of the Three Cubic Unit Cell Types

$$
\text { conversion } \quad V=e d g e^{3} \quad \text { density } \quad \text { molar mass }(g / m o l) \quad \text { Avogadro }\left(6.022 \times 10^{23}\right)
$$

$$
\text { radius } \leftrightarrow \text { edge } \leftrightarrow \text { volume } \leftrightarrow \text { mass }(\mathrm{g}) \leftrightarrow \text { moles } \leftrightarrow \text { atoms / molecules }
$$

4 atoms $=1$ fcc cell, etc.

Figure Six: Helpful Conversion Methodology

This page left blank for printing purposes

Worksheet: Linear Regression \& The Crystal Structures of Solids

Name:

All final answers must be provided on this worksheet. Include computer generated graphs (from Excel or a similar program) along with any necessary calculations needed for the lab in your submission. Values of r should be recorded to three or more significant figures. This page will be placed at the front of your lab, with your first and last name included, to prevent a point penalty.

Linear Regression:

- Problem 1: The Relationship Between ${ }^{\circ} \boldsymbol{C}$ and ${ }^{\circ} \boldsymbol{F}$ - see page Ib-6-3 for data and questions

Linear Regression equation: $\mathbf{y}=$ \qquad
$\mathbf{r}=$ \qquad Percent Error: \qquad

- Problem 2: Solubility of Lead(II) Nitrate in Water - see page Ib-6-3 for data and questions

Linear Regression equation: $\mathbf{y}=$ \qquad
$\mathbf{r}=\quad$ Solubility of lead(II) nitrate at $47.0^{\circ} \mathrm{C}$: \qquad

- Problem 3: Colorimetry - see page Ib-6-4 for data and questions

Linear Regression equation: $\mathbf{y}=$ \qquad $\mathbf{r}=$ \qquad

Absorbance of 2.50 mg permanganate in 100 mL solution: \qquad

Linear Regression: Continued

- Problem 4: Kinetics - see page Ib-6-4 for data and questions

Linear Regression (ln $\left[\mathrm{NH}_{3}\right]$ vs. time) equation: $\mathbf{y}=$ \qquad $\mathbf{r}=$ \qquad

Linear Regression (1/[$\left.\mathrm{NH}_{3}\right]$ vs. time) equation: $\mathbf{y}=$ \qquad $\mathbf{r}=$ \qquad

Which regression gives a better linear regression? Why?

Does this data behave as a first order reaction or a second order reaction?

- Problem 5 (Use the data from the video): Experimentally determine the density of an unknown metal solid to at least three significant figures using the displacement method. Report and use the data from the lab video.

Relevant calculations and data:

The Crystal Structures of Solids:

- Problem 6: What element forms a face centered cubic cell, has a density of $8.92 \mathrm{~g} / \mathrm{cm}^{3}$, and a radius of 128 pm ?

[^2]
The Crystal Structures of Solids: Continued

- Problem 7: Chromium forms a body centered cubic crystal. If the length of an edge is 2.884 angstroms, calculate the density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ and the radius of a chromium atom in angstroms.
density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)=$ $\operatorname{radius}(\AA)=$ \qquad
Show relevant work below.

The Crystal Structures of Solids: Continued

- Problem 8: Sodium (radius $=186 \mathrm{pm}$) forms a body centered cubic crystal. Calculate the density (g/ cm^{3}) of sodium metal. Propose a simple experiment to confirm your calculated density of sodium in the lab.
density $\left(\mathbf{g} / \mathrm{cm}^{3}\right)=$ \qquad
Show relevant work below.

Proposed simple experiment:

The Crystal Structures of Solids: Continued

- Problem 9: Aluminum crystallizes in a face centered cubic unit cell. In addition, aluminum has an atomic radius of 143 pm . What is the density of aluminum?
density $\left(\mathbf{g} / \mathrm{cm}^{3}\right)=$ \qquad
Show relevant work below.

CH 222 Winter 2025:
 "Molar Mass Determination by Freezing Point Depression (online)" Lab-Instructions

Note: This is the lab for section W1 of CH 222 only.

- If you are taking section 01 or section H1 of CH 222 , please use this link: http://mhchem.org/r/7a.htm

Step One:

Watch the lab video for the "Freezing Point" lab, found here:
http://mhchem.org/y/7.htm
Step Two:
Complete pages Ib-7-7 through Ib-7-10 using the "Freezing Point" video and the actual lab instructions on pages $\mathrm{Ib}-7-2$ through $\mathrm{Ib}-7-5$. Include your name on page $\mathrm{Ib}-7-7$!

Step Three:
Submit your lab (pages Ib-7-7 through Ib-7-10 only to avoid a point penalty) with a computer generated graph as a single PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, February 26 by 11:59 PM. I recommend a free program (ex: CamScanner, https://camscanner.com) or a website (ex: CombinePDF, https://combinepdf.com) to convert your work to a PDF file. Do not include graphs as separate file(s).... have all documents in one file to avoid a point penalty.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

Molar Mass Determination by Freezing Point Depression

If a nonvolatile solute is added to a liquid, a number of physical properties of the pure substance change, including vapor pressure depression, freezing point depression, and boiling point elevation. These alterations are collectively known as colligative properties of solutions. The colligative properties of a solution change in proportion to the concentration of solute dissolved in solvent and depend only on the number of solute particles present in a given amount of solvent and not on the type of particles dissolved. Therefore, the concentration of the solute is most conveniently expressed in terms of molality (m) or moles of solute / kg of solvent.

The change in the freezing point $\left(\Delta \mathrm{T}_{\mathrm{f}}\right)$ in ${ }^{\circ} \mathrm{C}$ for a nonvolatile organic solvent can be determined using the following equation, where \mathbf{k}_{f} is characteristic for the solvent used: $\Delta \mathbf{T}_{\mathbf{f}}=\mathbf{k}_{\boldsymbol{f}} \boldsymbol{m}$

We can determine the molar mass of the solute using this equation by measuring the change in the freezing point of the solution and solving the equation for molality. The calculated molality can be used to determine the moles of solute that in turn can be used to calculate the molar mass (grams / mole) of the solute.

When a pure substance is heated to a liquid state and allowed to cool, initially the temperature will fall quite rapidly. As the substance approaches its freezing point, solid will begin to form and the temperature will begin to level. The freezing point of the pure liquid is the constant temperature observed while the liquid is solidifying.

The cooling behavior of a solution is somewhat different from that of a pure liquid. The temperature at which the solution begins to freeze is lower (i.e. depressed) than for the pure solvent. Additionally, there is a slow gradual fall in temperature as freezing proceeds. The change in temperature, $\Delta \mathbf{T}$, between the freezing point of the pure substance and the freezing point of the solution is used to calculate the molality of the solution.

In both the pure liquid and the solution, a supercooling effect may be seen. As the solid begins to form, the temperature may drop below the actual freezing point initially and then come back up to the freezing point temperature as the solid forms. Supercooling is usually not observed if adequate churning of the sample is provided. When determining the freezing point, the super-cooling effect should be ignored.

In this experiment, you will first determine the freezing point of a pure solvent, lauric acid $\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}\right)$. Next, you will use a known solute, benzoic acid, to depress the freezing point of the solvent and calculate the molar mass of the benzoic acid.

This picture should also include a hot plate under the beaker and a "swizzle stick" around the thermometer

PROCEDURE: Part A: Determining the Freezing Point for Lauric Acid

1. Set up ring stand and test tube clamp beside the hot plate
2. Fill a large beaker about $3 / 4$ full with tap water and heat on hot plate.
3. Mass $10.000-12.000 \mathrm{~g}$ of solid lauric acid $\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{2}\right)$ and record the mass. Add the lauric acid to a large test tube.
4. Place the test tube in the beaker and heat until the lauric acid is completely melted. Put a "swizzle stick" around a thermometer and place it into the liquid. Gently stir with the swizzle stick (not the thermometer!) to uniformity. Do not overheat - you will need to cool it in step 5 (perhaps read ahead?) You may need to readjust your thermometer so it remains in the solution.
5. Remove the test tube from the hot water and allow it to cool. Once the temperature reaches $50^{\circ} \mathrm{C}$, begin to record the temperature every 30 seconds until the temperature plateaus for 3 minutes or reaches $35^{\circ} \mathrm{C}$. (This should take 5-10 minutes). Mix gently to maintain uniformity (test tubes are glass! Careful!) The biggest source of error in this lab is the temperature so use care in reading. Make sure you record the temperature to the correct number of significant figures - if unsure, ask!

Note: Be sure that data is recorded in the lab data books for all lab partners (perhaps the note keeper could record in both note books as the other student mixes?)

PROCEDURE: Part B: Determination of the Molar Mass for Benzoic Acid

6. Mass $1.000-1.200 \mathrm{~g}$ of benzoic acid and record the mass. Add to the test tube with the lauric acid. Be careful not to lose any sample of lauric acid that may have solidified to the thermometer or swizzle stick.
7. Place test tube in hot water and melt the mixture, stirring to uniformity.
8. Remove the test tube from the hot water and allow it to cool. Once the temperature reaches $50^{\circ} \mathrm{C}$, begin to record the temperature every 30 seconds until the temperature plateaus for 3 minutes or reaches $35^{\circ} \mathrm{C}$. (This should take 5-10 minutes). Mix gently to maintain uniformity (test tubes are glass! Careful!)
9. Repeat steps 6 through 8, adding an additional 1.000-1.200 grams of benzoic acid to the solution. Do NOT make a new solution!
10. Time to clean up! To clean up, re-melt your solid and pour into waste container. You may need to add a tiny bit of hot water along the sides of the tube to help melt the solid. Wipe the thermometer and swizzle stick with a wee bit of acetone and/or methanol if needed.

CALCULATIONS: Determining the Molar Mass of the Benzoic Acid

Once you have completed your experiment, you will need to create a graph in Excel (or a similar program; no hand drawn graphs will be accepted.) Use time as the x-axis and temperature as the y-axis. Plot the data from your pure lauric acid experiment (Part A) and also the data from each of the benzoic acid solutions (Part B) using the same graph. Label the axes and use different colors and/or marking symbols to distinguish the trials.

Important: your graph should take up an entire page of paper (no small graphs, print in "landscape" mode), and the \mathbf{y}-axis should not start at zero (i.e. if your data points end around $25^{\circ} \mathrm{C}$, have the minimum y axis value be $20^{\circ} \mathrm{C}$, not zero ${ }^{\circ} \mathrm{C}$ (which is what these programs often default to when creating graphs.)

Determine the freezing point for each trial graphically; draw a circle on your graph representing the freezing point in each trial. Remember, the freezing points can be found at the intersection between the "steep" cooling curve and the "gradual" cooling curve.

The $\mathbf{k}_{\mathbf{f}}$ value for lauric acid is $\mathbf{3 . 9 0}{ }^{\circ} \mathbf{C} / \mathbf{m}$. Using the data from Part A and Part B, calculate the molar mass of benzoic acid in each trial. Show how you calculated these values in your lab report.

Average the two molar mass values and calculate the parts per thousand.

Using the Internet or a textbook, determine the structure of benzoic acid and include a Lewis structure for benzoic acid in your lab report. (Hand drawn Lewis structures are ok.)

Determine the actual molar mass of benzoic acid using the Lewis structure. Calculate the percent error of benzoic acid using your average molar mass value and the accepted molar mass value. Recall: Percent error = absolute value $\{($ actual - experimental)/ actual $\} \boldsymbol{*} \mathbf{1 0 0 \%}$.

This page left blank for printing purposes

Molar Mass Determination by Freezing Point Depression

YOUR NAME:

\qquad

DATA: Watch the video (http://mhchem.org/y/7.htm) for assistance with this lab.

Graph the following data in Excel, Numbers, Sheets or a similar computer program (hand drawn graphs will not be accepted for credit.) Use Time (minutes) as your x-axis and Temperature ${ }^{\circ} \mathbf{C}$ as your y-axis.

- You will have two different data streams ("PDB" and "Solution I" which use a common set of axes; use a color or point marking system to differentiate "PDB" from "Solution I".
- Ensure that your temperature axis reflects an appropriate range of values for the data provided (i.e. don't start at zero!) Attach the graph to this lab when turning it in to the instructor.

Time (minutes)	PDB (deg C)	
0.5	63.7	
1.0	62.1	59.3
1.5	60.8	58.2
2.0	59.1	56.5
2.5	57.5	54.8
3.0	55.8	53.4
3.5	54.0	52.0
4.0	53.0	50.8
4.5	53.0	50.2
5.0	53.0	50.2
5.5	53.0	50.2
6.0	53.0	50.1
6.5	53.0	50.0
7.0	53.0	50.0
7.5	53.0	49.9
8.0	53.0	49.8
8.5	53.0	49.7

ANALYSIS:

- On your graph, determine the freezing point for the "PDB" and "Solution I" curves. Look for the spot where two slopes on the same line come together; this is the official freezing point. Mark the graph at the freezing point, and enter the actual numbers below.

Freezing Point of PDB $\left({ }^{\circ} \mathrm{C}\right)$: \qquad Freezing Point of "Solution I" $\left({ }^{\circ} \mathbf{C}\right)$:

- The "PDB" for your graph stands for "para-dichlorobenzene". Draw the structure of PDB here.
- Using the information from the graph and the freezing points, determine the molar mass of the solute in "Solution I" if $\mathbf{2 . 3 5} \mathbf{g}$ of the unknown compound were dissolved in $\mathbf{3 0 . 4 6} \mathbf{g}$ of PDB. $\left(\mathbf{k}_{\mathfrak{f p}}\right.$ for PDB $=\mathbf{7 . 1 0}{ }^{\circ} \mathbf{C} /$ m) Show work!

POSTLAB QUESTIONS:

1. Determine the effect of the following on the final molar mass calculation in a freezing point depression experiment. Briefly give your reasoning. Indicate if the effect on molar mass will be higher, lower or not change.
i. The thermometer you were using read temperatures consistently $1.2{ }^{\circ} \mathrm{C}$ higher than the real temperature.

Effect on molar mass:

Explain:

ii. You knowingly added 3 g of unknown solute during your freezing point determination instead of 2 g . Effect on molar mass:

Explain:
iii. In adding your unknown solute to your solvent, you spilled some solute onto the table after weighing.

Effect on molar mass:
Explain:
2. A student performs a freezing point analysis. She determines that the freezing point of 21.00 g of stearic acid (where $\mathrm{k}_{\mathrm{f}}=4.89^{\circ} \mathrm{C} / \mathrm{m}$) is $68.20^{\circ} \mathrm{C}$. She adds 2.07 grams of an unknown compound to her sample and determines the freezing point to be $65.53{ }^{\circ} \mathrm{C}$. She adds an additional 1.97 g of the unknown compound and determines the new freezing point to be $63.03^{\circ} \mathrm{C}$.
a. Determine the molar mass of the unknown compound using the 2.07 g of sample.
b. Determine the molar mass of the unknown compound using the combined samples (hint: $2.07+1.97$ $=4.04 \mathrm{~g}$ total solute)
c. Determine the average molar mass of the compound and the parts per thousand for the two trials.

CH 222 Winter 2025:
 ''Kinetics I - The Iodination Of
 Acetone (online)" Lab - Instructions

Note: This is the lab for section W1 of CH 222 only.

- If you are taking section 01 or section Hl of CH 222 , please use this link:
http://mhchem.org/r/8a.htm

Step One:
Watch the lab video for the "Kinetics I" lab, found here:
http://mhchem.org/y/8.htm
Record the data found at the end of the lab video on pages $\mathrm{Ib}-8-4$ and $\mathrm{Ib}-8-5$.
Step Two:
Complete pages Ib-8-5 through Ib-8-15 using the "Kinetics I" video and the actual lab instructions on pages Ib-8-2 through Ib-8-3 (most of this lab is a "tutorial", so you will also find instructions in the lab pages as well.) Include your name on page $\mathrm{Ib}-8-5$!

Step Three:
Submit your lab (pages Ib-8-5 through Ib-8-15 only to avoid a point penalty) as a single PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, March 5 by 11:59 PM. I recommend a free program (ex: CamScanner, https://camscanner.com) or a website (ex: CombinePDF, https://combinepdf.com) to convert your work to a PDF file.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

The rate of a chemical reaction depends on several factors: the nature of the reaction, the concentrations of the reactants, the temperature, and the presence of a possible catalyst. In Part One of this experiment we will determine the rate law for a reaction by changing some of the above variables and measuring the rate of the reaction. During Part Two, we will explore the relation between the rate constant and temperature to discover the activation energy for this reaction.

In this experiment, we will study the kinetics of the reaction between iodine and acetone:

The rate of this reaction is found to depend on the concentration of the hydrogen ion (acid, HCl) as well as the concentrations of the reactants (acetone and iodine). The rate law for this reaction is

$$
\text { rate }=k[\text { acetone }]^{\mathrm{m}}\left[\mathbf{H}^{+}\right]^{\mathrm{n}}\left[\mathbf{I}_{2}\right]^{\mathrm{p}}
$$

where \mathbf{k} is the rate constant for the reaction and \mathbf{m}, \mathbf{n}, and \mathbf{p} are the orders of the reaction with respect to acetone, hydrogen ions (acid), and iodine, respectively. Although orders of reaction can be any value, for this lab we will be looking only for integer values for the orders of reaction ($0,1,2$ are acceptable but not $0.5,1.3$, etc.)

The rate of the reaction can also be expressed as the change in the concentration of a reactant divided by the time interval:

$$
\text { rate }=\frac{-\Delta\left[I_{2}\right]}{\Delta t}
$$

The iodination of acetone is easily investigated because iodine (I_{2}) has a deep yellow/brown color. As the acetone is iodinated and the iodine converted to the iodide anion, this color will disappear, allowing the rate of the reaction to be easily monitored.

We can study the rate of this reaction by simply making I_{2} the limiting reactant in a large excess of acetone and H^{+}ion. By measuring the time required for the initial concentration of iodine $\left(\mathrm{I}_{2}\right)$ to be used up completely, the rate of the reaction can be determined by the equation

$$
\text { rate }=\frac{-\Delta\left[\mathrm{I}_{2}\right]}{\Delta \mathrm{t}}=\frac{-\left(\left[I_{2}\right]_{\text {final }}-\left[I_{2}\right]_{\text {initial }}\right)}{\mathrm{t}_{\text {final }}-t_{\text {initial }}}=\frac{-\left(0-\left[I_{2}\right]_{\text {initial }}\right)}{\mathrm{t}_{\text {final }}-0}=\frac{\left[I_{2}\right]_{\text {initial }}}{\mathrm{t}_{\text {final }}}
$$

or simply as

$$
\text { rate }=\frac{\left[I_{2}\right]}{\text { time }}
$$

From the rate information, we can determine the orders with respect to acetone (\mathbf{m}), acid (\mathbf{n}) and iodine (\mathbf{p}) by varying the amounts of reactants and measuring the effect on the rate. Once the orders of reaction are known, we will be able to calculate the rate constant, k. In Part One of this experiment you will determine the rates of reactions, the orders of the reactants, and finally the rate constant at room temperature.

DIRECTIONS:

You will collect data during lab and complete the worksheets at the end. No formal typed lab report is required as long as your writing is legible and easy to read. You will perform a series of experiments that will examine the relationship between the concentration of reactants and the time for the iodination of acetone reaction.

For each trial listed below: measure out the appropriate quantities of $1.0 \mathrm{M} \mathrm{HCl}, 4.0 \mathrm{M}$ acetone and water using a 10.00 mL graduated cylinder and place them in a 125 mL Erlenmeyer flask. Now measure out the appropriate amount of $\mathbf{0 . 0 0 5 0} \mathbf{M}$ iodine in a 10.00 mL graduated cylinder.

Start a timer (stopwatch) as you add the iodine to the 125 mL flask with the other chemicals. Swirl the flask until the yellow color disappears, then halt the timer. It may help to place the flask on a white piece of paper to help discern when the color disappears. Record the time elapsed in seconds.

Repeat this reaction mixture until two trials are within 20 seconds of each other.
Repeat this process for each of the four trials listed in the table below. Waste can be placed in the drain or in a waste bottle (probably the better option!) Get a stamp in your lab notebook before leaving lab, then complete the worksheet portions on your own.

This page left blank for printing purposes

Kinetics I - The Iodination Of Acetone

Part I: Changing Concentration to Find the Rate Constant

For each mixture listed below, add all of the chemicals but iodine to a 125 mL Erlenmeyer flask. Add the iodine last, starting a stopwatch and measuring how long the reaction takes to turn the solution clear. Time should be recorded in seconds. Repeat each reaction mixture until two trials are within 20 seconds of each other.... repeat the trial again if the times vary too much. NOTE: Record the data found at the end of the video in the places below for Trials \#1 - \#4.

Trial \#1:

$\mathbf{H C l}(\mathbf{m L})$	Acetone (mL)	$\mathbf{I}_{\mathbf{2}}(\mathbf{m L})$	Water (mL)	Total Volume (mL)
5	5	5	10	25.00

Time in seconds for yellow color to disappear, first time: \qquad seconds

Time in seconds for yellow color to disappear, second time: \qquad seconds

Time in seconds for yellow color to disappear, third time (if necessary): \qquad seconds

Trial \#2:

$\mathbf{H C l}(\mathbf{m L})$	Acetone (mL)	$\mathbf{I}_{\mathbf{2}}(\mathbf{m L})$	Water $(\mathbf{m L})$	Total Volume (mL)
5	5	10	5	25.00

Time in seconds for yellow color to disappear, first time: \qquad seconds

Time in seconds for yellow color to disappear, second time: \qquad seconds

Time in seconds for yellow color to disappear, third time (if necessary): \qquad seconds

Trial \#3:

$\mathbf{H C l}(\mathbf{m L})$	Acetone (mL)	$\mathbf{I}_{\mathbf{2}}(\mathbf{m L})$	Water $(\mathbf{m L})$	Total Volume (mL)
5	10	5	5	25.00

Time in seconds for yellow color to disappear, first time: \qquad seconds

Time in seconds for yellow color to disappear, second time: \qquad seconds

Time in seconds for yellow color to disappear, third time (if necessary): \qquad seconds

Trial \#4:

$\mathbf{H C l}(\mathbf{m L})$	Acetone (mL)	$\mathbf{I}_{\mathbf{2}}(\mathbf{m L})$	Water $(\mathbf{m L})$	Total Volume (mL)
10	5	5	5	25.00

Time in seconds for yellow color to disappear, first time: \qquad seconds

Time in seconds for yellow color to disappear, second time: \qquad seconds

Time in seconds for yellow color to disappear, third time (if necessary): \qquad seconds

Before you move on, check your data. Trial \#1 should be about half the time of trial \#2, and trial \#3 and trial \#4 should both be about the same time elapsed. If you don't see this trend, contact the instructor.

You are now ready to complete the Kinetics I lab!

Kinetics I - The Iodination Of Acetone - Worksheet

The ultimate goal of this section is to find the best value of the rate constant, k , for the iodination of acetone at room temperature. To get there, we need to first find the rates of each reaction, then the order of the reactants (acetone, HCl and iodine), and then finally, the rate constant k .
a. Find the average time in seconds for each Trial in Part One.

Example: the first experiment took 230 seconds, the second experiment took 250 seconds.
The average time would be: $(230+250) / 2=\mathbf{2 4 0}$ seconds

Record your reaction times from Part I (which were within 20 seconds of each other) and the final average times here:
Experiment \#1 (s) Experiment \#2 (s) Average time (s)

Trial \#1 \qquad
\qquad

Trial \#2 \qquad
\qquad

Trial \#3 \qquad
\qquad

Trial \#4 \qquad
\qquad

Show an example of how you got the average values in seconds here:
b. Find the concentration of each reactant (acetone, HCl and iodine) before the reaction started.

Your group took bulk reactants (which were, as a reminder: $1.0 \mathrm{M} \mathrm{HCl}, 4.0 \mathrm{M}$ acetone, and $\mathbf{0 . 0 0 5 0} \mathrm{M}$ iodine) then placed them (with water) in an Erlenmeyer flask. The final volume was always 25.00 mL . Mixing chemicals dilutes the concentrations from the "bulk" value to a smaller value.

We can determine these diluted values using: $\mathbf{M}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}=\mathbf{M}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}$
Example: Determine the concentration of iodine in trial \#1.
Let $\mathbf{M}_{\mathbf{1}}=$ initial (undiluted) concentration of iodine (0.0050 M), $\mathbf{V}_{\mathbf{1}}=5.00 \mathrm{~mL}$ (of undiluted iodine added to the mixture), and $\mathbf{V}_{\mathbf{2}}=25.00 \mathrm{~mL}$ (the total volume of the diluted solution once HCl , acetone and water are added). Solving for M_{2}, the concentration of iodine in the diluted solution, one gets:
$\mathbf{M}_{\mathbf{2}}=0.0050 \mathrm{M} * 5.00 \mathrm{~mL} / 25.00 \mathrm{~mL}=\mathbf{0 . 0 0 1 0} \mathbf{M}$, which is the concentration of iodine used in the reaction in trial \#1.

Example: Determine the concentration of iodine in trial \#2.

Solution: Since $\mathbf{M}_{\mathbf{1}}$ and $\mathbf{V}_{\mathbf{2}}$ are the same as in the previous example, we see that only $\mathbf{V}_{\mathbf{1}}$ has changed to 10.00 mL . Rearranging for $\mathbf{M}_{\mathbf{2}}$ as before:
$\mathbf{M}_{\mathbf{2}}=0.0050 \mathrm{M} * 10.00 \mathrm{~mL} / 25.00 \mathrm{~mL}=\mathbf{0 . 0 0 2 0} \mathbf{M}$, the concentration of iodine used in the reaction in trial \#2.
i. Calculate the concentration of acetone (\mathbf{M}_{2}) used in Trial 1 - Trial 4.

The concentration of acetone was 4.0 M in the "bulk" solution (the " \mathbf{M}_{1} " value.)
The final volume $\left(\mathbf{V}_{\mathbf{2}}\right)$ is always 25.00 mL .
Trial 1, Trial 2 and Trial 4 used 5.00 mL of acetone from the bulk solution, but Trial 3 used 10.00 $m L$ (your " $\mathbf{V}_{\mathbf{1}}$ " values)

	volume acetone (mL)	Bulk Acetone (M)	Total Volume $(\mathbf{m L})$	acetone (M)
Trial \#1	5.00	4.0 M	25.00	
Trial \#2	5.00	4.0 M	25.00	-
Trial \#3	10.00	4.0 M	25.00	
Trial \#4	5.00	4.0 M	25.00	

ii. Calculate the concentration of $\mathbf{H C l}\left(\mathbf{M}_{2}\right)$ used in Trial 1 - Trial 4.

The concentration of HCl was 1.0 M in the "bulk" solution (the " $\mathbf{M}_{\mathbf{1}}$ " value.)
The final volume $\left(\mathbf{V}_{\mathbf{2}}\right)$ is always 25.00 mL .
Trial 1, Trial 2 and Trial 3 used 5.00 mL of acetone from the bulk solution, but Trial 4 used 10.00 mL (your " $\mathbf{V}_{\mathbf{1}}$ " values)

volume	Bulk HCl	Total Volume
$\mathrm{HCl}(\mathrm{mL})$	(M)	(mL)

Trial \#1	5.00	1.0 M	25.00
Trial \#2	5.00	1.0 M	25.00
Trial \#3	5.00	1.0 M	25.00
Trial \#4	10.00	1.0 M	25.00

$\mathrm{HCl}(\mathrm{M})$
25.00
25.00
25.00
25.00
iii. Complete the following table showing the diluted concentrations of all reactants used in each trial. The I_{2} concentrations have been completed for you (see the examples at the beginning of part b , above.)
acetone (M) $\quad \mathbf{H C l}(\mathbf{M})$
step i, above step ii, above
Trial \#1
Trial \#2

Trial \#3

Trial \#4
\square
\qquad
\qquad
\qquad
I_{2} (M)
0.0010
\qquad
\qquad
\qquad
\qquad

\qquad

Use this area to show relevant calculations and at least one example as to how you found a diluted concentration.

c. Find the rate of each trial

In this lab, rate is best described by: rate $=\left[\mathbf{I}_{2}\right] /($ average time in seconds) (see first page of lab) Find the rate for each reaction by using the calculated iodine concentration then dividing by the average time for that trial (Part Three, section a, above).

Example: Trial \#1 required an average of 240 seconds to go to completion. Trial \#2 required an average of 496 seconds to go to completion. Find the rate of reaction for both trial \#1 and trial \#2.

Solution: The rate of reaction is equal to the concentration of iodine divided by the average time elapsed for the reaction. (your values are in Part Three, section a.)

In this example, the first two times are 240 s and 496 s . Using the appropriate concentrations, we can calculate rate:

```
rate \((\) trial \(\# 1)=\left[\mathrm{I}_{2}\right] /(\) average time in seconds \()=0.0010 \mathrm{M} / 240 \mathrm{~s}=\mathbf{4 . 2} * \mathbf{1 0} \mathbf{0}^{\mathbf{6}} \mathbf{M ~ s}^{\mathbf{- 1}}\).
rate \((\) trial \(\# 2)=\left[\mathrm{I}_{2}\right] /(\) average time in seconds \()=0.0020 \mathrm{M} / 496 \mathrm{~s}=\mathbf{4 . 0} * \mathbf{1 0 - 6} \mathbf{M ~ s}^{\mathbf{- 1}}\).
```

Now, calculate your rate values by filling in the table below:

	$\mathbf{I}_{\mathbf{2}}(\mathbf{M})$	average time (s)	rate $\left(\mathbf{M ~ s ~ s}^{\mathbf{- 1}}\right)$
Trial \#1	0.0010	-	
Trial \#2	0.0020	-	
Trial \#3	0.0010	-	
Trial \#4	0.0010		

Use this space to show at least one example of how you calculated the rate of the reaction.
d. Find the order of the reaction with respect to each reactant (\mathbf{m}, \mathbf{n}, and \mathbf{p})

To find the order of each reactant, we need to localize the effect that each reactant had on the rate. This is expressed in a rate order which, for CH 222 and CH 223 , can only be equal to zero, one or two (no fractions, negative numbers, etc.)

In this lab, it is safe to assume that water does not affect the rate, so we can ignore its contribution to any changes that the rate might exhibit.

Notice that trial 2 has twice as much iodine as trial 1. Any changes to the rates of trial 1 and trial 2 are a direct result of the iodine (HCl and acetone are constant), and we will use these trials to calculate p, the reaction order for iodine.

Also notice that trial 3 has twice as much acetone as trial 1, so any changes to the rates of trials 3 and 1 will be the result of acetone only (HCl and iodine are constant), and we will use these trials to calculate \mathbf{m}, the reaction order for acetone.

Lastly, notice that trial $\mathbf{4}$ has twice as much $\mathbf{H C l}$ as trial $\mathbf{1}$, yet acetone and iodine concentrations remain constant; we will use these trials to calculate \mathbf{n}, the reaction order for $\mathbf{H C l}$.

Example: Find the order of reaction with respect to iodine (p) if these values are used:

$$
\begin{aligned}
& \boldsymbol{r a t e}(\text { trial } \# 1)=\left[\mathrm{I}_{2}\right] /(\text { average time in seconds })=0.0010 \mathrm{M} / 240 \mathrm{~s}=\mathbf{4 . 2} * \mathbf{1 0}^{\mathbf{- 6}} \mathbf{M ~ s} \mathbf{s}^{\mathbf{1}} . \\
& \boldsymbol{\operatorname { r a t e }}(\text { trial } \# 2)=\left[\mathrm{I}_{2}\right] /(\text { average time in seconds })=0.0020 \mathrm{M} / 496 \mathrm{~s}=\mathbf{4 . 0} * \mathbf{1 0}^{\mathbf{- 6}} \mathbf{~ M ~ s} \mathbf{s}^{\mathbf{1}} .
\end{aligned}
$$

Solution: Notice how in trial \#2 we doubled the concentration of [I_{2}] while leaving the other reactants' concentrations (HCl , acetone) unchanged. An effect upon the rate of the reaction will reflect the influence of the iodine only, and this will allow us to determine \mathbf{p}.

In these sample calculations, doubling the concentration of iodine (to 0.0020 M from 0.0010 M) spawned a negligible change in the rate $\left(4.0 * 10^{-6} \mathrm{M} \mathrm{s}^{-1}\right.$ versus $\left.4.2 * 10^{-6} \mathrm{M} \mathrm{s}^{-1}\right)$. Because we are only concerned with whole integer values of rate orders, this implies a zero order reactant, and $\mathbf{p}=\mathbf{0}$.

A more formal approach to determining p would be as follows: divide the expression for rate 2 by the expression for rate 1 ; this results in the following:

$$
\frac{\text { rate } 2}{\text { rate } 1}=\frac{\mathrm{k}[\text { acetone }]^{\mathrm{m}}[\mathrm{HCl}]^{\mathrm{n}}\left[\mathrm{I}_{2}\right]^{\mathrm{p}}}{\mathrm{k}[\text { acetone }]^{\mathrm{m}}[\mathrm{HCl}]^{\mathrm{n}}\left[\mathrm{I}_{2}\right]^{\mathrm{p}}}
$$

The values of k , [acetone] and $[\mathrm{HCl}]$ remain constant between trial 1 and trial 2 (only [$\left.\mathrm{I}_{2}\right]$ changes), so the expression reduces to

$$
\frac{\operatorname{rate} 2}{\operatorname{rate} 1}=\frac{4.0 * 10^{-6}}{4.2 * 10^{-6}}=\frac{[0.0020]^{\mathrm{p}}}{[0.0010]^{\mathrm{p}}}=2^{\mathrm{p}}
$$

$$
0.95=(2)^{\mathrm{p}}
$$

Taking the logarithm of both sides leads to

$$
\log 0.95=\log 2 \mathrm{p}=\mathrm{p} \log 2
$$

and solving for p :

$$
\mathrm{p}=\frac{\log 0.95}{\log 2}=-0.074 \approx 0
$$

Therefore, the order with respect to iodine equals zero, or $\mathbf{p}=\mathbf{0}$.
Now, find the order of each reactant by filling in the tables below. Note: rate values from Part 3 section c; concentration (M) values from Part 3, section b, subsection iii. Show your work on the following page. Remember that m, n and p can be $\mathbf{0}$, $\mathbf{1}$, or $\mathbf{2}$ only! Round your answers as necessary!

For $I_{2}(p):$

	$\mathbf{I}_{\mathbf{2}}(\mathbf{M})$	rate $\left(\mathbf{M ~ s ~ s}^{\mathbf{- 1}}\right)$
Trial \#1	0.0010	
Trial \#2	0.0020	-

My value of p is:

For acetone (m):
acetone (M) \quad rate $\left(\mathrm{M} \mathrm{s}^{-1}\right) \quad$ My value of m is:
Trial \#1 \qquad
\qquad
\qquad
Trial \#3 \qquad
\qquad

For HCl (n):
HCl (M)

$$
\text { rate }\left(\mathbf{M ~ s}^{-1}\right)
$$

My value of \mathbf{n} is:
Trial \#1 \qquad
\qquad
\qquad
Trial \#4 \qquad
\qquad

Use this space to show how you got each of the orders of reaction (m, n and p):
e. Find the value of \mathbf{k}, the rate constant for the iodination of acetone reaction.

You now have all the necessary information to calculate the rate constant, k, for each trial. For this reaction,

$$
\text { rate }=\mathrm{k}[\text { acetone }]^{\mathrm{m}}[\mathrm{HCl}]^{\mathrm{n}}\left[\mathrm{I}_{2}\right]^{\mathrm{p}}
$$

Rate values appear in Part 3 section c [acetone], [HCl] and [I2] are the concentrations for each trial (Part 3, section b, subsection iii) m, n and p are the orders of reaction (Part 3, section d)

Example: Find the value of k for trial \#1 if the rate $=4.2 \times 10^{-6} \mathrm{M} \mathrm{s}^{-1}$ and assuming that the order with respect to acetone (m) and $\mathrm{HCl}(\mathrm{n})$ is two and the order with respect to $\mathrm{I}_{2}(\mathrm{p})$ is zero.

Solution: In trial \#1, the diluted concentration of acetone is 0.80 M , the HCl is 0.20 M and I_{2} is 0.0010 M. Using the given values, we can calculate k from the following equation:

$$
\begin{aligned}
& \text { rate }=\mathrm{k}[\text { acetone }]^{\mathrm{m}}[\mathrm{HCl}]^{\mathrm{n}}\left[\mathrm{I}_{2}\right]^{\mathrm{p}} \\
& 4.2 * 10^{-6}=\mathrm{k}[0.80]^{2}[0.20]^{2}[0.0010]^{0} \\
& \mathrm{k}=4.2 * 10^{-6} /[0.80]^{2}[0.20]^{2}
\end{aligned}
$$

and solving for k we get a value of $k=1.6 * \mathbf{1 0}^{-4} \mathbf{M}^{-1} \mathbf{s}^{\mathbf{- 1}}$

Now find the rate constant \mathbf{k} for each trial by completing the table:

My value of $m=$ \qquad (these can be found in section d, above)

My value of $n=$ \qquad
My value of $p=$ \qquad
acetone (M) $\quad \mathbf{H C l}(M) \quad I_{2}(M) \quad$ rate $\left(M^{\mathbf{- 1}}\right) \quad$ value of k

Trial \#1
0.0010
0.0020

Trial \#2 \qquad
\qquad
0.0010

Trial \#3 \qquad
\qquad

Trial \#4 \qquad
\qquad 0.0010 \qquad

Concentrations in section b, subsection iii
Rate values in section c

Average value of k :

\qquad
parts per thousand of your four k values: \qquad

Use this space to show a sample calculation for \mathbf{k} and also relevant parts per thousand calculations:
f. You are done! Finish the postlab questions (which are similar to the work you just completed) and you are good to go!

Kinetics I - The Iodination Of Acetone - Postlab Questions:

1. In a reaction involving the iodination of acetone, the following reaction mixture was used: 5.00 mL 4.0 M acetone, $5.00 \mathrm{~mL} 1.0 \mathrm{M} \mathrm{HCl}, 5.00 \mathrm{~mL} 0.0050 \mathrm{M} \mathrm{I}_{2}$, and 10.0 mL water.
a. What was the molarity of the acetone in the reaction mixture? (Recall that $\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$)
b. The color of the above reaction mixture disappeared in 250 seconds. What was the rate of the reaction? (Hint: First determine the initial concentration of the iodine, then use the equation for rate from the lab.)
2. A second reaction mixture was made: 10.00 mL acetone, $5.00 \mathrm{~mL} \mathrm{HCl}, 5.00 \mathrm{~mL} \mathrm{I}_{2}$, and 5.00 mL of $\mathrm{H}_{2} \mathrm{O}$.
a. What was the molarity of the acetone in this reaction mixture?
b. The iodine color disappeared in 120 seconds. What was the rate of the reaction?
c. Determine the order of the reaction (m) with respect to acetone using the information from question 1 and 2. (Round off the value of m to the nearest integer)
3. A third reaction mixture is made: 10.00 mL acetone, $5.00 \mathrm{~mL} \mathrm{HCl}, 10.00 \mathrm{~mL} \mathrm{I}_{2}$. If the reaction is zero order with respect to iodine, how long will it take for the iodine color to disappear? (Hint: rate $=\left[I_{2}\right] /$ time, use the rate from question $2 b$ and the new [$\left.I_{2}\right]$ to solve for the time elapsed.)

This page left blank for printing purposes

CH 222 Winter 2025:
 'Kinetics II - The Iodination Of
 Acetone (online)" Lab - Instructions

Note: This is the lab for section W1 of CH 222 only.

- If you are taking section $\mathrm{O1}$ or section Hl of CH 222 , please use this link: http://mhchem.org/r/9a.htm

Step One:
Watch the lab video for the "Kinetics II" lab, found here:
http://mhchem.org/y/9.htm
Record the data found at the end of the lab video on page Ib-9-5.

Step Two:
Complete pages Ib-9-5 through Ib-9-11 using the "Kinetics II" video and the actual lab instructions on pages Ib-9-2 through Ib-9-3 (most of this lab is a "tutorial", so you will also find instructions in the lab pages as well.) Include your name on page $\mathrm{Ib}-9-5$!

Step Three:
Submit your lab (pages Ib-9-5 through Ib-9-11 only to avoid a point penalty) as a single PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, March 12 by 11:59 PM. Be sure to include any necessary computer generated graphs as well. I recommend a free program like CamScanner (https://camscanner.com) to convert your work to a PDF file. Do not include the graph as a separate file.... have all documents in one file to avoid a point penalty.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

The rate of a chemical reaction depends on several factors: the nature of the reaction, the concentrations of the reactants, the temperature, and the presence of a possible catalyst. In Part One of this experiment we determined the rate law for a reaction by changing the concentrations and measuring the rate of the reaction. During Part Two, we will explore the relation between the rate constant and temperature to discover the activation energy for this reaction.

In this experiment, we continue to study the kinetics of the reaction between iodine and acetone:

In last week's lab, you discovered the average rate constant, \mathbf{k}, value, as well as the orders of reaction (\mathbf{m}, \mathbf{n} and \mathbf{p}) which apply to the rate law for this reaction:

$$
\text { rate }=\mathbf{k}[\text { acetone }]^{\mathrm{m}}\left[\mathbf{H}^{+}\right]^{\mathrm{n}}\left[\mathbf{I}_{2}\right]^{\mathbf{p}}
$$

In this experiment, you will study the rate of the reaction at different temperatures to find its activation energy, $\mathbf{E}_{\mathbf{a}}$. The temperature at which the reaction occurs influences the rate of the reaction. An increase in temperature increases the rate.

As with concentration, there is a quantitative relation between reaction rate and temperature, but here the relation is somewhat more complicated. This relation is based on the idea that to react, the reactant species must have a certain minimum amount of energy present (and the correct geometry, if appropriate) at the time the reactants collide in the reaction step.

This amount of energy, which is typically furnished by the kinetic energy of the species present, is called the activation energy ($\mathbf{E}_{\mathbf{a}}$, also known as the energy of activation) for the reaction. The formula (called the Arrhenius equation) relating the rate constant k to absolute Kelvin temperature T and E_{a} is:

$$
\ln \mathrm{k}=\frac{-E_{a}}{R T}+\ln \mathrm{A}
$$

In this equation, \mathbf{R} is the gas constant ($\mathbf{8 . 3 1 4 5} \mathbf{J} / \mathbf{m o l e} \mathbf{K}$), and natural logarithms ($\mathbf{l n}$) need to be used (do not use base $10 \operatorname{logs!}$) The quantity \mathbf{A} is referred to as the collision frequency and A can be used to determine the fraction of molecules present with sufficient energy and geometry to become products at a given instant in time.

By measuring k at different temperatures, we can graphically determine the activation energy for a reaction. In Part Two of this experiment you will determine the effect of temperature on rate and calculate the activation energy for the reaction.

DIRECTIONS:

You will collect data during lab and complete the worksheets at the end. No formal typed lab report is required as long as your writing is legible and easy to read. In this experiment, you will see the effect of temperature upon the reaction.

We shall measure one of the reactions from the "Kinetics I" lab at different temperatures. You do not need to repeat these experiments twice (to be within 20 seconds of each other) as in Part One.

For each entry in trial \#5 listed below: measure out the appropriate quantities of $1.0 \mathrm{M} \mathrm{HCl}, 4.0 \mathrm{M}$ acetone and water using a 10.00 mL graduated cylinder and place them in a 125 mL Erlenmeyer flask. Now measure out the appropriate amount of $\mathbf{0 . 0 0 5 0} \mathbf{M}$ iodine in a 10.00 mL graduated cylinder.

Using ice and/or a hot plate, get the solution to a desired temperature before adding the iodine. Record the temperature, then add the iodine to the Erlenmeyer, start a stopwatch and measure how long the reaction takes to turn the solution clear. Time should be recorded in seconds. The iodine does not need to be at the same temperature as the solution in the Erlenmeyer flask.

Temperatures need to be higher than $15^{\circ} \mathrm{C}$ (too slow!) and lower than $60^{\circ} \mathrm{C}$ (keep the acetone from boiling), and the interval between measurements needs to be at least $5^{\circ} \mathrm{C}$ apart.

Waste can be placed in the drain or in a waste bottle (which is probably the better option!) Get a stamp in your lab notebook before leaving lab.

This page left blank for printing purposes

Kinetics II - The Iodination Of Acetone

As before, add all the chemicals but iodine to a 125 mL Erlenmeyer flask. Using ice and/or a hot plate, get the solution to a desired temperature before adding the iodine. Record the temperature, then add the iodine to the Erlenmeyer, start a stopwatch and measure how long the reaction takes to turn the solution clear. Time should be recorded in seconds. The iodine does not need to be at the same temperature as the solution in the Erlenmeyer flask.

* Record one trial at room temperature. Hint: you may be able to use some of your data from Part I!
* Record one trial at a temperature lower than room temperature, but above 15 degrees Celsius.
* Record three trials at temperatures higher than room temperature, but under $\mathbf{6 0}$ degrees Celsius.

Temperature differences should be at least 5 degrees Celsius apart (i.e. spread out your temperatures!)
NOTE: Record the data found at the end of the video in the places below:

Trial \#5:

$\mathbf{H C l}(\mathbf{m L})$	Acetone (mL)	$\mathbf{I}_{\mathbf{2}}(\mathbf{m L})$	Water $(\mathbf{m L})$	Total Volume (mL)
5	5	5	10	25.00

| Temperature $\left({ }^{\circ} \mathrm{C}\right):$ | | Time (seconds): |
| :--- | :--- | :--- | :--- |
| Temperature $\left({ }^{\circ} \mathrm{C}\right):$ | \square | Time (seconds): |
| Temperature $\left({ }^{\circ} \mathrm{C}\right):$ | \square | Time (seconds): |
| Temperature $\left({ }^{\circ} \mathrm{C}\right):$ | | Time (seconds): |
| Temperature $\left({ }^{\circ} \mathrm{C}\right):$ | | Time (seconds): |

Hint: As temperature increases, the reaction time should decrease. If you do not see this trend, repeat one or more experiments.

You are now ready to complete the Kinetics II lab!

Kinetics II - The Iodination Of Acetone - Worksheet

Earlier you determined the time elapsed for a given set of concentrations as the temperature was altered. We shall use that information and techniques similar to that of the "Kinetics Part I" lab to determine the energy of activation and collision frequency for the iodination of acetone reaction using the Arrhenius equation.
a. Find the inverse Kelvin temperature for each value in Trial \#5.

Convert your temperatures from ${ }^{\circ} \mathrm{C}$ to K , then take the inverse of your Kelvin temperatures.
Example: Convert $37.5^{\circ} \mathrm{C}$ to an inverse Kelvin temperature.
Solution: $37.5^{\circ} \mathrm{C}=310.7 \mathrm{~K}$. To find the inverse, calculate $(310.7 \mathrm{~K})^{-1}=\mathbf{3 . 2 1 9} * \mathbf{1 0}^{\mathbf{- 3}} \mathbf{K}^{-\mathbf{1}}$

Complete the table below. The first column (Temperature $\left({ }^{\circ} \mathrm{C}\right)$ comes from your data collected in Part Two, Trial \#5, while in lab.

$$
\text { Temperature }\left({ }^{\circ} \mathbf{C}\right) \quad \text { Temperature }(\mathbf{K}) \quad \text { Temperature }{ }^{-1}\left(\mathrm{~K}^{-1}\right)
$$

Temp \#1

Temp \#2

Temp \#3

Temp \#4

Temp \#5

Use this space to show a sample calculation for getting from Temperature $\left({ }^{\circ} \mathrm{C}\right)$ to an inverse Kelvin temperature:
b. Find the rate for each temperature value in Trial \#5.

Recall from the "Kinetics Part I" lab that, for this experiment:
rate $=\left[I_{2}\right] /($ time in seconds)
Use this equation to find the rate of reaction (in $\mathrm{M} \mathrm{s}^{-1}$) for each temperature. Time values come from Trial \#5, above:
I_{2} (M)
time (s)
rate ($\mathbf{M ~ s}^{-1}$)

Trial \#1	0.0010	-	
Trial \#2	0.0010	-	
Trial \#3	0.0010	-	
Trial \#4	0.0010		
Trial \#5	0.0010		

Use this space to show at least one example of how you calculated the rate of the reaction.
c. Find the value of the rate constant, \mathbf{k}, for each temperature value in Trial \#5.

We will use the process developed in "Kinetics Part I" lab to help us find the values of k for each temperature.
i. First, we need the diluted concentrations: (these can be found in section b of the "Kinetics Part I" lab)

Concentration (M) of acetone when 5.00 mL was used:
Concentration (M) of $\mathbf{H C l}$ when 5.00 mL was used: \qquad

Concentration (M) of $\mathbf{I}_{\mathbf{2}}$ when 5.00 mL was used: \qquad
ii. Next, we need the reaction orders for each reactant: ("Kinetics Part I", section d)

$$
\begin{array}{c}\text { My value of } \mathrm{m}(\text { acetone })= \\ \\ \text { My value of } \mathrm{n}(\mathrm{HCl})= \\ \text { My value of } \mathrm{p}\left(\mathrm{I}_{2}\right)= \\ \text { If you do not have } m=1, n=1, p=0, \text { talk to the instructor! }\end{array}
$$

iii. Now use the techniques from in Kinetics I', section e, to find the value of k, and then $\ln k$.

Use the rates from section \mathbf{b} (above) and the values for concentration and order (m, n and p) to find \mathbf{k}. The only variable that will change is the rate; the orders and concentrations remain constant. Take the natural $\log (\mathbf{l n})$ of each \mathbf{k} value as well (i.e. $\left.\ln \left(2.6^{*} 10^{-5}\right)=\mathbf{- 1 0 . 5 6}\right)$ (Note: report your $\ln k$ values to the hundredths place to satisfy significant figures.)
rate ($\mathbf{M ~ s}^{\mathbf{- 1}} \mathbf{)} \quad k$

Trial \#1

Trial \#2

Trial \#3

Trial \#4

Trial \#5

Show a sample calculation for these steps on the next page.

Use this space to show at least one example of how you calculated the rate constant k and $\ln \mathrm{k}$.
d. Create a graph of $\ln \mathrm{k}$ versus inverse Kelvin temperature values

You will be creating a graph of $\ln \mathrm{k}$ versus inverse temperature to find the energy of activation.
First, collect your inverse temperature (the x -axis) and $\ln \mathrm{k}$ values (the y -axis) here. Inverse Kelvin temperature values come from section a in this lab. $\ln \mathrm{k}$ values come from section c , subsection iii, in this lab.

Temperature ${ }^{-1}\left(\mathbf{K}^{-1}\right)$

$\ln k$

Trial \#1

Trial \#2

Trial \#3

Trial \#4

Trial \#5

Using Excel or a similar program, create a graph of your $\ln \mathrm{k}$ values versus the inverse Kelvin temperature values. Make the graph at least as big as half a sheet of paper, and be sure to include unit labels ($\ln \mathrm{k}$ for the y -axis and (Temperature) ${ }^{-1}$ for the x -axis. Note that when using your graphing program, you may need to enter values as decimals, i.e. enter 0.00315 instead of 3.15×10^{-3}.

Staple / attach the graph to the end of this lab report packet.

e. Find the energy of activation for the iodination of acetone using the data in Trial \#5.

The data points on the graph from the last section should correspond roughly to a straight line with a negative slope. This is the behavior predicted by the Arrhenius equation:

$$
\ln \mathrm{k}=\frac{-E_{a}}{R T}+\ln \mathrm{A}
$$

where $\ln \mathbf{k}$ is the y -axis, (Temperature in Kelvin) ${ }^{\mathbf{- 1}}$ is the x -axis, $-\mathbf{E}_{\mathbf{a}} / \mathbf{R}$ is the slope, $\mathbf{R}=\mathbf{8 . 3 1 4 5} \mathbf{J ~ K}^{-1}$ $\mathbf{m o l}^{-1}$ (the "energy" gas constant), $\mathbf{E}_{\mathbf{a}}$ is the energy of activation, and \mathbf{A} is the collision frequency.

Perform a linear regression analysis using your calculator or graphing program (inverse Kelvin temperatures will be your x -axis, $\ln \mathrm{k}$ values will be your y -axis.) Record the values that you collected here:

Slope $=\square \quad y$-intercept $=$ correlation coefficient $(\mathrm{r})=$ \qquad

The energy of activation, E_{a}, can be determined from the slope. From the value of the slope determined through linear regression, calculate the activation energy.

Energy of activation $=-\mathbf{R} *$ slope $=$ \qquad

Units for your Energy of activation value = \qquad

The collision frequency, A, can be determined from the y-intercept. From the value of the y-intercept determined through linear regression, calculate the collision frequency.

Collision frequency $=\mathbf{e}^{\mathrm{y} \text {-int }}=$ \qquad
Note that e is the anti natural logarithm.
f. You are done! Finish the postlab question (which is similar to the work you just completed) and you are good to go!

Kinetics II - The Iodination Of Acetone - Postlab Question:

The following reaction

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}
$$

was studied at several temperatures, and the following values of k were obtained:
$\underline{k\left(s^{-1}\right)} \quad \underline{T}\left({ }^{\circ} \mathbf{C}\right)$

$2.0 * 10^{-5}$	20.0
$7.3 * 10^{-5}$	30.0
$2.7 * 10^{-4}$	40.0
$9.1 * 10^{-4}$	50.0
$2.9 * 10^{-3}$	60.0

Using linear regression and the techniques developed in this lab, calculate the activation energy and collision frequency for this reaction. Include a computer generated graph of $\ln \mathrm{k}$ versus (T$)^{-1}$. Hint: make sure you use inverse Kelvin temperatures! Make sure the x -axis lists " 0.003 " numbers (and not whole integers, etc.)

Slope $=$ \qquad y-intercept $=$ \qquad correlation coefficient $(\mathrm{r})=$ \qquad

Energy of activation $=$ \qquad

Units for your Energy of activation value $=$ \qquad

Collision frequency $=$ \qquad

This page left blank for printing purposes

CH 222 Winter 2025: Problem Set \#1 Instructions

Step One (all sections):

- Learn the material for Problem Set \#1 by reading Chapter 7 of the textbook and/or by watching the videos found on the website (https://mhchem.org/222)
- Try the problems for Problem Set \#1 found on the next pages on your own first. Write out the answers (and show your work) by hand (on a tablet or paper); do not type your answers (and work) to avoid a point penalty. If you write the answers on the problem set itself, you will receive fewer points. Include your name on your problem set!

Step Two:
Section 01 and H1: We will go over Problem Set \#1 during recitation. Self correct all problems of your problem set before turning it in at the end of recitation.

- Section 01: due Monday, January 13 at 1:10 PM
- Section H1: due Wednesday, January 15 at 1:10 PM

Section W1: Watch the recitation video for Problem Set \#1:

> http://mhchem.org/y/c.htm

- Self correct all of the problems while viewing the video. Mark correct problems with a star (or other similar mark), and correct all incorrect problems (show the correct answer and the steps required to achieve it.)
- Submit Problem Set \#1 via email (mike.russell@mhcc.edu) as a single PDF file (use CamScanner (https://camscanner.com), CombinePDF (https:// combinepdf.com), etc.) by 11:59 PM Wednesday, January 15.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

CH 222 Problem Set \#1

* Complete problem set on separate pieces of paper showing all work, circling final answers, etc.
* Self correct your work before turning it in to the instructor.

Covering: Chapter Seven and Chapter Guide One

Important Tables and/or Constants: "Bond Enthalpies and Electronegativities" Handout (after this problem set) and "Geometry and Polarity Guide" (Handout, https://mhchem.org/geopo)

1. Give the periodic group number, the number of valence electrons and the number of core electrons for each of the following atoms.
a. C
b. Cl
c. Ne
d. Si
e. Se
f. Al
2. Which of the following elements are capable of forming compounds in which the indicated atom has more than four valence electron pairs?
a. C
e. Cl
b. P
f. B
c. O
g. Se
d. F
h. Sn
3. Which compound in each of the following pairs should require the higher temperature to melt?
a. NaCl or RbCl
b. BaO or MgO
c. NaCl or MgS
4. Draw a Lewis structure for each of the following molecules or ions.
a. CS_{2}
b. $\mathrm{BF}_{4}{ }^{-1}$
c. $\mathrm{NO}_{2}{ }^{-1}$
d. SOCl_{2}
5. Draw a Lewis structure for each of the following molecules or ions.
a. BrF_{5}
b. IF_{3}
c. $\mathrm{IBr}_{2}{ }^{-1}$
d. $\mathrm{BrF}_{2}{ }^{+1}$
6. Draw a Lewis structure for each of the following molecules or ions. Describe the electronpair geometry and the molecular geometry around the central atom.
a. $\mathrm{ClF}_{2}{ }^{+1}$ (note: this is one Cl atom, 2 F atoms, and $a+1$ charge)
b. $\mathrm{SnCl}_{3}{ }^{-1}$
c. BCl_{3}
d. CS_{2}

Problem Set \#1 continues on the next page
7. Draw a Lewis structure of each of the following molecules or ions. Describe the electronpair geometry and the molecular geometry around the central atom.
a. $\mathrm{SiF}_{6}{ }^{2-}$
b. PF_{5}
c. SF_{4}
d. XeF_{4}
8. Give approximate values for the indicated bond angles.
a. $\mathrm{Cl}-\mathrm{S}-\mathrm{Cl}$ in SCl_{2}
b. $\mathrm{N}-\mathrm{N}-\mathrm{O}$ in $\mathrm{N}_{2} \mathrm{O}$
c. Bond angles 1-5 in phenylalanine (right), one of the natural
 amino acids and a "breakdown" product of aspartame.

Phenylalanine
9. Determine the formal charge on each atom in the following molecules or ions:
a. HCO_{2}^{-1} (formate ion)
b. $\mathrm{HCO}_{2} \mathrm{H}$ (formic acid)
c. CO_{2} (two resonance forms). Which resonance form should be more stable?
10. For each of the bonds listed below, tell which atom is the more negatively charged. Use values of electronegativity to support your answer.
a. $\mathrm{C}-\mathrm{N}$
b. $\mathrm{C}-\mathrm{H}$
c. $\mathrm{C}-\mathrm{Br}$
d. S-O
11. Considering both formal charge and electronegativities, predict on which atom or atoms the positive charge resides in the following cations:
a. $\mathrm{H}_{3} \mathrm{O}^{+}$
b. $\mathrm{NH}_{4}{ }^{+}$
c. $\mathrm{NO}_{2}{ }^{+}$
d. $\mathrm{NF}_{4}{ }^{+}$
12. Determine if the following molecules are polar or nonpolar. Use a table of electronegativities to determine the most polar bond in the molecules below.
a. CS_{2}
b. CF_{4}
c. PCl_{3}
d. CO
13. Give the bond order for each bond in the following molecules or ions:
a. CN^{-1}
b. $\mathrm{CH}_{3} \mathrm{CN}$
c. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$
d. $\mathrm{SO}_{3}{ }^{2-}$
14. Phosgene, COCl_{2}, is a highly toxic gas that was used as a weapon in World War I. Using bond energies, estimate the enthalpy change for the reaction of carbon monoxide and chlorine to produce phosgene. (Hint: First draw the electron dot structures of the reactants and products so you know the types of bonds involved.) The reaction:

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{COCl}_{2}(\mathrm{~g})
$$

Bond Enthalpy Values (kJ/mol)

Bond	Bond Energy	Bond	Bond Energy	Bond	Bond Energy
H-H	436	C-S	260	$\mathrm{F}-\mathrm{Cl}$	255
H-C	415	$\mathrm{C}-\mathrm{Cl}$	330	$\mathrm{F}-\mathrm{Br}$	235
H-N	390	$\mathrm{C}-\mathrm{Br}$	275	Si -Si	230
H-O	464	C-I	240	Si-P	215
H-F	569	$\mathrm{N}-\mathrm{N}$	160	Si-S	225
$\mathrm{H}-\mathrm{Si}$	395	$\mathrm{N}=\mathrm{N}$	418	$\mathrm{Si}-\mathrm{Cl}$	359
H-P	320	$\mathrm{N}=\mathrm{N}$	946	$\mathrm{Si}-\mathrm{Br}$	290
H-S	340	$\mathrm{N}-\mathrm{O}$	200	Si-I	215
$\mathrm{H}-\mathrm{Cl}$	432	N-F	270	P-P	215
$\mathrm{H}-\mathrm{Br}$	370	N-P	210	$\mathrm{P}-\mathrm{S}$	230
H-I	295	$\mathrm{N}-\mathrm{Cl}$	200	$\mathrm{P}-\mathrm{Cl}$	330
C-C	345	$\mathrm{N}-\mathrm{Br}$	245	$\mathrm{P}-\mathrm{Br}$	270
$\mathrm{C}=\mathrm{C}$	611	O-O	140	P-I	215
C $=\mathrm{C}$	837	$\mathrm{O}=0$	498	S-S	215
$\mathrm{C}-\mathrm{N}$	290	O-F	160	$\mathrm{S}-\mathrm{Cl}$	250
$\mathrm{C}=\mathrm{N}$	615	$\mathrm{O}-\mathrm{Si}$	370	$\mathrm{S}-\mathrm{Br}$	215
$\mathrm{C}=\mathrm{N}$	891	O-P	350	$\mathrm{Cl}-\mathrm{Cl}$	243
$\mathrm{C}-\mathrm{O}$	350	$\mathrm{O}-\mathrm{Cl}$	205	$\mathrm{Cl}-\mathrm{Br}$	220
$\mathrm{C}=\mathrm{O}$	741	O-I	200	$\mathrm{Cl}-\mathrm{I}$	210
$\mathrm{C}=\mathrm{O}$	1080	F-F	160	$\mathrm{Br}-\mathrm{Br}$	190
C-F	439	F-Si	540	$\mathrm{Br}-\mathrm{l}$	180
$\mathrm{C}-\mathrm{Si}$	360	F-P	489	I-I	150
C-P	265	F-S	285		

Electronegativity Values

CH 222 Winter 2025: Problem Set \#2 Instructions

Step One (all sections):

- Learn the material for Problem Set \#2 by reading Chapter 8 of the textbook and/or by watching the videos found on our website (https://mhchem.org/222)
- Try the problems for Problem Set \#2 found on the next pages on your own first. Write out the answers (and show your work) by hand (on a tablet or paper); do not type your answers (and work) to avoid a point penalty. If you write the answers on the problem set itself, you will receive fewer points. Include your name on your problem set!

Step Two:
Section H1: We will go over Problem Set \#2 during recitation. Self correct all problems of your problem set before turning it in at the end of recitation.

- Section H1: due Wednesday, January 22 at 1:10 PM

Section 01 and Section W1: Watch the recitation video for Problem Set \#2 here: http://mhchem.org/y/u.htm

Self correct all of the problems while viewing the video. Mark correct problems with a star (or other similar mark), and correct all incorrect problems (show the correct answer and the steps required to achieve it.)

- Section W1: Submit Problem Set \#2 via email (mike.russell@mhcc.edu) as a single PDF file (use CamScanner (https://camscanner.com), CombinePDF (https://combinepdf.com), etc.) by 11:59 PM Wednesday, January 22.
- Section 01: Due to MLK day, submit Problem Set \#2 as a hard copy (nothing electronic) on 9 AM, Wednesday January 22 in AC 1303 (lecture.)

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

CH 222 Problem Set \#2

* Complete problem set on separate pieces of paper showing all work, circling final answers, etc.
* Self correct your work before turning it in to the instructor.

Covering: Chapter Eight and Chapter Guide Two

Important Tables and/or Constants: "MO Diagram for $\mathbf{B}_{2}, \mathbf{C}_{2}$, and \mathbf{N}_{2} "/ "MO Diagram for $\mathbf{O}_{2}, \mathbf{F}_{2}$, and $\mathrm{Ne}_{2} "$ (Handouts, http://mhchem.org/MO), "Geometry and Polarity Guide" (Handout, https://mhchem.org/geopo)

1. Draw the Lewis structure of NF_{3}. What are its electron pair and molecular geometries? What is the hybridization of the nitrogen atom? What orbitals on N and F overlap to form bonds between these elements?
2. Specify the electron pair and molecular geometry for each of the following. Describe the hybrid orbital set used by the central atom in each molecule or ion.
a. CSe_{2}
b. SO_{2}
c. $\mathrm{CH}_{2} \mathrm{O}$
d. $\mathrm{NH}_{4}{ }^{+}$
3. Draw the Lewis structure and then specify the electron pair and molecular geometries for each of the following molecules or ions. Identify the hybridization of the central atom.
a. XeOF_{4}
b. OSF_{4}
c. BrF_{5}
d. The central atom in $\mathrm{Br}_{3}{ }^{-1}$
4. The compound $\mathrm{C}_{4} \mathrm{H}_{8}$ has six isomers. Draw them. (Note: 4 of them have a double bond.)
5. Give the electron configurations for the $\mathrm{Li}_{2}, \mathrm{Li}_{2}{ }^{+1}$ and $\mathrm{Li}_{2}{ }^{-1}$ in molecular orbital terms. Compare the $\mathrm{Li}-\mathrm{Li}$ bond order in the three species; which has the shortest bond length?
6. Oxygen, O_{2}, can acquire one or two electrons to give $\mathrm{O}_{2}{ }^{-1}$ (superoxide ion) or $\mathrm{O}_{2}{ }^{2-}$ (peroxide ion.) Write the molecular orbital configuration for $\mathrm{O}_{2}, \mathrm{O}_{2}{ }^{-1}$ and $\mathrm{O}_{2}{ }^{2-}$. Remember to use the molecular orbital diagram for $\mathrm{O}_{2}, \mathrm{~F}_{2}$ and Ne_{2} when constructing the diagrams. For each species, determine the
a. Magnetic character
b. Net number of σ and π bonds
c. Bond order
d. Relative oxygen-oxygen bond length
7. The nitrosyl ion, NO^{+}, has an interesting chemistry. Use the " $\mathrm{O}_{2}, \mathrm{~F}_{2}$ and Ne_{2} " molecular orbital diagram for this problem.
a. Is NO^{+}diamagnetic or paramagnetic? If paramagnetic, how many unpaired electrons does it have?
b. What is the highest energy occupied molecular orbital (HOMO) in the molecule? What is the lowest unoccupied molecular orbital (LUMO) in the molecule?
c. What is the nitrogen-oxygen bond order?
d. Is the $\mathrm{N}-\mathrm{O}$ bond in NO^{+}stronger or weaker than the bond in NO? Explain.

Problem Set \#2 continues on the next page

Problem Set \#2, Continued from previous page

8. Nitrogen, N_{2}, can ionize to form $\mathrm{N}_{2}{ }^{+}$or add an electron to form $\mathrm{N}_{2}{ }^{-1}$. Using molecular orbital theory, compare these three species with regard to:
a. Their magnetic character
b. Net number of π bonds
c. Bond order
d. Bond length
e. Bond strength
9. Phosphoserine is a less common amino acid with the structure shown to the right.
a. Describe the hybridization of atoms 1 through 5 .
b. What are the approximate values of the bond angles A, B, C and D ?
10. Sketch the Lewis structures of $\mathrm{ClF}_{2}{ }^{+}$and $\mathrm{ClF}_{2}{ }^{-1}$. What are the electron pair and molecular geometries of each ion? Do both have the same F-Cl-F- angle? What hybrid set is used in each ion?

11. Compare the structure and bonding in CO_{2} and $\mathrm{CO}_{3}{ }^{2-}$ with regard to:
a. The O-C-O bond angles
b. The CO bond order
c. The C atom hybridization.
d. Does the molecule CO have a stronger bond than CO_{2} and/or $\mathrm{CO}_{3}{ }^{2-}$? Explain.
12. Hydroxyproline is an unusual amino acid with the structure shown to the right.
a. What are the approximate values for the bond angles for $1,2,3,4$ and 5?
b. Describe the hybridization around the central atom for $1,2,3,4$
 and 5 .
13. Iodine and oxygen form a complex series of ions, among them $\mathrm{IO}_{4}{ }^{-1}$ and $\mathrm{IO}_{5}{ }^{-3}$. Draw the Lewis structures for these ions and specify their electron pair and molecular geometries. What is the hybridization of the I atom in these ions?
14. Which of the following molecules or ions should be paramagnetic? What is the highest occupied molecular orbital (HOMO) in each one? Note that if an O, F or Ne is present in the molecule, you should use the molecular orbital diagram for $\mathrm{O}_{2}, \mathrm{~F}_{2}$ and Ne_{2} to construct the molecule.
a. NO
b. OF^{-1}
c. $\mathrm{O}_{2}{ }^{2-}$
d. $\mathrm{Ne}_{2}{ }^{+1}$
e. CN

This page intentionally left blank for printing purposes

CH 222 Winter 2025: Problem Set \#3 Instructions

Step One (all sections):

- Learn the material for Problem Set \#3 by reading Chapter 20 of the textbook and/ or by watching the videos found on our website (https://mhchem.org/222)
- Try the problems for Problem Set \#3 found on the next pages on your own first. Write out the answers (and show your work) by hand (on a tablet or paper); do not type your answers (and work) to avoid a point penalty. If you write the answers on the problem set itself, you will receive fewer points. Include your name on your problem set!

Step Two:
Section 01 and H1: We will go over Problem Set \#3 during recitation. Self correct all problems of your problem set before turning it in at the end of recitation.

- Section 01: due Monday, January 27 at 1:10 PM
- Section H1: due Wednesday, January 29 at 1:10 PM

Section W1: Watch the recitation video for Problem Set \#3 here:
http://mhchem.org/y/v.htm

- Self correct all of the problems while viewing the video. Mark correct problems with a star (or other similar mark), and correct all incorrect problems (show the correct answer and the steps required to achieve it.)
- Submit Problem Set \#3 via email (mike.russell@mhcc.edu) as a single PDF file (use CamScanner (https://camscanner.com), CombinePDF (https:// combinepdf.com), etc.) by 11:59 PM Wednesday, January 29.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

CH 222 Problem Set \#3

* Complete problem set on separate pieces of paper showing all work, circling final answers, etc.
* Self correct your work before turning it in to the instructor.

Covering: Chapter Twenty and Chapter Guide Three
Important Tables and/or Constants: "Organic Chemistry Nomenclature Guide" (Handout, http://mhchem.org/ OCG), "Organic Chemistry Lab"

1. What is the molecular formula for an alkane with 6 carbon atoms?

Draw and name the five isomers.
2. Give the systematic name for the alkane shown to the right:
3. Draw the structure for cycloheptane. Is the seven-member ring planar? Is this an isomer of n-heptane? Explain.
4. What structural requirement is necessary for an alkene to have cis and trans isomers? Can cis and trans isomers exist for an alkyne or an alkane? Draw and name the five alkenes with the formula
 $\mathrm{C}_{7} \mathrm{H}_{14}$ and a seven carbon ("straight") chain.
5. Draw structural formulas for the following compounds:
a. butan-1-ol and butan-2-ol
b. 1,1-dibromoethane
c. 3,3-dimethylbutan-2-ol
d. 3-methyl-1-butyne
6. Draw the structures of the following compounds:
a. diethyl ether
b. 2-methoxypropane
7. Name the following compounds:
a.

b.

8. Regarding structural isomers:
a. Draw all the possible isomers for $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$. Give the systematic name for each compound.
b. Draw the structural formula for an aldehyde and a ketone with the molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$. Name each compound.
9. Give the systematic name for each of the following compounds:
a.

10. Draw structural formulas for the following carboxylic acids:
a. 2-methylhexanoic acid
b. 3-methylpentanoic acid
c. acetic acid

Problem Set \#3 continues on the next page
11. Name the following amines:
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
b. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
c. $\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{NH}$
d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
12. Name each compound:
a.

b. ${ }^{H}$

13. Give the official IUPAC organic chemistry name for the following chemical compounds:
a. acetone
b. toluene
c. acetylene
d. formaldehyde
e. acetaldehyde
f. ethylene

The following diagram might prove useful for the following three questions:

14. Draw the structure and give the systematic name for the products of the following addition reactions:

b. ${ }^{\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}}+2 \mathrm{Br}_{2} \rightarrow$
15. The compound 2,3-dibromo-2-methylhexane is formed by addition of Br_{2} to an alkene. Identify the alkene and write an equation for this reaction.
16. Addition of acid $\left(\mathrm{H}^{+}\right)$to propan-2-ol creates an alkene through an elimination reaction. Draw and name the alkene. If the alcohol was propan-1-ol, would the synthesized alkene be different? Explain.

This page intentionally left blank for printing purposes
\qquad
Worksheet due dates: Mon, 2/3, 1:10 PM (01), Wed, 2/5, 1:10 PM (H1) or 11:59 PM (W1, email). To complete, show detailed steps on how to get the given answer for each problem. Failure to use this form for work and answers will result in a point penalty.

Problem 1: Using the bond energies in the table below, estimate ΔH for the reaction: $\mathbf{H}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}}+\mathbf{C H} \mathbf{3} \mathbf{O H} \rightarrow \mathbf{H}_{\mathbf{2}} \mathbf{C O}+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

Bond:	C-C	$\mathrm{C}=\mathrm{C}$	$\mathrm{C}-\mathrm{O}$	$\mathrm{C}=\mathrm{O}$	$\mathrm{C}-\mathrm{H}$	O-H	O-O
Energy ($\mathrm{kJ} / \mathrm{mol}$)	347	614	358	799	413	463	146

Answer to Problem \#1: -345 kJ

Problem 2: One of the following species could probably not exist as a stable molecule as predicted by Lewis structures. Draw the structures and explain why one of them is an improbable structure.

$\mathbf{N H}_{3}, \mathbf{N}_{2} \mathbf{H}_{2}, \mathbf{N}_{2} \mathbf{H}_{4}, \mathbf{N}_{2} \mathbf{H}_{6}, \mathbf{N}_{2} \mathbf{O}_{4}$

Problem 3: What is the molecular geometry for the following structure: $\mathbf{B e F}^{\mathbf{- 1}}$ (draw the structure to get credit!)

Answer to Problem \#3: trigonal planar

Problem 4: Draw the molecular orbital description of the NO^{-1} anion. Is NO^{-1} paramagnetic? What is the bond order for NO^{-1} ? Is NO^{-1} isoelectronic with CO? Define isoelectronic to receive credit.

Partial answer to Problem \#4: $\mathbf{N O}^{-1}$ is paramagnetic, has a bond order $=\mathbf{2}$ and it is not isoelectronic with CO.

Problem 5: A teacher gave a molecule the following name: 2-ethyl-3-methyl-5-isopropylhexane (note that "isopropyl" is a propyl group where the connection is made at the center carbon.) However, an alert student recognized that although the molecule can be correctly drawn from this name, the name violates the systematic rules for organic chemistry. What is the correct (systematic) name for the molecule? Draw the structure and circle the longest chain to get credit.

CH 222 Winter 2025: Problem Set \#4 Instructions

Step One (all sections):

- Learn the material for Problem Set \#4 by reading Chapter 9 and Chapter 10 of the textbook and/or by watching the videos found on our website (https://mhchem.org/222)
- Try the problems for Problem Set \#4 found on the next pages on your own first. Write out the answers (and show your work) by hand (on a tablet or paper); do not type your answers (and work) to avoid a point penalty. If you write the answers on the problem set itself, you will receive fewer points. Include your name on your problem set!

Step Two:
Section 01 and H1: We will go over Problem Set \#4 during recitation. Self correct all problems of your problem set before turning it in at the end of recitation.

- Section 01: due Monday, February 10 at 1:10 PM
- Section H1: due Wednesday, February 12 at 1:10 PM

Section W1: Watch the recitation video for Problem Set \#4 here: http://mhchem.org/y/w.htm

- Self correct all of the problems while viewing the video. Mark correct problems with a star (or other similar mark), and correct all incorrect problems (show the correct answer and the steps required to achieve it.)
- Submit Problem Set \#4 via email (mike.russell@mhcc.edu) as a single PDF file (use CamScanner (https://camscanner.com), CombinePDF (https:// combinepdf.com), etc.) by 11:59 PM Wednesday, February 12.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

CH 222 Problem Set \#4

* Complete problem set on separate pieces of paper showing all work, circling final answers, etc.
* Self correct your work before turning it in to the instructor.

Covering: Chapter Nine, Chapter Ten and Chapter Guide Four
Important Tables and/or Constants: $\mathbf{R}=\mathbf{0 . 0 8 2 0 5 7} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}, \mathbf{7 6 0} \mathbf{~ m m ~ H g}=\mathbf{1} \mathbf{~ a t m}=\mathbf{1 0 1 3} \mathbf{~ m b a r , ~} \mathbf{1} \mathbf{~ m b a r}=1$ hPa, 1 torr = $\mathbf{1 m m ~ H g ~}$

1. A sample of CO_{2} gas has a pressure of 56.5 mm Hg in a 125 mL flask. What is the volume of this gas sample when it has a pressure of 62.3 torr at the same temperature?
2. Define STP for gases. A 5.0 mL sample of CH_{4} gas at 1 atm is enclosed in a gas tight syringe at $22{ }^{\circ} \mathrm{C}$. If the syringe is immersed in an ice bath at STP, what is the new gas volume?
3. A steel cylinder holds 1.50 g of ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$. What is the pressure of the ethanol vapor if the cylinder has a volume of $251 \mathrm{~cm}^{3}$ and the temperature is $250{ }^{\circ} \mathrm{C}$? Assume all the ethanol is in the vapor phase at this temperature.
4. Diethyl ether, $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O}$, vaporizes easily at room temperature. If the vapor exerts a pressure of 311 mbar in a flask at $25^{\circ} \mathrm{C}$, what is the density of the vapor?
5. Chloroform is a common liquid used in the laboratory. It vaporizes readily. If the pressure of the chloroform vapor in a flask is 195 mm Hg at $25.0^{\circ} \mathrm{C}$, and the density of the vapor is 1.25 g / L, what is the molar mass of the chloroform?
6. A 0.0125 g sample of a gas with an empirical formula of CHF_{2} is placed in a 165 mL flask. It has a pressure of 13.7 mm Hg at $22.5^{\circ} \mathrm{C}$. What is the molecular formula for this compound?
7. Silane, SiH_{4}, reacts with O_{2} to give silicon dioxide and water according to the equation below. A 5.20 L sample of silane gas at 356 mm Hg and $25^{\circ} \mathrm{C}$ is allowed to react with O_{2} gas. What volume of O_{2} gas, in liters, is required for the complete reaction if the oxygen has a pressure of 425 mm Hg at $25^{\circ} \mathrm{C}$? The reaction:

$$
\mathrm{SiH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SiO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

8. a) A cylinder of compressed gas is labeled "Composition (mole \%): $4.5 \% \mathrm{H}_{2} \mathrm{~S}, 3.0 \% \mathrm{CO}_{2}$, balance $\mathrm{N}_{2} . "$ The pressure gauge attached to the cylinder reads 46 atm . Calculate the partial pressure of each gas, in atmospheres, in the cylinder. b) If oxygen gas is collected at $20{ }^{\circ} \mathrm{C}$ over water (with a vapor pressure of 17.5 torr), what is the pressure of the oxygen if the total pressure is exactly 1 atm ?
9. Equal masses of gaseous N_{2} and Ar are placed in separate flasks of equal volume at the same temperature. Tell whether each of the statements is true or false, and briefly explain your answer.
a. There are more molecules of N_{2} present than atoms of Ar .
b. The pressure is greater in the Ar flask.
c. The Ar atoms have a greater average speed than the N_{2} molecules.
d. The N_{2} molecules collide more frequently with the walls of the flask than do the Ar atoms.
10. The reaction of SO_{2} with Cl_{2} gives dichlorine monoxide (see the reaction below) that is used to bleach wood pulp and to treat wastewater. All of the compounds involved in the reaction are gases. List them in order of increasing average speed.
$\mathbf{S O}_{2}(\mathbf{g})+\mathbf{2} \mathbf{C l}_{2}(\mathbf{g}) \rightarrow \mathbf{O S C l}_{2}(\mathbf{g})+\mathbf{C l}_{2} \mathbf{O}(\mathbf{g})$
Problem Set \#4 continues on the next page
11. In each pair of gases below, tell which will effuse faster:
a. CO_{2} or F_{2}
b. O_{2} or N_{2}
c. $\mathrm{C}_{2} \mathrm{H}_{4}$ or $\mathrm{C}_{2} \mathrm{H}_{6}$
d. two chlorofluorocarbons: CFCl_{3} or $\mathrm{C}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{4}$
12. Analysis of a gaseous chlorofluorocarbon $\left(\mathrm{C}_{\mathrm{x}} \mathrm{Cl}_{\mathrm{y}} \mathrm{F}_{\mathrm{z}}\right)$ shows that it contains $11.79 \% \mathrm{C}$ and $69.57 \% \mathrm{Cl}$. In another experiment you find that 0.107 g of the compound fills a 458 mL flask at $25^{\circ} \mathrm{C}$ with a pressure of 21.3 mm Hg . What is the molecular formula of the compound?
13. You are given 1.56 g of a mixture of KClO_{3} and KCl . When heated, KClO_{3} decomposes to KCl and O_{2} according to the reaction shown below. If the 1.56 g of mixture creates 327 mL of O_{2} collected in a flask with a pressure of 735 mm Hg at $19^{\circ} \mathrm{C}$, what is the weight percent of KClO_{3} in the mixture?
$2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
14. What type of intermolecular forces must be overcome in converting each of the following from a liquid to a gas?
a. CO_{2}
b. CHCl_{3}
c. NH_{3}
d. SCl_{4}
e. $\mathrm{I}_{2}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$
f. $\mathrm{Na}^{+}(\mathrm{aq})$
15. Rank the following in order of increasing intermolecular force strength. At $25^{\circ} \mathrm{C}$ and 1 atm , which exist as gases and which exist as liquids?
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
c. He
d. water
16. The enthalpy of vaporization of liquid mercury is $59.11 \mathrm{~kJ} / \mathrm{mol}$. What quantity of heat is required to vaporize 0.500 mL of mercury at $357^{\circ} \mathrm{C}$, its normal boiling point? The density of Hg is $13.6 \mathrm{~g} / \mathrm{mL}$.

This page intentionally left blank for printing purposes

CH 222 Winter 2025: Problem Set \#5 Instructions

Step One (all sections):

- Learn the material for Problem Set \#5 by reading Chapter 10 and Chapter 11 of the textbook and/or by watching the videos found on our website (https:// mhchem.org/222)
- Try the problems for Problem Set \#5 found on the next pages on your own first. Write out the answers (and show your work) by hand (on a tablet or paper); do not type your answers (and work) to avoid a point penalty. If you write the answers on the problem set itself, you will receive fewer points. Include your name on your problem set!

Step Two:
Section 01 and H1: We will go over Problem Set \#5 during recitation. Self correct all problems of your problem set before turning it in at the end of recitation.

- Section 01: due Monday, February 17 at 1:10 PM
- Section H1: due Wednesday, February 19 at 1:10 PM

Section W1: Watch the recitation video for Problem Set \#5 here:

> http://mhchem.org/y/x.htm

- Self correct all of the problems while viewing the video. Mark correct problems with a star (or other similar mark), and correct all incorrect problems (show the correct answer and the steps required to achieve it.)
- Submit Problem Set \#5 via email (mike.russell@mhcc.edu) as a single PDF file (use CamScanner (https://camscanner.com), CombinePDF (https:// combinepdf.com), etc.) by 11:59 PM Wednesday, February 19.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

CH 222 Problem Set \#5

* Complete problem set on separate pieces of paper showing all work, circling final answers, etc.
* Self correct your work before turning it in to the instructor.

Covering: Chapter Ten, Chapter Eleven and Chapter Guide Five
Important Tables and/or Constants: $\mathbf{R}=\mathbf{8 . 3 1 4 5} \mathbf{J ~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}}$, "Cubic Unit Cells Guide" (Handout), "Solids" (Lab)

Figure for Problem One

1. Use the figure above to answer the following questions:
a. What is the equilibrium vapor pressure of diethyl ether at room temperature (approximately $20^{\circ} \mathrm{C}$)?
b. Place diethyl ether, ethanol and water in order of increasing intermolecular forces.
c. If the pressure in a flask is 400 mm Hg and the temperature is $40^{\circ} \mathrm{C}$, which of the three compounds are liquids and which are gases?
2. Answer each of the following questions with increases, decreases or does not change.
a. If the intermolecular forces in a liquid increase, the normal boiling point of the liquid
\qquad _.
b. If the intermolecular forces in a liquid decrease, the vapor pressure of the liquid
\qquad _.
c. If the surface area of a liquid decreases, the vapor pressure \qquad .
d. If the temperature of a liquid increases, the equilibrium vapor pressure \qquad .

Problem Set \#5 continues on the next page

Phase Diagram for Xenon
3. Use the phase diagram for xenon given above to answer the following questions:
a. In what phase is the xenon found at room temperature and 1.0 atm pressure?
b. If the pressure exerted on a sample is 0.75 atm and the temperature is $-114{ }^{\circ} \mathrm{C}$, in what phase does the substance exist?
c. If you measure the vapor pressure of a liquid sample and find it to be 380 mm Hg , what is the temperature of the liquid phase?
d. What is the vapor pressure of the solid at $-122^{\circ} \mathrm{C}$?
e. Which is the denser phase, solid or liquid? Explain.
4. The specific heat capacity of silver is $0.235 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$. Its melting point is $962{ }^{\circ} \mathrm{C}$ and its heat of fusion is $11.3 \mathrm{~kJ} / \mathrm{mol}$. What quantity of heat, in Joules, is required to change 5.00 g of silver from a solid at $25^{\circ} \mathrm{C}$ to a liquid at $962^{\circ} \mathrm{C}$?
5. If your air conditioner is more than several years old, it may use the chlorofluorocarbon $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ as the heat transfer fluid. The normal boiling point of $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ is $-29.8{ }^{\circ} \mathrm{C}$, and the enthalpy of vaporization is $20.11 \mathrm{~kJ} / \mathrm{mol}$. The gas and the liquid have specific heats of 117.2 $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ and $72.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, respectively. How much heat is evolved when 20.0 g of $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ is cooled from $+40.0^{\circ} \mathrm{C}$ to $-40.0^{\circ} \mathrm{C}$?
6. Tungsten crystallizes in the unit cell shown to the right.
a. What type of unit cell is this?
b. How many tungsten atoms occur per unit cell?
c. If the edge of the unit cell is 316.5 pm , what is the radius of a tungsten atom?

Problem Set \#5 continues on the next page

Tungsten unit cell
7. Calcium metal crystallizes in a face-centered cubic unit cell. The density of the solid is 1.54 $\mathrm{g} / \mathrm{cm}^{3}$. What is the radius of a calcium atom?
8. Equilibrium vapor pressures of dichlorodimethylsilane, $\mathrm{SiCl}_{2}\left(\mathrm{CH}_{3}\right)_{2}$, are given below.

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Vapor Pressure $(\mathbf{m m ~ H g})$
-0.4	40.
+17.5	100.
+51.9	400.
+70.3	760.

a. What is the normal boiling point of dichlorodimethylsilane?
b. Plot these data as $\ln P$ versus $1 / T$. Perform a linear regression on the data. At what temperature does the liquid have an equilibrium vapor pressure of 250 mm Hg ?
c. Calculate the molar enthalpy of vaporization for dichlorodimethylsilane using the Clausius-Clapeyron equation.
9. Fill in the blanks in the table. All solutions are aqueous.

Compound	Molality	Weight Percent	Mole Fraction
KNO_{3}	-	10.0	-
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	0.0183	-	-
$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	-	-	0.0599

10. Concentrated aqueous sulfuric acid has a density of $1.84 \mathrm{~g} / \mathrm{cm}^{3}$ and is 95.0% by weight $\mathrm{H}_{2} \mathrm{SO}_{4}$. What is the molarity of this acid? What is the molality?
11. Silver ion has an average concentration of 28 ppb (parts per billion) in U.S. water supplies.
a. What is the molality of the silver ion?
b. If you wanted $1.0 \times 10^{2} \mathrm{~g}$ of silver and could recover it chemically from water supplies, what volume of water, in liters, would you have to treat? Assume the density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$.
12. Hydrogen gas has a Henry's law constant of $1.07 \times 10^{-6} \mathrm{M} / \mathrm{mm} \mathrm{Hg}$ at $25^{\circ} \mathrm{C}$ when dissolving in water. If the total pressure of the gas $\left(\mathrm{H}_{2}\right.$ plus water vapor) over water is 1.00 atm , what is the concentration of H_{2} in the water in grams per milliliter? The vapor pressure of water at $25^{\circ} \mathrm{C}$ is 23.8 mm Hg .
13. Nonvolatile urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$, which is widely used in fertilizers and plastics, is quite soluble in water. If you dissolve 9.00 g of urea in 10.0 mL of water, what is the vapor pressure of the solution at $24^{\circ} \mathrm{C}$? Assume the density of water is $1.00 \mathrm{~g} / \mathrm{mL}$, and the vapor pressure of water at $24^{\circ} \mathrm{C}$ is 22.4 mm Hg .
14. What is the boiling point of a solution composed of 0.755 g of caffeine, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~N}_{4}$, in 95.6 g of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$? The normal boiling point for benzene is $80.10^{\circ} \mathrm{C}$ and K_{bp} for benzene $=$ $2.53^{\circ} \mathrm{C} / \mathrm{m}$.

Problem Set \#5 continues on the next page
15. Some ethylene glycol, $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, is added to your car's cooling system along with 5.0 kg of water. If the freezing point of the water-glycol solution is $-15.0^{\circ} \mathrm{C}$, what mass of $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ must have been added? The normal freezing point for water is $0.0^{\circ} \mathrm{C}$ and $K_{\text {fp }}$ for water $=1.86^{\circ} \mathrm{C} / \mathrm{m}$.
16. Butylated hydroxyanisole (BHA) is used as an antioxidant in margarine and other fats and oils; it prevents oxidation and prolongs the shelf life of the food. What is the molar mass of BHA if 0.640 g of the compound, dissolved in 25.0 g of chloroform $\left(\mathrm{CHCl}_{3}\right)$, produces a solution whose boiling point is $62.22{ }^{\circ} \mathrm{C}$? The normal boiling point for chloroform is 61.70 ${ }^{\circ} \mathrm{C}$ and K_{bp} for chloroform $=3.63^{\circ} \mathrm{C} / \mathrm{m}$.
17. The organic compound aluminon is used as a reagent to test for the presence of the aluminum ion in aqueous solution. A solution of 2.50 g of aluminon in 50.0 g of water freezes at -0.197 ${ }^{\circ} \mathrm{C}$. What is the molar mass of aluminon? The normal freezing point for water is $0.000{ }^{\circ} \mathrm{C}$ and $K_{\text {fp }}$ for water $=1.86^{\circ} \mathrm{C} / \mathrm{m}$.
18. Estimate the osmotic pressure of human blood at $37{ }^{\circ} \mathrm{C}$. Assume blood is isotonic with a 0.154 M NaCl solution, and use a theoretical van't Hoff i factor for NaCl .

This page intentionally left blank for printing purposes
\qquad
Worksheet due dates: Mon, 2/24, 1:10 PM (01), Wed, 2/26, 1:10 PM (H1) or 11:59 PM (W1, email). To complete, show detailed steps on how to get the given answer for each problem. Failure to use this form for work and answers will result in a point penalty.

Problem 1: A 3.31 g sample of lead(II) nitrate is heated in an evacuated cylinder with a volume of 1.62 L . The salt decomposes when heated according to the equation below. Assuming complete decomposition, what is the pressure in the cylinder after decomposition and cooling to a temperature of $300 . \mathrm{K}$? Assume that the $\mathrm{PbO}(\mathrm{s})$ takes up negligible volume.

$$
2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \rightarrow 2 \mathrm{PbO}(\mathrm{~s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Answer to Problem \#1: $\mathbf{0 . 3 8 0} \mathbf{~ a t m}$

Problem 2: How much energy is needed to convert 64.0 g of ice at $0.00^{\circ} \mathrm{C}$ to liquid water at $75.0^{\circ} \mathrm{C}$? Note that the Heat of fusion for water $=333 \mathrm{~J} / \mathrm{g}$.

Problem 3: Concentrated nitric acid is 70.0% by mass HNO_{3} in water. The density of this acid is $1.42 \mathrm{~g} / \mathrm{cm}^{3}$. What is the molarity of the acid?

Answer to Problem \#3: 15.8 M

Problem 4: A 5.50 g sample of a compound is dissolved in 250 g of benzene. The freezing point of this solution is $1.02{ }^{\circ} \mathrm{C}$ below that of pure benzene. What is the molar mass of the compound? $\left(\mathrm{k}_{\mathrm{f}}\right.$ for benzene $\left.=-5.12{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

Answer to Problem \#4: 110. g/mol

Problem 5: Polyethylene is a synthetic polymer or plastic with many uses. 1.40 g of a polyethylene sample was dissolved in enough benzene to make $100 . \mathrm{mL}$ of solution, and the osmotic pressure was found to be 1.86 torr at $25^{\circ} \mathrm{C}$. What is the molar mass of the polyethylene?

CH 222 Winter 2025: Problem Set \#6 Instructions

Step One (all sections):

- Learn the material for Problem Set \#6 by reading Chapter 12 and Chapter 21 of the textbook and/or by watching the videos found on our website (https:// mhchem.org/222)
- Try the problems for Problem Set \#6 found on the next pages on your own first. Write out the answers (and show your work) by hand (on a tablet or paper); do not type your answers (and work) to avoid a point penalty. If you write the answers on the problem set itself, you will receive fewer points. Include your name on your problem set!

Step Two:
Section 01 and H1: We will go over Problem Set \#6 during recitation. Self correct all problems of your problem set before turning it in at the end of recitation.

- Section 01: due Monday, March 10 at 1:10 PM
- Section H1: due Wednesday, March 12 at 1:10 PM

Section W1: Watch the recitation video for Problem Set \#6 here: http://mhchem.org/y/y.htm

- Self correct all of the problems while viewing the video. Mark correct problems with a star (or other similar mark), and correct all incorrect problems (show the correct answer and the steps required to achieve it.)
- Submit Problem Set \#6 via email (mike.russell@mhcc.edu) as a single PDF file (use CamScanner (https://camscanner.com), CombinePDF (https:// combinepdf.com), etc.) by 11:59 PM Wednesday, March 12.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

CH 222 Problem Set \#6

* Complete problem set on separate pieces of paper showing all work, circling final answers, etc.
* Self correct your work before turning it in to the instructor.

Covering: Chapter Twelve, Chapter Twenty-one and Chapter Guide Six
Important Tables and/or Constants: $\mathbf{R}=\mathbf{8 . 3 1 4 5} \mathbf{J ~ m o l}^{-1} \mathbf{K}^{-1}$, "Reaction Mechanisms Guide" (Handout)

1. Give the equation for the relative rates of disappearance of reactants and formation of products for the following reaction:
a. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
b. If $\Delta\left[\mathrm{H}_{2}\right] / \Delta t=-4.5 \times 10^{-4} \mathrm{M} \mathrm{min}^{-1}$, what is $\Delta\left[\mathrm{NH}_{3}\right] / \Delta t$?
2. Nitrosyl bromide, NOBr , is formed from NO and Br_{2}. Experiments show that this reaction is second order in NO and first order in Br_{2}. The equation:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{~g})
$$

a. Write the rate law equation for the reaction.
b. How does the initial reaction rate change if the concentration of Br_{2} is changed from 0.0022 M to 0.0066 M ?
c. What is the change in the initial rate if the concentration of NO is changed from 0.0024 M to 0.0012 M ?
3. The reaction:

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

was studied at $904{ }^{\circ} \mathrm{C}$ and the data in the table below were collected.

Reactant Concentration (M)

$[\mathbf{N O}]$	$\left[\mathbf{H}_{\mathbf{2}}\right]$	Rate of Appearance of $\mathbf{N}_{\mathbf{2}}\left(\mathbf{M ~ s}^{\mathbf{- 1}}\right)$
0.420	0.122	0.136
0.210	0.122	0.0339
0.210	0.244	0.0678
0.105	0.488	0.0339

a. Determine the order of the reaction for each reactant.
b. Write the rate law equation for the reaction.
c. Calculate the rate constant for the reaction.
d. Find the rate of appearance of N_{2} at the instant when $[\mathrm{NO}]=0.350 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=$ 0.205 M .
4. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in CCl_{4} is a first order reaction. If 2.56 mg of $\mathrm{N}_{2} \mathrm{O}_{5}$ is present initially, and 2.50 mg is present after 4.26 min at $55^{\circ} \mathrm{C}$, what is the value of the rate constant, k, at $55^{\circ} \mathrm{C}$?
5. The conversion of cyclopropane to propene occurs with a first order rate constant equal to $5.4 \times 10^{-2} \mathrm{~h}^{-1}$. How long will it take for the concentration of cyclopropane to decrease from an initial concentration of 0.080 M to 0.020 M ?
6. Gold-198 is used in the diagnosis of liver problems. The half-life of ${ }^{198} \mathrm{Au}$ is 2.69 days. If you begin with $2.8 \mu \mathrm{~g}$ of this gold isotope, what mass remains after 10.8 days?

Problem Set \#6 continues on the next page

Problem Set \#6, Continued from previous page

7. Strontium-90 is a hazardous radioactive isotope that resulted from atmospheric testing. A sample of strontium carbonate containing ${ }^{90} \mathrm{Sr}$ is found to have an activity of $1.00 \times 10^{3} \mathrm{dpm}$. One (1.00) year later the activity of this sample is 975 dpm .
a. Calculate the half-life of strontium- 90 from this information.
b. How long will it take for the sample activity to drop to 1.00% of its initial value?
8. Ammonia decomposes when heated according to the equation shown below. The data in the table for this reaction were collected at a high temperature. Plot $\left[\mathrm{NH}_{3}\right]$ versus time, $\ln \left[\mathrm{NH}_{3}\right]$ versus time and $1 /\left[\mathrm{NH}_{3}\right]$ versus time. What is the order with respect to NH_{3} ? Find the rate constant for the reaction from the appropriate slope.

The reaction: $\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{NH}_{2}(\mathrm{~g})+\mathrm{H}(\mathrm{g})$

Time (h)	$\left[\mathbf{N H}_{\mathbf{3}}\right](\mathbf{M})$
0	8.00×10^{-7}
25	6.75×10^{-7}
50	5.84×10^{-7}
75	5.15×10^{-7}

9. Answer the following questions based on the reaction coordinate diagram shown to the right.
a. Is the reaction exothermic or endothermic?
b. Does this reaction occur in more than one step? If so, how many?
10. What is the rate law equation for each of the following elementary reactions?
a. $\mathrm{Cl}(\mathrm{g})+\mathrm{ICl}(\mathrm{g}) \rightarrow \mathrm{I}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b. $\mathrm{O}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{2}(\mathrm{~g})$
c. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

11. The reaction of $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{CO}(\mathrm{g})$ is thought to occur in two steps:

Reaction Diagram
Step 1 (slow) $\quad \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g})$
Step 2 (fast) $\quad \mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$
a. Add the elementary steps to find the overall, stoichiometric equation.
b. What is the molecularity of each step? Which step is rate determining?
c. For this mechanism to be consistent with kinetic data, what must be the experimental rate law equation?
d. Identify any intermediates and/or catalysts in this reaction.
12. The data in the table below shows the temperature dependence of the rate constant for the reaction $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$. Plot these data in the appropriate way to derive the activation energy and frequency factor for the reaction.

$\mathbf{T}(\mathbf{K})$	$\boldsymbol{k}\left(\mathbf{s}^{\mathbf{- 1}}\right)$
338	4.87×10^{-3}
328	1.50×10^{-3}
318	4.98×10^{-4}
308	1.35×10^{-4}
298	3.46×10^{-5}
273	7.87×10^{-7}

Problem Set \#6 continues on the next page

Problem Set \#6, Continued from previous page

13. Complete the following nuclear equations. Write the mass number, atomic number and symbol for the remaining particle(s).
a. $\quad{ }_{4}^{9} \mathrm{Be}+? \rightarrow{ }_{3}^{6} \mathrm{Li}+{ }_{2}^{4} \mathrm{He}$
b. ${ }_{95}^{241} \mathrm{Am}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{97}^{243} \mathrm{Bk}+$?
c. ${ }_{92}^{238} \mathrm{U}+? \rightarrow{ }_{100}^{249} \mathrm{Fm}+5{ }_{0}^{1} \mathrm{n}$
d. Gallium -67 decays by electron capture.
e. Potassium-38 decays with positron decay.
f. Technetium-99m decays with γ emission.
14. Calculate the binding energy in kilojoules per mole of nucleons of P for the formation of ${ }^{30} \mathrm{P}$ and ${ }^{31} \mathrm{P}$. The required masses (in grams per mole) are ${ }_{1}^{1} \mathrm{H}=1.00783,{ }_{0}^{1} \mathrm{n}=1.00867$, ${ }_{15}^{30} \mathrm{P}=29.97832$ and ${ }_{15}^{31} \mathrm{P}=30.97376$.
\qquad
Worksheet due dates: At the time of your Lecture Final ($01, H 1$), Wed, 3/19, 11:59 PM (W1, email). To complete, show detailed steps on how to get the given answer for each problem. Failure to use this form for work and answers will result in a point penalty.

Problem 1: The following data was collected for the reaction shown below. Determine the value of the rate constant (k). Be sure to show the orders of each reactant in this reaction (and how you got them!)

$$
2 \mathrm{MnO}_{4}^{-1}(\mathrm{aq})+5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{Mn}^{2+}(\mathrm{aq})+10 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$\left[\mathrm{MnO}_{4}^{-1}\right]$	$\left[\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{H}^{+}\right]$	Rate $(\mathrm{M} / \mathrm{s})$
$1 * 10^{-3}$	$1 * 10^{-3}$	1.0	$2 * 10^{-4}$
$2 * 10^{-3}$	$1 * 10^{-3}$	1.0	$8 * 10^{-4}$
$2 * 10^{-3}$	$2 * 10^{-3}$	1.0	$1.6 * 10^{-3}$
$2 * 10^{-3}$	$2 * 10^{-3}$	2.0	$1.6 * 10^{-3}$

Answer to Problem \#1: $\mathbf{k}=\mathbf{2}$ * $\mathbf{1 0}^{5}$

Problem 2: The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}\left(2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{NO}_{2}(\mathrm{~g})\right)$ is first order in $\mathrm{N}_{2} \mathrm{O}_{5}$ with $\mathrm{k}=1.0 * 10^{-5} \mathrm{~s}^{-1}$. If the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $1.0 * 10^{-3} \mathrm{M}$, calculate the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after $1.0 * 10^{5}$ seconds.

Problem 3: The rate constant k for a reaction is $2.6 * 10^{-8}$ when the reaction proceeds at 300.0 K , and the activation energy is $98 \mathrm{~kJ} /$ mol. Determine the frequency factor, A, for the reaction. What is the value of k at 310 K ?

Answer to Problem \#3: $\mathbf{A}=\mathbf{3 . 0} \boldsymbol{*} \mathbf{1 0}^{\mathbf{9}}, \mathbf{k}=\mathbf{9 . 2} * \mathbf{1 0}^{-8}$

Problem 4: A sample of wood from an Egyptian mummy case gives a ${ }^{14} \mathrm{C}$ count of $9.4 \mathrm{cpm} / \mathrm{gC}$ (counts per minute per gram of carbon.) How old is the wood? (The initial decay rate of ${ }^{14} \mathrm{C}$ is $15.3 \mathrm{cpm} / \mathrm{gC}$, and the ${ }^{14} \mathrm{C}$ half-life is 5730 years.)

Answer to Problem \#4: 4.0 * $\mathbf{1 0}^{\mathbf{3}}$ years
Problem 5: One of the hopes for solving the world's energy problem is to make use of the following fusion reaction:

$$
{ }^{2} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+{ }^{1} \mathrm{n}+\text { energy }
$$

How much energy (in kJ) is released when one mole of deuterium is fused with one mole of tritium according to the above reaction? The masses of the atoms and neutrons are:
${ }^{2} \mathrm{H}: 2.0140 \mathrm{amu}$
${ }^{3} \mathrm{H}: 3.01605 \mathrm{amu}$
${ }^{4} \mathrm{He}: 4.002603 \mathrm{amu}$
${ }^{1} \mathrm{n}: 1.008665 \mathrm{amu}$

CH 222: Lectures and Labs

Lectures: MWF from 9-9:50 AM in AC 1303 (this room)

- Lectures recorded, available soon afterwards
- Lecture notes to print available (under "Problem Sets and Handouts", mhchem.org/222), get CH 222 Companion as soon as possible

Labs (Section 01): Mondays from 1:10-5 PM

- Start in room AC 2501 (not AC 1303)
- Move to AC 2507 ("the lab") around 3 PM
- For first day, bring a printed copy of the "Chromatography" Lab (mhchem.org/222), a pair of safety glasses (Dollar store ok) and your calculator

MAR

Two Extreme Forms of Chemical Bonds
IOnic - complete transfer of
electrons from one atom to
another, metals + nonmetals

Covalent - electrons shared between atoms, mostly nonmetals
Most bonds are somewhere in between
Also Metallic - for metals, studied later

Bonding Overview

Ionic Forces - Coulomb's Law

CH 221
Flashback:

Covalent Bonding

Covalent bonds arise from the mutual attraction of 2 nuclei for the same electrons.

A covalent bond is a balance of attractive and repulsive forces.

MAR

Covalent Bonding

Covalent bonding will be the focus of the first two chapters
We will re-visit lonic bonding and Metallic bonding in a future chapter
Important to know when a compound is ionic, covalent or metallic!

Bond and Lone Pairs

Valence electrons are distributed as
shared or BOND PAIRS and unshared or LONE PAIRS.

This is called a LEWIS ELECTRON DOT structure
3 lone pairs +1 bond pair $=4$ pairs total

Electron distribution is depicted with Lewis electron dot structures

Valence electrons are distributed as shared or BOND PAIRS and unshared or LONE PAIRS.

Valence Electrons

Electrons are divided between core and valence electrons B 1s $\mathbf{2}^{\mathbf{2}} \mathbf{s}^{\mathbf{2}} \mathbf{2 p} \mathbf{p}^{\mathbf{1}}$
Core $=[\mathrm{He}]$, valence $=2 s^{2} 2 p^{1}$
2 core e-, 3 valence e-

$\mathrm{Br} \quad[\mathrm{Ar}] 3 d^{10} \mathbf{4} \mathbf{s}^{\mathbf{2}} \mathbf{4} p^{5}$
Core $=[\mathrm{Ar}] 3 d^{10}$, valence $=4 s^{2} \mathbf{4} p^{5}$
28 core $e^{-}, 7$ valence e^{-}

Building Lewis Structures

No. of valence electrons of a main group atom = Group number

Building a Lewis Dot Structure

For Groups 1A - 4A, no. of bond pairs = group No. of valence electrons of an atom = Group number
For Groups 1A-4A (14), no. of bond pairs = group number
For Groups 5A (15) - 7A (17), BPs = 8 - Grp. No.
For Groups 5A-7A, BPs = 8-Grp. No.

Building a Lewis Dot Structure

Ammonia, NH_{3}

1. Count valence electrons

$$
\begin{aligned}
& H=1 \text { and } N=5 \\
& \text { Total }=(3 \times 1)+5 \\
& =8 \text { electrons or } \\
& 4 \text { pairs of electrons }
\end{aligned}
$$

2. Decide on the central atom; never H.

Central atom is atom of lowest affinity for electrons.
Therefore, N is central

Except for H (and sometimes atoms of 3rd and higher periods),

$$
\mathrm{BPs}+\mathrm{LPs}=4
$$

This observation is called the
OCTET RULE

Building a Lewis Dot Structure

3. Form a sigma bond (single bond) between the central atom and surrounding
 atoms.
4. Remaining electrons form LONE PAIRS to complete octet as needed.

3 BOND PAIRS and 1 LONE PAIR. Note that N has a share in 4 pairs (8 electrons), while H shares 1 pair.

Sulfite ion, $\mathrm{SO}_{3}{ }^{2-}$
Step 1. Central atom $=S$
Step 2. Count valence electrons
$S=6$
$3 \times \mathbf{O}=3 \times 6=18$
Negative charge $=2$ TOTAL = 26 e- or 13 pairs
Step 3. Form sigma bonds
10 pairs of electrons are now left.

Carbon Dioxide, CO_{2}

1. Central atom $=$ \qquad
2. Valence electrons =_ or _ pairs
3. Form sigma bonds.

This leaves 6 pairs.
4. Place lone pairs on outer atoms.

Sulfite ion, $\mathrm{SO}_{3}{ }^{2-}$
Remaining pairs become lone pairs, first on outside atoms and then on central atom.

Each atom is surrounded by an octet of
electrons. electrons.

MAR

Sulfur Dioxide, SO_{2}

Sring in
left pair

OR bring in

This leads to the following structures.

These equivalent structures are called RESONANCE STRUCTURES. The true electronic structure is a HYBRID of the two.

Boron Trifluoride

Central atom =
Valence electrons = or electron pairs =
Assemble dot structure

	The B atom has a share in only 6 electrons (or 3 pairs). B atom in many molecules is electron deficient.
.	Also common for Al and Be

Odd \# of electrons: NO_{2}

Paramagnetic compounds \& free radicals

For NO_{2}, central atom $=$
Valence electrons $=$ \qquad or pairs.
Odd e- occupies its own "space"
Form sigma bonds and distribute electron pairs.

MAR

Violations of the Octet Rule

Sulfur Tetrafluoride, SF $_{4}$

Central atom =
Valence electrons $=\ldots \quad$ or ___ pairs.
Form sigma bonds and distribute electron pairs.

MAR

Formal Atom Charges

Atoms in molecules often bear a charge (+ or -).
The predominant resonance structure of a molecule is the one with charges as close to 0 as possible.

Formal charge $=$ Group number $-1 / 2$ (number bonding electrons) - (number lone pair electrons (lpe)),
or
FC = GN - bonds - Ipe
Sum of all formal charges in a molecule must equal ionic charge

See Guide to Formal Charges

Formal Atom Charges

Formal charge $=$ Group number $-1 / 2($ number bonding electrons) - (number lone pair electrons)
or
FC = GN - bonds - Ipe

Formal Charges In Isomers

MAR
more stable structure

Carbon Dioxide, CO_{2}

Formal Charge $\quad F C=G N$ - bonds - Ipe Comparison with CO_{2}

Boron Trifluoride, BF_{3}

What if we form a B-F double bond to satisfy the B atom octet?

Formal Charge

MAR

MOLECULAR GEOMETRY

MAR See Geometry and Polarity Guide
VSEPR

No. of e- Pairs Around Central Atom	Example	Electron Pair Geometry
2	$\mathrm{~F}-\underbrace{\mathbf{B e}-\mathbf{F}}$	linear
	$\mathbf{1 8 0}^{\circ}$	

3

VSEPR
MAR See Geometry and Polarity Guide
VSEPR

Structure Determination by VSEPR

Ammonia, NH_{3}

1. Draw electron dot structure
2. Count BPs and LPs $=4$
3. The 4 electron pairs are at the corners of a tetrahedron.

ine pair of electrons in tetrahedral position

The ELECTRON PAIR GEOMETRY is tetrahedral.

Structure Determination by VSEPR

Ammonia, NH_{3}
The electron pair geometry is tetrahedral.

The MOLECULAR GEOMETRY - the positions of the atoms - is TRIGONAL PYRAMID

See Geometry and Polarity Guide

Structure Determination by VSEPR

Water, $\mathrm{H}_{2} \mathrm{O}$

1. Draw electron dot structure
2. Count BPs and LPs $=4$

3. The 4 electron pairs are at the corners of a tetrahedron.

The electron pair

 geometry is TETRAHEDRAL

Structure Determination
 by VSEPR

Methanol, $\mathrm{CH}_{3} \mathrm{OH}$

1. Draw electron dot structure

2. Define bond angles 1 and 2

Structure Determination by VSEPR

Water, $\mathrm{H}_{2} \mathrm{O}$

The electron pair geometry is TETRAHEDRAL

The molecular geometry is

- ∞ bent

MAR

Structure Determination by VSEPR

Acetonitrile, $\mathrm{CH}_{3} \mathrm{CN}$
Define bond angles 1 and 2
\mathbf{H}
Angle $1=109^{\circ}$
Angle $2=180^{\circ}$

One C is surrounded by 4 electron
"clouds" and the other by 2 "clouds"

STRUCTURES
WITH CENTRAL ATOMS THAT DO NOT OBEY THE OCTET RULE

Usually occurs with Group 3A elements and with those of 3rd period and higher.

Compounds with 3 Pairs Around the Central Atom

Compounds with 5 or 6 Pairs Around the Central Atom

The B atom is surrounded by only 3 electron pairs. Bond angles are 120°

Geometry described as planar trigonal or trigonal planar

MAR

Sulfur Tetrafluoride, SF $_{4}$
Molecular geometry

Sulfur Tetrafluoride, SF $_{4}$
= seesaw

Electron pair geometry
= trigonal bipyramid (because there are 5 pairs around the \mathbf{S})

120°

Other Molecular Geometries

Bond Order

Fractional bond orders occur in molecules with resonance structures.
Consider NO_{2}

Bond order $=\frac{\text { Total \# of } e \text { - pairs used for a type of bond }}{\text { Total \# of bonds of that type }}$
Bond order $=\frac{3 \mathrm{e}-\text { pairs in } \mathrm{N}-\mathrm{O} \text { bonds }}{2 \mathrm{~N}-\mathrm{O} \text { bonds }}$
The N-O bond order $=1.5$

Bond Order
\# of bonds between a pair of atoms

Bond order is related to two important bond properties:
(a) bond length
(b) bond energy

Bond length is inversely proportional to bond order

Bond energy is proportional to bond order

Bond lengths measured in pm ($1 \mathrm{pm}=10^{-12} \mathrm{~m}$) or Angstroms ($1 \AA=10^{-10} \mathrm{~m}$)

Bond energies measured in $k J\left(1 \mathrm{~kJ}=10^{3} \mathrm{~J}\right)$

Page III-7-10 / Chapter Seven Lecture Notes

Bond Energy is measured by the energy required to break a bond
The GREATER the number of bonds (bond order) the LARGER the bond energy and the SHORTER the bond.

Bond Energy

$$
\begin{aligned}
& : \dot{Q}=\dot{\mathrm{O}}: \\
& 121 \mathrm{pm} \\
& \text { Bond order =2 } \\
& 498 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Bond Energy

Using Bond Energies

Estimate the energy of the reaction: $\mathrm{H}-\mathrm{H}+\mathrm{Cl}-\mathrm{Cl} \rightarrow 2 \mathrm{H}-\mathrm{Cl}$
Net energy $=\Delta \mathrm{H}_{\mathrm{rxn}}=$ energy required to break bonds - energy evolved when bonds formed
$\mathrm{H}-\mathrm{H}=436 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{Cl}-\mathrm{Cl}=243 \mathrm{~kJ} / \mathrm{mol}$ $\mathrm{H}-\mathrm{Cl}=431 \mathrm{~kJ} / \mathrm{mol}$

Using Bond Energies

$\Delta \mathbf{H}=$ bonds broken -

 bonds formed
Molecular Polarity

Boiling point $=100{ }^{\circ} \mathrm{C}$

Why do ionic compounds

Why do water and methane differ so much in their boiling points?

Bond Polarity

HCl is POLAR because it has a positive end and a negative end (dipoles).

Cl has a greater share in bonding electrons than does H .
$\mathbf{C l}$ has slight negative charge ($-\delta$) and \mathbf{H} has slight positive charge (+ δ)

Bond Polarity

Due to polarity, the H-CI bond energy is GREATER than expected for a "pure" covalent bond.

BOND	ENERGY
"pure" bond	$339 \mathrm{~kJ} / \mathrm{mol}$ calc'd
real bond	$432 \mathrm{~kJ} / \mathrm{mol}$ measured

Difference $=92 \mathrm{~kJ}$. This difference is proportional to the difference in ELECTRONEGATIVITY, χ.

The only person to receive two unshared Nobel prizes (for Peace and Chemistry)
Chemistry areas: bonding, electronegativity, protein structure
A great Oregonian and a great Scientist

Bond Polarity

Dipole moment, μ, can measure dipole strength by placing molecules in electrical field. Polar molecules will align when the field is on. Nonpolar molecules will not.

Polar molecules

Nonpolar molecules

Electronegativity, χ

Atom with lowest χ is the center atom in most molecules.
Relative values of χ determine BOND POLARITY (and point of attack on a molecule).

Bond Polarity

Which bond is more polar (or DIPOLAR)?

	O-H	O-F
	3.5-2.1	3.5-4.0
$\Delta \chi$	1.4	0.5
	$\therefore \mathrm{OH}$ is more polar than OF	
	O-H	O-F
	- δ + δ	+ δ - δ

and polarity is "reversed"

Polar or Nonpolar?

Compare CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Which one is polar?

CH_{4} through CCl_{4} Polarity

Molecular Polarity

Molecules will be polar if
a) bonds are polar

AND
b) the molecule is NOT "symmetric"

All above are symmetric and NOT polar (nonpolar)

Polar or Nonpolar?

Consider AB_{3} molecules: $\mathrm{BF}_{3}, \mathrm{Cl}_{2} \mathrm{CO}$, and NH_{3}.

BF_{3}

$\mathrm{Cl}_{2} \mathrm{CO}$

Polar and nonpolar molecules of the type $A B_{3}$

MAR

More on Molecular Polarity

All of these molecules are nonpolar due to their symmetry.

End of Chapter 7

See:

- Chapter Seven Study Guide
- Chapter Seven Concept Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

MAR

MAR
Important Equations, Constants, and Handouts from this Chapter:

- know how to determine if ionic, covalent or metallic bonds are present
- ionic bond strength determined by Coulomb's Law
- \# valence electrons = group number (US periodic table!)
- know the relationship between bond order, bond length and bond energy
- see Geometry and Polarity Guide and Bond Enthalpies and Electronegativities (handouts)

Formal Charge $=$ Group Number bonds - lone pair electrons FC $=\mathbf{G N}$ - bonds - Ipe
$\Delta H_{r x n}=$ bonds broken bonds formed

Lewis Structures / VSEPR:
bonding pairs, lone pairs, valence electrons, core electrons, total electrons, sigma bond, pi bond, VSEPR names (EPG \& MG), formal charge, bond angles, polar, nonpolar, paramagnetic, diamagnetic, resonance structures, isomers

End of Chapter Problems: Answers
See practice problem set \#1 and self quizzes for Lewis Structure / VSEPR examples and practice

1. Which of the following elements are capable of forming compounds in which the indicated atom has more than four valence electron pairs? $\mathrm{N}, \mathrm{As}, \mathrm{C}, \mathrm{O}, \mathrm{Br}, \mathrm{Be}, \mathrm{S}, \mathrm{Se}$
2. Which compound in each of the following pairs should require the higher temperature to melt?
a. KBr or CsBr
b. SrS or CaS
c. LiF or BeO
3. Describe the EPG and MG around N in $\mathrm{NH}_{2} \mathrm{Cl}$.
4. Describe the EPG and MG around CI in CIF_{5}.
5. Which molecules are polar and which are nonpolar? $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CO}_{2}, \mathrm{CIF}$, CCl_{4}
6. Give the bond order for each bond in the following molecules or ions: $\mathrm{CH}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{NO}_{2}{ }^{+1}, \mathrm{CH}_{4}$
7. Oxygen difluoride is quite reactive with water, giving oxygen and HF : $\mathrm{OF}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{g}) \Delta \mathrm{H}^{\circ} \mathrm{rxn}=-318 \mathrm{~kJ}$
Using bond energies, calculate the bond dissociation energy of the O-F
bond in OF_{2}.

See practice problem set \#1 and self quizzes for
Lewis Structure / VSEPR examples and practice

1. $\mathrm{As}, \mathrm{Br}, \mathrm{S}$ and Se
2. a. KBr b. $\mathrm{CaS} \mathrm{c} . \mathrm{BeO}$
3. tetrahedral and trigonal pyramid
4. octahedral and square pyramid
5. trigonal bipyramid and seesaw
6. polar: $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{ClF}$ nonpolar: $\mathrm{CO}_{2}, \mathrm{CCl}_{4}$
7. $\mathrm{CH}_{2} \mathrm{O}(2 \times \mathrm{BO}=1(\mathrm{C}-\mathrm{H}), 1 \times \mathrm{BO}=2(\mathrm{C=O})), \mathrm{CO}_{2}(2 \times \mathrm{BO}=2(\mathrm{C}-\mathrm{O})), \mathrm{NO}_{2}+1$ $(2 \times B O=2(\mathrm{~N}-\mathrm{O})), \mathrm{CH}_{4}(4 \times \mathrm{BO}=1(\mathrm{C}-\mathrm{H}))$
8. $D(O-F)=195 \mathrm{~kJ} / \mathrm{mol}$

Two Theories of Bonding

VALENCE BOND (VB) THEORY Linus Pauling
valence electrons are localized between atoms (or are lone pairs)
half-filled atomic orbitals overlap to form bonds.
electrons stabilized by 2 nuclei
$M A$.

MOLECULAR ORBITAL (MO) THEORY - Robert Mulliken
valence electrons are delocalized over entire molecule in molecular orbitals

$M A R$

Sigma Bond Formation by Orbital Overlap

Two s orbitals overlap

> Sigma Bond Formation by Orbital Overlap

Using Valence Bond Theory
Bonding in BF_{3}

Bonding in BF_{3}

How to account for 3 bonds 120° apart using a spherical s orbital and p orbitals that are 90° apart?

Pauling said to modify VB approach with ORBITAL HYBRIDIZATION

- mix available orbitals to form a new set of orbitals - HYBRID ORBITALS that will give the maximum overlap in the correct geometry.

Bonding in BF_{3}

The three hybrid orbitals are made from 1 s orbital and 2 p orbitals create $3 \mathbf{s p}^{2}$ hybrids.

Now we have 3, half-filled HYBRID orbitals that can be used to form planar B-F sigma bonds.

Bonding in CH_{4}

How do we account

 for 4 C-H sigma bonds 109° apart?Need to use 4 atomic orbitals - s, $\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}$, and p_{z} - to form 4 new hybrid orbitals pointing in the correct direction.

An orbital from each F overlaps one of the $\mathbf{s p}^{2}$ hybrids to form a B-F σ bond.

Bonding in a Tetrahedron Formation of Hybrid Atomic Orbitals

4 C atom orbitals hybridize to form four equivalent $\mathbf{s p}^{3}$ hybrid atomic orbitals.

Bonding in a Tetrahedron Formation of Hybrid Atomic Orbitals

4 C atom orbitals hybridize to form four equivalent $\mathbf{s p}^{3}$ hybrid atomic orbitals.

Orbital Hybridization

Bonds	EPG Hybrid	REMAINING p orbs?
2	linear sp	2 p
3	$\underset{\text { planar }}{\text { trigonal }} \quad \mathbf{s p}^{2}$	1 p
4	tetrahedral $\mathbf{s p}^{3}$	none
5	$\underset{\text { bipyramid }}{\text { trigonal }} \mathrm{sp}^{3} \mathrm{~d}$	---
6	octahedral sp ${ }^{3} \mathbf{d}^{2}$	---
	see: VSEPR Guide	

Bonding in Glycine

MAR

Multiple Bonds

Consider ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$

Page III-8-3 / Chapter Eight Lecture Notes

Sigma Bonds in $\mathrm{C}_{2} \mathrm{H}_{4}$

The unused p orbital on each C atom contains an electron, and this p orbital overlaps the porbital on the neighboring atom to form the π bond.

σ and π Bonding in $\mathrm{C}_{2} \mathrm{H}_{2}$

$\mathrm{C}_{2} \mathrm{H}_{2}$ has a triple bond
= π Bonding in $\mathrm{C}_{2} \mathrm{H}_{4}$
The unused p orbital on each C atom contains an electron and this p orbital overlaps the p orbital on the neighboring atom to form the π bond.

MAR

Multiple Bonding in $\mathrm{C}_{2} \mathrm{H}_{4}$

Consequences of Multiple
Bonding
There is restricted rotation around $\mathrm{C}=\mathrm{C}$ bond.

Consequences of Multiple Bonding

 Restricted rotation around $\mathrm{C}=\mathrm{C}$ bond.
trans-but-2-ene

Advantages of MO Theory

Dioxygen should be electron paired (diamagnetic) by VB Theory, but dioxygen is actually paramagnetic. MO Theory accounts for paramagnetism of $\mathrm{O}_{\mathbf{2}}$

Molecular Orbital Type

When two atomic 1s H orbitals combine,
a bonding (σ) and antibonding (σ^{*})
molecular orbital forms

Molecular Orbital Theory

- Accounts for paramagnetism, color, bonding
- Atomic orbitals delocalize into molecular orbitals
- Bonding, Antibonding and Nonbonding orbitals
- Quite complicated, need computers; we will only look at diatomics (2 atom systems)
from the first and second periods only

MAR

Four Principles of MO Theory

Principle \#1:

Number of Molecular Orbitals = Number of Atomic Orbitals

Two 1s orbitals from two hydrogen atoms create two molecular orbitals in H_{2}

Two 1s orbitals and two 2s orbitals from two lithium atoms create four molecular orbitals in Li_{2}

See Four Principles of MO Handout
MAR

MO Diagram for H_{2}

Antibonding MO

Atomic Orbitals

Bonding MO

MO Diagram for He_{2}

Two 1s electrons in σ, Two 1s electrons in σ^{*}
MAR

Bond Order in MO Theory

Bond Order $=1 / 2$ (\# bonding e- \# antibonding e-)

Bond Order > 0,
stable molecule
Bond Order $=\mathbf{0}$ or $<\mathbf{0}$, unstable molecule In H_{2},
Bond Order =
$1 / 2(2-0)=1 ;$
stable

Four Principles of MO Theory

Principle \#4:

Atomic orbitals combine to give molecular orbitals only when the atomic orbitals are of similar energy

Similar energy = better overlap

$1 s+1 s$	$=$ good MO
$1 s+2 s$	$=$ poor MO
$2 s+2 s$	$=$ good MO
$2 s+2 p$	$=$ poor MO
$3 s+2 s$	$=$ poor MO
\ldots	etc. \ldots

Bond Order in MO Theory

Bond Order = ½ (\# bonding e- - \# antibonding e-)

. He_{2} does not exist

MAR

Example: Dilithium, Li_{2}

Note: no overlap between 1s and 2s

Bond Order $=1 / 2(4-2)=1$
Stable molecule

Would you expect Be_{2} to exist? Why?

p orbitals and π bonds

Three possible p orbitals on each atom - six total p MO orbitals
Two p orbitals create $2 \sigma \mathrm{MO}$ bonds
Four remaining p orbitals create $4 \pi \mathrm{MO}$ bonds
Four p atomic orbitals create four π molecular orbitals, $\pi=$ bonding (2) $\pi^{*}=$ antibonding (2)
... but there's a catch!

Paramagnetism

Paramagnetism exists when unpaired electrons in MO diagram

p orbitals and π bonds

For O, F and Ne ,
σ orbital lower energy than π orbitals
π^{*} orbitals lower energy than σ^{*} orbital

p orbitals and π bonds
For O, F and Ne,
σ orbital lower energy than π orbitals
π^{*} orbitals lower energy than σ^{*} orbital

Example: O_{2}
Bond Order $=2$

MAR See MO Diagram $\left(B_{2}-N_{2}\right)$ Handout

Paramagnetism

Paramagnetism exists when unpaired electrons in MO diagram

is diamagnetic; all electrons paired
p orbitals and π bonds

For B, C and N,
π orbitals lower energy than σ orbital
π^{*} orbitals lower energy than σ^{*} orbital

Example: B_{2}
Bond Order = 1

MAR See MO Diagram $\left(B_{2}-N_{2}\right)$ Handout

Page III-8-7 / Chapter Eight Lecture Notes

Molecular Orbital Notation

Used to abbreviate the MO diagrams

- Ignore core electrons
- Write in order of increasing energy

For N_{2} :
[core electrons] $\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma^{*}{ }^{2 \mathrm{~s}}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}\left(\sigma_{2 \mathrm{p}}\right)^{2}$

Sigma and Pi Bonds

Determine sigma and pi bonds using: \# σ bonds $=1 / 2$ (\# σ bonding $e^{-}-$\# σ antibonding e-) $\# \pi$ bonds $=1 / 2\left(\# \pi\right.$ bonding $e^{-}-\# \pi$ antibonding $\left.e^{-}\right)$ and
\# σ bonds $+\# \pi$ bonds $=$ bond order

For $\boldsymbol{N}_{2}: \quad\left[\right.$ core electrons] $\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma^{*}{ }_{2 \mathrm{~s}}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}\left(\sigma_{2 \mathrm{p}}\right)^{2}$
\# σ bonds $=1 / 2(4-2)=1 \sigma$ bond
\# π bonds $=1 / 2(4-0)=2 \pi$ bonds
bond order $=1 / 2(\mathbf{8}-\mathbf{2})=\mathbf{3}=1 \sigma+2 \pi$ bonds

MO Diagram for Diatomics

Note: all should have [core electrons]
Changes in MO diagrams due to MAR

Ionic Diatomic Molecules

Predicting lonic Diatomic MO diagrams simple Use Hund and Pauli

Example: $\mathrm{O}_{2}-$

Using the O_{2} diagram on the right,
where would you place the extra electron?
Is $\mathrm{O}_{2}-$ more or less stable than O_{2} ? Why?

Application: Vision

Molecular Orbital Theory helps to describe the process of vision photochemistry

Ionic Diatomic Molecules

Predicting lonic Diatomic MO diagrams simple Use Hund and Pauli

Example: $\mathrm{O}_{2}{ }^{+}$
Remove electron from
$\pi^{*}{ }_{2 p}$ orbital
Check bond order, paramagnetism

[Core electrons]

MAR

Application: Band Theory

In metallic bonding, electrons delocalized over metallic lattice - a sea of electrons MO energies identical, excellent overlap Helps explain conductivity, malleability, more

Important Equations, Constants, and Handouts
from this Chapter:

- the bond order, bond energy and bond length relationships still apply to both theories
- know the advantages and disadvantages of the Valence Bond and Molecular Orbital theories
- see the Geometry and Polarity Guide and the two Molecular Orbital Theory diagrams (NBC and FONe) (handouts)

Valence Bond / Hybridization Theory: types of hybridization (sp, sp², etc.), sigma and pi bonds

Molecular Orbital Theory: bonding and antibonding orbitals, sigma bonds and pi bonds, paramagnetic and diamagnetic, the "NBC" vs. "FONe" diagrams
$\frac{1}{2}\left(\#\right.$ bonding $e^{-}-\#$ antibonding $\left.e^{-}\right)$

End of Chapter 8

See:

- Chapter Eight Study Guide
- Chapter Eight Concept Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

MAR

MO Diagram for $\mathrm{Mo}(\mathrm{CO})_{5}=\mathrm{CH}_{2}$

Carbon: Not Just

 Another ElementChapter 20:
The Organic Chemistry chapter!
Chemistry 222

Two Major Concepts

NOMENCLATURE -
Naming the molecules correctly and knowing the general classes of organic compounds
REACTIVITY - Studying patterns of reactivity within classes of compounds

We will focus primarily on nomenclature but also show examples of reactivity

Organic

 ChemistryVast majority of over 20
million known compounds are based on Carbon:
organic compounds.
Generally contain C, H + other elements
Great variety of compounds

nds

Nomenclature

Need to know Alkyl Groups -

$$
\begin{gathered}
\text { methyl }=\mathrm{CH}_{3} \\
\text { ethyl }=\mathrm{CH}_{3} \mathrm{CH}_{2} \\
\text { propyl }=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \\
\text { butyl }=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}
\end{gathered}
$$

Also pentyl, hexyl, heptyl, octyl, etc. R is "generic" alkyl group

Alkyl groups may be combined with other elements or alkyl groups to give classes of compounds

See the Organic Chemistry Nomenclature Guide

ALKANES

Generic Alkane Representation: R-H
Generic Alkane Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
-yl +ane
Ex: methane $=\mathrm{CH}_{4}$
(methyl group + H)
$\mathrm{CH}_{3}-\mathrm{H}$

ALKANES

Generic Alkane Representation: R-H
Generic Alkane Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
-yl +ane

Ex: propane $=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (propyl group +H) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{H}$

ALKANES - Isomers

But we can write butane in two ways:

These are isomers (same formula, structurally different). Name using "longest chain" alkane preceded by numbered alkyl groups

Isomers of Hexane

Number of isomers grows as number of carbons increases

ALKANES

Generic Alkane Representation: R-H
Generic Alkane Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ -yl +ane

Ex: butane $=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (butyl group + H) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{H}$

Alkanes often called "saturated hydrocarbons" - all carbons "saturated" with H

Isomers of Pentane

"3-methylbutane" would be incorrect - use smallest number possible

How to Name a Compound

1. Find the longest chain in the molecule.
2. Number the chain from the end nearest the first substituent encountered.
3. List the substituents as a prefix along with the number(s) of the
carbon(s) to which they are attached.

How to Name a Compound

If there is more than one type of substituent in the molecule, list them alphabetically.

Also cyclobutane, etc.

CYCLOALKANES $\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}\right)$

+cyclo -yl +ane
Ex: cyclohexane $=\mathrm{C}_{6} \mathrm{H}_{12}$ Generic Cycloalkane Formula: $\mathrm{C}_{n} \mathrm{H}_{2 n}$
(cyclohexyl group + H)

ALCOHOLS

Generic Alcohol Representation: R-OH
-yl +anol
Generic Alcohol Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \mathrm{O}$
Ex: ethanol $=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(ethyl group + OH)
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$

How to Create a Structure from a Name
Example: provide the structure for the following name: 2,2,4-trimethylpentane

MAR

Alkyl Halides
Generic Alkyl Halide Representation: R-X
$X=$ halogen (F, Cl, Br or I)
Ex: methyl iodide $=\mathrm{CH}_{3}$-I
(methyl + iodide)
also known as iodomethane
Ex: 2-iodopropane $=\mathrm{CH}_{3}-\mathrm{CHI}-\mathrm{CH}_{3}$ (2-propyl + iodide) also known as 2-propyl iodide

Many other possibilities
MAR

ALCOHOLS

Generic Alcohol Representation: R-OH
-yl +anol
Generic Alcohol Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \mathrm{O}$
Ex: 1-propanol $=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(propyl group +OH)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$
new: propan-1-ol

MAR

ALCOHOLS

Generic Alcohol Representation: R-OH

Note that both 1-propanol and 2-propanol exist

1-propanol $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$ propan-1-ol

2-propanol $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{3}$ propan-2-ol

GLYCOLS

Alcohols (diols) with Two OH Groups

TYPES OF ALCOHOLS

Glycerol (propane-1,2,3-triol) Alcohol with 3 OH Groups

MAR

butane-1,2-3-trio

octane-2,3-4-triol

ETHERS - "old school"

Generic Ether Representation: R-O-R Generic Ether Formula: $\mathrm{C}_{n} \mathrm{H}_{2 n+2} \mathrm{O}$
Ex: diethyl ether $=\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ (ethyl + O + ethyl)

dimethyl ether

$$
\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}
$$

ethyl methyl ether

Generic Ketone Representation: R-CO-R
$R=$ alkyl group, $\mathrm{CO}=$ carbonyl ($\mathrm{C}=\mathrm{O}$)
Generic Ketone Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}$
Two carbons connected to carbonyl
Ex: propanone $=\mathrm{CH}_{3}-\mathrm{C}(=\mathrm{O})-\mathrm{CH}_{3}$
(methyl + C=O + methyl)
3 carbon atoms like propane

MAR

KETONES

butanone

2-pentanone

3-pentanone

Generic Aldehyde Representation: R-CO-H
$R=$ alkyl group or $\mathrm{H}, \mathrm{CO}=$ carbonyl $(\mathrm{C}=\mathrm{O})$
Generic Aldehyde Formula: $\mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}$
At least one H connected to carbonyl
Ex: methanal $=\mathrm{H}_{2}-\mathrm{C}=\mathrm{O}$
1 carbon atom like methane

MAR

ALDEHYDES

butanal

(acetaldehyde)

Generic Alkyne Representation: R-C $=\mathrm{C}-\mathrm{R}$ $R=$ alkyl group or H Generic Alkyne Formula: $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$
Ex: 2-pentyne $=\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ 5 carbon atoms like pentane

Generic Alkene Representation: $\mathrm{R}-\mathrm{HC}=\mathrm{CH}-\mathrm{R}$
R = alkyl group or H Generic Alkene Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$
Ex: trans-pent-2-ene $=\mathrm{H}_{3} \mathrm{C}-\mathrm{HC}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
5 carbon atoms like pentane

ALKENES
ALKYNES

but-1-ene

2-methyl propene

ALKENES - cis and trans
Cis - trans isomerism occurs because the electronic structure of the carbon-carbon double bond makes rotation energetically unfavorable.

ALKENE ISOMERS - cis and trans fats

Oleic acid is a monosaturated fat with a cis
double bond found naturally in olive oil, nuts, avocados, etc. Healthier!

Elaidic acid is a trans fat with a trans double bond which is difficult to digest and causes multiple health issues. Dangerous!

AROMATIC HYDROCARBONS

Notice: aromatic compounds are flat rings with delocalized π electrons

o bonds

σ and π bonds π bonds

Resonance in Benzene

- C-C single bond: 154 pm $\mathrm{C}=\mathrm{C}$ bond: 134 pm
- CC bonds in benzene: 139 pm
- CC bond order is \qquad

nitrobenzene

MAR

AROMATIC HYDROCARBONS

Aromatic compounds use conjugated double bonds for increased stability. Flat, stable organic functional group

Simplest aromatic compound is Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$

AROMATICS - Examples
ortho position meta position para position

AMINES

Generic Amine Representation: $\mathrm{R}_{(3-\mathrm{x})}=\mathrm{NH}_{\mathrm{x}}$
Ex: ethylamine $=\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{NH}_{2}$
(ethyl $+\mathrm{NH}_{2}$)

Also diethylamine and triethylamine

Generic Carboxylic Acid Representation:

R-COOH
Generic Carboxylic Acid Formula: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}} \mathrm{O}_{2}$
Ex: propanoic acid $=\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CO}-\mathrm{OH}$
(propyl $-2 \mathrm{H}+=\mathrm{O}+\mathrm{OH}$)

MAR
Many other possibilities!

Methylamine

Amines generally have terrible odors!

Cadaverine

Pyridine

ESTERS

Generic Ester Representation: $\mathrm{R}_{1}-\mathrm{COO}-\mathrm{R}_{2}$ Generic Ester Formula: $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{2}$
Ex: ethyl propanate $=\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{COO}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ (propyl $-2 \mathrm{H}+=\mathrm{O}+\mathrm{O}+$ ethyl) Similar to carboxylic acids

Name $\boldsymbol{R}_{\mathbf{2}}$ first, then $\boldsymbol{R}_{\mathbf{1}}$

Reactions of Alkenes:

ADDITION REACTIONS

Alkenes are unsaturated - more bonds can form to the C atoms
Molecules such as $\mathrm{Br}_{2}, \mathrm{H}_{2}, \mathrm{HCl}, \mathrm{HBr}$, and $\mathrm{H}_{2} \mathrm{O}$ add to the double bond

AMIDES

Generic Amide Representation:

$$
\mathrm{R}_{\mathrm{x}}-\mathrm{CO}-\mathrm{NH}_{y} \mathrm{R}_{(2-y)}
$$

Ex: N-methylpropanamide
$\mathrm{CH}_{3} \mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{3}$

N -groups off of nitrogen atom

Example \#2: Addition
Reactions Diatomics adding across double bond

$$
\underset{\mathrm{H}_{\text {Propene }}^{\mathrm{H}}=\mathrm{C}_{\mathrm{H}}^{\mathrm{H}}=-\mathrm{H}}{\mathrm{H}}
$$

Fats can be "hydrogenated" with H_{2}. Many foods have hydrogenated fats

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{H}_{2} \rightarrow \\
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}
\end{gathered}
$$

Polymers

A Polymer literally means "many parts"
Many ter (or monomer) units combined to make a polymer
Polymers have high molar masses ($10^{7} \mathrm{~g}$ mol^{-1} or more!) and are used for plastic, fabric, Teflon, much more
Synthesized by addition and condensation reactions

REACTIVITY
 Example \#5: Addition Polymerization Reactions

Polymers built from sp ${ }^{2}$ carbons (pi bonds)
nO - OR

A polymer with a molar mass of $\mathbf{1 e}{ }^{6}$ has about $\mathbf{3 6 0 , 0 0 0}$ units.

$$
{ }_{\mathrm{H}^{\mathrm{H}} \mathrm{C}^{\mathrm{C}}=\mathrm{CO}_{-\mathrm{H}}^{\prime-\mathrm{H}}}
$$

REACTIVITY
Example \#3: Substitution Reactions Functional groups switch places

Giant molecules made by joining many small molecules called monomers
Average production is $\mathbf{1 5 0} \mathbf{~ k g}$ per person annually in the U.S. (!)

MAR

$$
{ }_{\mathrm{H}^{\prime}}^{\mathrm{H}} \mathrm{Cl}^{2}=\mathrm{C}_{冫-\mathrm{H}}^{\prime}
$$

Polyethylene Synthesis

Chain initiator: benzoyl peroxide

Initiation Step: Reaction of benzoyl radical

REACTIVITY

Example \#6: Condensation Polymerization Reactions

Condensation reactions combine different functional groups to make polymers with different properties

Very powerful reaction mechanism; used in contact lenses, nylon, much more

Polyethylene Synthesis

Chain Propagation: Addition of further ethylene

Chain Termination: Reaction of two radicals

MAR

Polystyrene

Polystyrene (PS) is a nonpolar material and dissolves in organic solvents.
PS foam is mostly air, and when it dissolves it collapses to a much smaller volume.

REACTIVITY

Example \#6: Condensation Polymerization Reactions

$$
\begin{gathered}
\mathrm{HO}-\mathrm{A}-\mathrm{OH} \quad \stackrel{0}{\mathrm{H}}-\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}-\mathrm{COH}
\end{gathered}
$$

$$
\begin{gathered}
\text { ettylenen glyool } \\
\text { (A group) }
\end{gathered} \underset{\text { terenthtralic acid }}{\text { (Bgroup) }}
$$

Polyester

ethylene glyool $\rightarrow\left(\mathrm{O}-\mathrm{C}^{\mathrm{C}}-\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{n}^{-}+\mathrm{H}_{2} \mathrm{O}$

Polyethylene terephthalate (PET), a polyester
Formation of polyester

MAR

Formation of Kevlar

Polymerization

 Reactions
REACTIVITY

Example \#6: Condensation Polymerization Reactions

Nylon-6,6

USES FOR POLYMERS

Examples of Polymers:

- Teflon - polytetrafluoroethylene
- Fabric - polyester, polyacrylonitrile
- Milk \& soda bottles - (High Density) Polyethylene
- Styrofoam - polystyrene
- plastic wrap (Saran) - poly(vinylidene chloride)
- contact lenses - poly(methyl methacrylate)
- Other uses:

Bubble Gum! A copolymer

Styrene + butadiene

$$
\underset{\substack{0 \\
n \mathrm{ClC}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{ClCl} \\
\text { adipoyl chloride } \\
{2} \mathrm{~N}\left(\mathrm{CH}{2}\right)_{6} \mathrm{NH}_{2}} \longrightarrow} }{\left(\begin{array}{ll}
0 & 0 \\
\mathrm{C}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{C} & \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{~N} \\
\mathrm{H} & \mathrm{H}
\end{array}\right)_{n}}+n \mathrm{HCl}
$$

Each monomer has $6 C$ atoms in its chain. A polyamide link forms on elimination of HCl

Result $=$ nylon-6,6

MAR

Polyesters (PET)

Jackets made from recycled PET soda bottles

Soda bottles, mylar film.

MAR

Polyamides: Nylon

cross-linked with

Slime is polyvinylalcohol
boric acid
Slime!

End of Chapter 20

See:

- Chapter Twenty Study Guide
- Chapter Twenty Concept Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

Chemistry 222 Exam I Review
Chapters 7, 8 and 20

Chemistry 222

Which of the following is NOT a correct Lewis dot structure?
A. $: N \equiv \mathrm{~N}$:
B. $[: N \equiv O:]^{\ominus}$
C. $\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$:
D. $: C \equiv O$:

Determine the formal charges for the formate ion:

A. 000
B. $+1 \quad-1-1$
C. +1 0-1
D. $0 \quad 0 \quad 1$

MAR

Based on VSEPR, which of the following corresponds to the molecular shape of the $\mathrm{IF}_{2}-$ ion?
A. linear
B. bent (bond angle 120°)
C. "T-shaped"
D. bent (bond angle 109.5°)
E. trigonal pyramid

What is the approximate $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angle in the acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$, molecule?
A. 90°
B. 120°
C. 109.5°
D. 180°

$$
\text { E. }-30^{\circ}
$$

What is the carbon-oxygen bond order in formaldehyde, $\mathrm{CH}_{2} \mathrm{O}$?
A. 1
B. 2
C. $1 \frac{1}{1} / 2$
D. $2^{1 / 2} 2$
E. 0

Given the bond dissociation enthalpies below, calculate the standard molar enthalpy of formation of NF_{3} :
$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow \mathrm{NF}_{3}(\mathrm{~g})$

Bond	Dissociation Enthalpy $(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{N} \equiv \mathrm{N}$	946
$\mathrm{~F}-\mathrm{F}$	159
$\mathrm{~N}-\mathrm{F}$	272

A. $833 \mathrm{~kJ} / \mathrm{mol}$
B. $-105 \mathrm{~kJ} / \mathrm{mol}$
C. $440 . \mathrm{kJ} / \mathrm{mol}$
D. $-578 \mathrm{~kJ} / \mathrm{mol}$
E. -220 . $\mathrm{kJ} / \mathrm{mol}$

Which of the following groups of elements is arranged correctly in order of increasing electronegativity?
A. $\mathrm{Mg}<\mathrm{P}<\mathrm{N}<\mathrm{F}$
B. $\mathrm{Mg}<\mathrm{N}<\mathrm{P}<\mathrm{F}$
C. $\mathrm{N}<\mathrm{Mg}<\mathrm{P}<\mathrm{F}$
D. $\mathrm{F}<\mathrm{P}<\mathrm{Mg}<\mathrm{N}$
E. $\mathrm{S}<\mathrm{U}<\mathrm{Pr}<\mathrm{I}<\mathrm{Se}$

MAR

What is the average carbon-oxygen bond order in the formate ion, $\mathrm{HCO}_{2}-$?
A. 1
B. 2
C. $1 \frac{1}{2}$
D. $2 \frac{1}{2}$
E. -1
A. $B-O$
B. $\mathrm{B}-\mathrm{N}$
C. $B-F$
D.B-C
E. AC-DC

Which of the following molecules is polar?

A. BCl_{3}

B. CO_{2}
C. N_{2}
D. CIF

E. Ne

MAR

What hybrid orbital set is used by the boron atom in the BCl_{4} - ion?

> A. $s p$
> B.sp ${ }^{3}$
> C. $s p^{2}$
> D.sp ${ }^{3} d^{2}$
> E.sp3d

Cysteine is one of the natural amino acids.

Estimate the values of the indicated angles:
A. Angle $1=180^{\circ}$ Angle $2=120^{\circ}$ Angle $3=109^{\circ}$
B. Angle $1=109^{\circ}$ Angle $2=120^{\circ}$ Angle $3=109^{\circ}$
C. Angle $1=109^{\circ}$ Angle $2=109^{\circ}$ Angle $3=109^{\circ}$
D. Angle $1=180^{\circ}$ Angle $2=90^{\circ}$ Angle $3=90^{\circ}$

Which of the following molecules is most
likely to have a dipole moment?
A. CH_{4}
B. SF_{6}
C. BeF_{2}
D. NF_{3}
E. Rn

Cysteine is one of the natural amino acids.

The molecule has
A. 13 sigma (σ) bonds and 1 pi (π) bond
B. 14 sigma (σ) bonds and $1 \mathrm{pi}(\pi)$ bond
C. 20 sigma (σ) bonds and 1 pi (π) bond
D. 12 sigma (σ) bonds and 1 pi (π) bond

MAR

Nitrogen can lose an electron to form $\mathrm{N}_{2}{ }^{+}$. What is the bond order of $\mathrm{N}_{2}+$?
A. 1
B. 1.5
C. 2
D. 2.5
E. 3

Is $\mathrm{N}_{2}{ }^{+}$diamagnetic or paramagnetic?

A. diamagnetic
 B. paramagnetic

C. 42

What is the bond order of the superoxide ion, $\mathrm{O}_{2}{ }^{-}$?
A. 1
B. 1.5
C. 2
D. 2.5
E. 3

What is the systematic name for this alkane?

A. nonane
B. 2-ethyl-5-methylhexane
C. 2,5-dimethylheptane
D. 2,3-dimethyloctane
E. 3,6-dimethylheptane

Given the following compounds:

1. $\mathrm{C}_{3} \mathrm{H}_{6} \quad$ 2. $\mathrm{C}_{7} \mathrm{H}_{14} \quad$ 3. $\mathrm{C}_{11} \mathrm{H}_{24} \quad$ 4. $\mathrm{C}_{7} \mathrm{H}_{8}$

Which one(s) could be an alkane?
A. only 1
B. only 2
C. only 3
D. 3 and 4
E. none of the above

What is the name of the molecule?

A. butanoic acid
B. butanal
C. butanol
D. butan-2-ol
E. butane

What is the name of the molecule?

A. butanoic acid
B. butanal
C.2-butylamine
D.butan-2-ol
E. butanone

What is the name of the molecule?

A. butanoic acid
B. pentanal
C. pentanoic acid
D. pentanone
E. pentan-1-ol

End of Review good luck with your studying!

Need more practice?

- Practice Problem Sets (online)
- Concept Guides (Companion and online)
- Chapter Guides (online)
- End of Chapter Problems in Textbook (every other question has answer at end)
Good luck with your studying!

Gases and Their Properties
Chapter 9

Chemistry 222 Professor Michael Russell

Importance of Gases

Airbags fill with \mathbf{N}_{2} gas in an accident.
Gas is generated by the decomposition of sodium azide, NaN_{3}.
$2 \mathrm{NaN}_{3(\mathrm{~s})}--->2 \mathrm{Na}_{(\mathrm{s})}+3 \mathrm{~N}_{2(\mathrm{~g})}$

MAR

THREE STATES OF MATTER

Properties of Gases


```
Gas properties can be modeled using math. Model depends on:
- \(\mathrm{V}=\) volume of the gas ( L )
- \(T\) = temperature ( K )
- \(\mathrm{n}=\) amount (moles)
- \(P=\) pressure (atm)
modeled using math.
```


The Barometer

Pressure of air is measured with a BAROMETER (developed by Torricelli in 1643)
Hg rises in tube via atmosphere (pushing up), opposed by gravity (pulling down)
Barometer calibrated for column width, pool width, depth, Hg density, etc.

Boyle's Law

If \mathbf{n} and \mathbf{T} are constant, then
PV $=(n R T)=k$
This means, for example, that P goes up as V goes down, or:
$\mathrm{P}_{1} \mathbf{V}_{1}=\mathrm{P}_{\mathbf{2}} \mathbf{V}_{2}$

Robert Boyle (1627-1691). Son of Early of Cork, Ireland.

Charles's Law

If \boldsymbol{n} and P are constant, then
$\mathrm{V}=(\mathrm{nR} / \mathrm{P}) \mathbf{T}=\mathrm{k} T$
V and T are directly related, or:
$\mathrm{V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}$ (1746-1823). Isolated boron and studied gases. Balloonist.

MAR

Boyle's Law

Boyle's law states that the pressure and volume of a gas are inversely related

Charles's Law

Balloons immersed in liquid \mathbf{N}_{2} (at $-196{ }^{\circ} \mathrm{C}$) will shrink as the air cools (and is liquefied).

$2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

The gases in this experiment are all measured at the same T and P.

IDEAL GAS LAW

$\mathbf{P} \mathbf{V}=\mathbf{n} \mathbf{R} \mathbf{T}$

The constant of proportionality is known as R, the gas constant.	Units	Numerical Value
	L-atm/mol-K	0.082057
	J/mol-K*	8.3145
	$\mathrm{cal} / \mathrm{mol}-\mathrm{K}$	1.987
Memorize R! Always use 0.082057!	$\mathrm{m}^{3}-\mathrm{Pa} / \mathrm{mol}-\mathrm{K}^{*}$	8.3145
	L-torr/mol-K	62.36
We will also use 8.3145 later...	*SI unit	

Avogadro's Hypothesis

Equal volumes of gases at the same T and P have the same number of molecules.
$\mathrm{V}=(\mathrm{RT} / \mathrm{P}) \mathrm{n}=\mathrm{kn}$
V and n are directly related or:
$\mathrm{V}_{1} / \mathrm{n}_{1}=\mathrm{V}_{2} / \mathrm{n}_{2}$

twice as many molecules

MAR

IDEAL GAS LAW

Brings together gas properties.
Can be derived from experiment and theory.

MAR

Using PV = nRT

How much N_{2} is req'd to fill a small room with a volume of 960 . cubic feet (2.70 * $10^{4} \mathrm{~L}$) to $P=745 \mathrm{~mm} \mathrm{Hg}$ at $25^{\circ} \mathrm{C}$?
$\mathrm{R}=0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol}$
Solution
2. Now calc. $\mathbf{n}=\mathrm{PV} / \mathrm{RT}$

$$
\begin{aligned}
& n=\frac{(0.980 \mathrm{~atm})\left(2.70 \times 10^{4} \mathrm{~L}\right)}{(0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(298 \mathrm{~K})} \\
& \mathrm{n}=\mathbf{1 . 0 8 \times 1 0 ^ { 3 } \mathbf { ~ m o l } (\mathbf { 3 0 . 3 } \mathbf { k g } \text { of } \mathrm { N } _ { 2 })}
\end{aligned}
$$

Gases and Stoichiometry

$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) ---> $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $2{ }^{\circ} \mathrm{C}$? $\mathrm{Of} \mathrm{H}_{2} \mathrm{O}$?
Solution
Strategy:

- Calculate moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ and then moles of O_{2} and $\mathrm{H}_{2} \mathrm{O}$.
- Finally, calc. P from n, R, T, and V.

Gases and Stoichiometry

$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) $-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $25^{\circ} \mathrm{C}$? Of $\mathrm{H}_{2} \mathrm{O}$?
Solution
P of $\mathrm{O}_{2}=\mathrm{nRT} / \mathrm{V}$
$=\frac{(0.016 \mathrm{~mol})(0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol})(298 \mathrm{~K})}{2.50 \mathrm{~L}}$
P of $\mathrm{O}_{2}=0.16 \mathrm{~atm}$

Gases and Stoichiometry

$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) ---> $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $25^{\circ} \mathrm{C}$? Of $\mathrm{H}_{2} \mathrm{O}$?

Bombardier beetle uses decomposition of hydrogen peroxide to defend itself.

Gases and Stoichiometry

$2 \mathrm{H}_{2} \mathrm{O}_{\mathbf{2}}$ (liq) ---> $2 \mathrm{H}_{\mathbf{2}} \mathrm{O}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})$

Decompose 1.1 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ in a flask with a volume of 2.50 L . What is the pressure of O_{2} at $25^{\circ} \mathrm{C}$? Of $\mathrm{H}_{2} \mathrm{O}$?
Solution

$$
\begin{gathered}
1.1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{2} \cdot \frac{1 \mathrm{~mol}}{34.0 \mathrm{~g}}=0.032 \mathrm{~mol} \\
0.032 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}=0.016 \mathrm{~mol} \mathrm{O}
\end{gathered}
$$

Gases and Stoichiometry

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{liq}) ~--->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Solution
What is P of $\mathrm{H}_{2} \mathrm{O}$? Could calculate as above. But recall Avogadro's hypothesis.
$V \alpha n$ at same T and P, and
$P \alpha n$ at same T and V
There are 2 times as many moles of $\mathrm{H}_{2} \mathrm{O}$ as moles of O_{2}. P is proportional to n . Therefore, P of $\mathrm{H}_{2} \mathrm{O}$ is twice that of O_{2}.
P of $\mathrm{H}_{2} \mathrm{O}=0.32 \mathrm{~atm}$

Dalton's Law of Partial Pressures
$2 \mathrm{H}_{2} \mathrm{O}_{2}$ (liq) $-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ $0.32 \mathrm{~atm} \quad 0.16 \mathrm{~atm}$ $\mathrm{P}_{\text {total }}$ in gas mixture $=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}+\ldots$
So:
$\mathrm{P}_{\text {total }}=\mathrm{P}\left(\mathrm{H}_{2} \mathrm{O}\right)+\mathrm{P}\left(\mathrm{O}_{2}\right)=0.48 \mathrm{~atm}$
Dalton's Law: total P equals sum of PARTIAL pressures.

KINETIC MOLECULAR THEORY

(KMT)
Theory used to explain gas laws. KMT assumptions are

- Gases consist of molecules in constant, random motion.
- P arises from collisions with container walls.
- No attractive or repulsive forces between molecules. Collisions elastic.
- Volume of molecules is negligible. see Principal Assumptions of KMT Handout

Kinetic Molecular Theory

We assume molecules of mass ($\mathbf{m}, \mathbf{k g} / \mathbf{m o l}$) are in motion (velocity, $\mathbf{v ,} \mathbf{m} / \mathbf{s}$), so they have kinetic energy (KE, J).

Molecules at the same temperature (\mathbf{T}, \mathbf{K}) also have the same kinetic energy, so:

$$
K E=1 / 2 m v^{2}=3 / 2 R T
$$

Note: this $R=8.3145 \mathrm{~J} / \mathrm{mol}^{* K}$ ("energy R ")
At the same T, all gases have the same average $K E$. As T goes up, KE also increases - and so does speed.

Standard Temperature and Pressure (STP)

A common reference point used in applications using gases

- Standard Temperature $=273.15 \mathrm{~K}$
- Standard Pressure $=1.000 \mathrm{~atm}$ and if 1.00 mol of gas used,
- Standard Volume $=22.4 \mathrm{~L}$
1.00 mol of an ideal gas occupies $22.4 L$ at 273 K and 1.00 atm of pressure!

Kinetic Molecular Theory
At the same T, all gases have the same average KE.
As T goes up, KE also increases - and so does speed.

Distribution of Gas Molecule Speeds

What is an "average" speed?

Velocity of Gas Molecules

Average velocity decreases with increasing mass.

Velocity of Gas Molecules

 Molecules of a given gas have a range of speeds.

GAS DIFFUSION AND EFFUSION

Molecules effuse through holes in a rubber balloon, for example, at a rate (= moles/time) that is

- proportional to T
- inversely proportional to M.

Therefore, He effuses more rapidly than O_{2} at same T .
GAS
DIFFUSION
AND EFFUSION

Gas Diffusion relation of mass to rate of diffusion

Gaseous diffusion of $\mathrm{NH}_{3}(\underline{g})$ and $\mathrm{HCl}(\mathrm{g})$

- HCl and NH_{3} diffuse from opposite ends of tube.
- Gases meet to form $\mathrm{NH}_{4} \mathrm{Cl}$
- HCl heavier than NH_{3}
- Therefore, $\mathrm{NH}_{4} \mathrm{Cl}$ forms closer to HCl end of tube.

Deviations from Ideal Gas Law

Real molecules have volume.
There are intermolecular forces.
Otherwise a gas
could not become a liquid.
High Pressure and Low Temperature conditions show greatest deviation

GAS DIFFUSION AND EFFUSION

Graham's law governs effusion and diffusion of gas molecules.
$\frac{\text { Rate for } A}{\text { Rate for } B}=\sqrt{\frac{M \text { of } B}{M \text { of } A}}$
Rate of effusion is inversely proportional to its molar mass.

MAR

Thomas Graham, 1805-1869. Professor in Glasgow and London.

Deviations from Ideal Gas Law

Account for volume of molecules and intermolecular forces with VAN DER WAAL'S EQUATION.

Substance	van der Wails Constants for Gas Molecules	
	$a\left(\mathrm{LL}^{2} \mathrm{a}\right.$ atm/mol2)	$b(\mathbb{L} / \mathrm{mol})$
He	0.0341	${ }_{0} 0.02370$
${ }^{\mathrm{Ne}}$	${ }^{0.211}$	${ }^{0.0071}$
$\mathrm{Ar}^{\text {r }}$	1.34	${ }^{0.0322}$
${ }_{\text {Kr }}$	${ }^{231}$	${ }^{0.0398}$
$\mathrm{Xe}_{\text {e }}$	4.19	${ }^{0.0510}$
H_{2}	${ }^{0.244}$	${ }_{0}^{0.0266}$
N_{2}	${ }_{1}^{139}$	${ }^{0.0331}$
O_{2}	1.36	${ }^{0.0318}$
$\mathrm{Cl}_{\substack{\mathrm{Cl}_{2} \\ \mathrm{H} \mathrm{O}}}$	6.49 5.46	${ }_{0}^{0.0 .0562}$
CH_{4}	2.25	${ }_{0.0428}^{0.035}$
CO_{2}	3.59	0.0427
CCl_{4}	20.4	0.1383

4.0 L tank at $27^{\circ} \mathrm{C}$.

Deviations from Ideal Gas Law

Cl_{2} gas has a $=6.49$,

$$
b=0.0562
$$

For $8.0 \mathrm{~mol} \mathrm{Cl}_{2}$ in a

End of Chapter 9

Important Equations, Constants, and Handouts from this Chapter:
$P V=n R T$

- $P M=d R T$
- mole $=6.022 \times 10^{23}$
- $760 \mathrm{~mm} \mathrm{Hg}=1 \mathrm{~atm}$
- $1013 \mathrm{mbar}=1 \mathrm{~atm}$
- metric prefixes (m, k, etc.)
- STP = 1 atm, 273.15 K
$\mathbf{R}=0.082057 \mathrm{~L}$ atm $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$ (the
"gas R")
$\mathbf{R}=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ (the "energy R")
$K E=1 / 2 m v^{2}=3 / 2 R T$

1. A sample of nitrogen gas has a pressure of 67.5 mm Hg in a $500 . \mathrm{mL}$ flask. What is the pressure of this gas sample when it is transferred to a 125 mL flask at the same temperature?
2. You have 3.5 L of NO at a temperature of $22.0^{\circ} \mathrm{C}$. What volume would the NO occupy at $37^{\circ} \mathrm{C}$? (Assume the pressure is constant.)
3. An automobile cylinder has a volume of $400 . \mathrm{cm}^{3}$. The engine takes in air at a pressure of 1.00 atm and a temperature of $15^{\circ} \mathrm{C}$ and compresses the air to a volume of $50.0 \mathrm{~cm}^{3}$ at $77^{\circ} \mathrm{C}$. What is the final pressure of the gas in the cylinder?
4. A 1.25 g sample of CO_{2} is contained in a $750 . \mathrm{mL}$ flask at $22.5^{\circ} \mathrm{C}$. What is the pressure of the gas?
5. A gaseous organofluorine compound has a density of $0.355 \mathrm{~g} / \mathrm{L}$ at $17^{\circ} \mathrm{C}$ and 189 mm Hg . What is the molar mass of the compound?
6. Sodium azide, the explosive compound in automobile air bags, decomposes according to the following equation:
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
What mass of sodium azide is required to provide the nitrogen needed to inflate a 75.0 L bag to a pressure of 1.3 atm at $25^{\circ} \mathrm{C}$?

The States of Matter

The state a substance is in at a particular temperature and pressure depends on two antagonistic entities:

- the kinetic energy of the particles;
- the strength of the attractions between the particles.

Intermolecular Forces

Kinetic Energy (E_{k}) vs. Attractive (IM) Force

States of Matter

The fundamental difference between states of matter is the distance between particles.

Solids and liquids often referred to as "condensed phases"

Intermolecular Forces

The attractions between molecules (intermolecular forces) are not nearly as strong as the intramolecular attractions that hold compounds together.
Intramolecular forces: ionic, covalent, metallic Intermolecular forces are not chemical bonds!

Intermolecular Forces

Intermolecular forces are strong enough to affect physical properties such as boiling and melting points, vapor pressures, and viscosities.
See the IM Forces Guide
Attraction Between lons and Permanent Dipoles

Water is highly polar (it has a dipole) and can interact with positive ions to give
hydrated ions in water.
This is the lon-Dipole IM force

 hydrated. This is the reason metal salts dissolve in water.

Dipole-Dipole

Forces
$H \longrightarrow \mathrm{Cl}^{\delta^{-}} \mathrm{or}^{\delta^{+}} \mathrm{H} \longrightarrow \mathrm{Cl}^{\delta}$

Influence of dipole-dipole forces is seen in the boiling points of simple molecules.

${ }^{8^{+}} \mathrm{H} \longrightarrow \mathrm{Cl}^{8^{-}} \ldots \mathrm{s}^{8^{+}} \mathrm{H} \longrightarrow \mathrm{Cl} 1^{8^{-}}$		Dipole es
Influence of dipole-dipole forces is seen in the boiling points of simple molecules.		
Compd	Mol. Wt.	Boil Point
N_{2}	28	$-196{ }^{\circ} \mathrm{C}$
CO	28	-192 ${ }^{\circ} \mathrm{C}$
Br_{2}	160	$59{ }^{\circ} \mathrm{C}$
ICI	162	$97^{\circ} \mathrm{C}$

Attraction Between lons and Permanent Dipoles

Water is highly polar (it has a dipole) and can interact with positive ions to give hydrated ions in water.

This is the lon-Dipole IM force

${ }^{8^{+}} \mathrm{H} \longrightarrow \mathrm{Cl}^{8^{-}-\mathrm{B}^{8+}} \mathrm{H} \longrightarrow \mathrm{Cl} 1^{8^{-}}$

Dipole-Dipole
Forces
Dipole-dipole forces bind molecules having permanent dipoles to one another.

MAR

Hydrogen Bonding
A special form of the dipole-dipole force which enhances dipole-dipole attractions.

Hydrogen Bonding in $\mathrm{H}_{2} \mathrm{O}$
Ice has open lattice-like structure. Ice density is < liquid and so solid floats on water.

FORCES INVOLVING INDUCED DIPOLES

Formation of a dipole in two nonpolar I_{2} molecules.

Hydrogen Bonding
H bonds ---> abnormally high boiling point of water.

MAR

> FORCES INVOLVING INDUCED DIPOLES

How can non-polar molecules such as O_{2} and $\mathrm{I}_{\mathbf{2}}$ dissolve in water?

The water dipole INDUCES a dipole in the $\mathbf{O}_{\mathbf{2}}$ electric cloud.

FORCES INVOLVING

INDUCED DIPOLES

The magnitude of the induced dipole depends on the tendency to be distorted.
Higher molar mass ---> larger induced dipoles.
Larger atoms have larger electron clouds which are easier to polarize

Halogen	Molecular Weight (amu)	Boiling Point (K)	Noble Gas	Molecular Weight (amu)	Boiling Pint (K)
F_{2}	38.0	85.1	He	4.0	4.6
Cl_{2}	71.0	238.6	Ne	20.2	27.3
Br_{2}	159.8	332.0	Ar	39.9	87.5
I_{2}	253.8	457.6	Kr	83.8	120.9
			Xe	131.3	166.1

Liquids

Liquids

To evaporate, molecules must have sufficient energy to break IM forces.

Breaking IM forces requires energy. The process of evaporation is endothermic.

- there are appreciable intermolecular forces
- molecules close together
- Liquids are almost incompressible
- Liquids do not fill the container

In a liquid

- molecules are in constant motion

Liquids

The two key properties we need to describe are EVAPORATION and its oppositeCONDENSATION

evaporation--->		
LIQUID	Add energy	VAPOR
		$\begin{array}{\|llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$

Vapor Pressure

Boiling Liquids

Liquid boils when its
vapor pressure vapor pressure equals atmospheric pressure.

Boiling Point at Lower Pressure

When pressure is lowered, the vapor pressure can equal the external pressure at a lower temperature.

Consequences of Vapor Pressure Changes - Whoops!

When car cools on hot day (i.e. cleaning with cold water), vp of fumes inside drops. Pressure in the car is less than that of atmosphere, so car is crushed!

Equilibrium Vapor Pressure

Liquids

The curves show all conditions of P and T where LIQ and VAP are in EQUILIBRIUM. The VP rises with T.
When VP = external P, the liquid boils.
This means that BPs of liquids change with altitude.

Liquids

If external $\mathbf{P}=\mathbf{7 6 0}$ $\mathrm{mm} \mathrm{Hg}, \mathrm{T}$ of boiling is the NORMAL BOILING POINT

VP of a given molecule at a given T depends on IM forces. Here the VPs are H_{3} in the order:

Liquids
Molecules at surface behave differently than those in the interior.

Molecules at surface experience net INWARD force of attraction.
This leads to SURFACE TENSION - the energy required to break the surface.

Viscosity

VISCOSITY is the tendency or resistance of liquids to flow.
Liquids "flow" differently due to the strength of their intermolecular bonds

Ethanol
Viscosity results from several
factors, including IM interactions, molecular shape and size

SURFACE TENSION also leads to spherical liquid droplets.

Liquids

Cohesive forces: interactions between like particles.

Adhesive forces: interactions between unlike particles.

"Concave up is like a cup, concave down is like a frown"

Heat Transfer with Phase Change
 Overall patterns:

solid \rightarrow liquid \rightarrow gas $=$ endothermic reaction gas \rightarrow liquid \rightarrow solid $=$ exothermic reaction

Chapter 5: Heat Transfer with no Phase Change $(q=m C \Delta T)$

Clausius-Clapeyron

The Clausius-Clapeyron Equation provides a link between vapor pressure (P), temperature (in K), and molar heat of vaporization ($\Delta \boldsymbol{H}_{\text {vap }}$):

$$
\ln \mathrm{P}=-\frac{\Delta \mathrm{H}_{v a p}^{\circ}}{\mathrm{RT}}+\mathrm{C}
$$

Perform a linear regression (In P vs. $1 / T(K)$) to get best values, or, with only two temps:
$\ln \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\frac{\Delta \mathrm{H}_{\text {vap }}^{\circ}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)$
$\mathrm{R}=8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Capillary Action

Movement of water up a piece of paper depends on H -bonds between $\mathrm{H}_{2} \mathrm{O}$ and the OH groups of the cellulose in the paper.

Heat Transfer with Phase Change

HEAT OF VAPORIZATION is the heat required (at constant P) to vaporize a liquid. LIQ + heat ---> VAP
Compd.
$\mathrm{H}_{2} \mathrm{O}$
$\Delta H_{\text {vap }}(\mathrm{kJ} / \mathrm{mol}) \quad$ IM Force
$40.7\left(100{ }^{\circ} \mathrm{C}\right) \quad \mathrm{H}$-bonds
SO_{2}
26.8 (-47 º ${ }^{\circ}$)
dipole

Xe
induced dipole
HEAT OF FUSION is the heat required (at constant P) to melt a solid.

SOL + heat ---> LIQ
Temperature constant during phase change

Heating/Cooling Curve for Water

Heat \& Changes of State

What quantity of heat is required to melt $500 . \mathrm{g}$ of ice at $0.0^{\circ} \mathrm{C}$ and heat the water to steam at $100 .{ }^{\circ} \mathrm{C}$?

Heat \& Changes of State

What quantity of heat is required to melt $500 . \mathrm{g}$ of ice at $0.0^{\circ} \mathrm{C}$ and heat the water to steam at $100 .{ }^{\circ} \mathrm{C}$?

1. To melt ice

$$
q=(500 . g)(333 \mathrm{~J} / \mathrm{g})=1.67 \times 10^{5} \mathrm{~J}
$$

2. To raise water from $0.0{ }^{\circ} \mathrm{C}$ to $100 .{ }^{\circ} \mathrm{C}$

$$
q=(500 . g)(4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K})(100 .-0) \mathrm{K}=2.09 \times 10^{5} \mathrm{~J}
$$

3. To evaporate water at $100 .{ }^{\circ} \mathrm{C}$

$$
q=(500 . \mathrm{g})(2260 \mathrm{~J} / \mathrm{g})=1.13 \times 10^{6} \mathrm{~J}
$$

4. Total heat energy $=1.51 \times 10^{6} \mathrm{~J}=1510 \mathrm{~kJ}$

MAR

See the phase diagram for water in text
Lines connect all conditions of T and P where EQUILIBRIUM exists between the phases on either side of the line.
At equilibrium particles move from liquid to gas as fast as they move from gas to liquid.

Phase Diagram for Water

MAR

Animation of triple point.

At the TRIPLE POINT all three phases are in equilibrium.

Normal boil point 100 Normal freeze point Triple point
0.0098

Phases DiagramsImportant Points for Water
$\mathbf{P}(\mathbf{m m ~ H g})$

Crystal Lattices

7 Brevais lattice (unit cell) types:

- Triclinic
- Monoclinic
- Orthorhombic
- Tetragonal
- Hexagonal
- Rhombohedral
- Cubic (Isometric)

We will use just the cubic system in CH 222

Cubic Unit Cells

There are 7 basic crystal systems, but we are only concerned with CUBIC (isometric) in CH 222.

Simple Cubic Unit Cell

[^3]
Cubic Unit Cells

Three types of Cubic Unit Cells:

The Simple Cubic Unit Cell

Atom at each corner,
Only 1 net atom per simple cubic cell

Body-Centered Cubic Unit Cell

Unit Cells for Metals

Finding the Lattice Type

PROBLEM AI has density $\mathbf{=} \mathbf{2 . 6 9 9} \mathbf{~ g} / \mathbf{c m}^{\mathbf{3}}$ and AI radius $\mathbf{= 1 4 3} \mathbf{~ p m}$. Verify that AI is FCC.

SOLUTION

2. Calc. unit cell volume

$$
\begin{aligned}
& \text { edge }=4.04 \times 10^{-8} \mathrm{~cm} \text { (previous slide) } \\
& \mathbf{V}=(\text { cell edge })^{3}=\left(4.04 \times 10^{-8} \mathrm{~cm}\right)^{3} \\
& \mathbf{V}=6.62 \times 10^{-23} \mathrm{~cm}^{3}
\end{aligned}
$$

3. Now use density to find mass mass $=\left(6.62 \times 10^{-23} \mathrm{~cm}^{3}\right)\left(2.699 \mathrm{~g} / \mathrm{cm}^{3}\right)$

$$
=1.79 \times 10^{-22} \mathrm{~g} / \mathrm{unit} \text { cell }
$$

Face-Centered Cubic Unit Cell
also known as cubic close packing

edge $=4 r / \sqrt{ } 2$ $r=$ radius

Atom in each cube corner plus atom in each cube face, four net atoms per fcc unit cell

MAR

Finding the Lattice Type

To find out if a metal is SC, BCC or FCC, use the known radius and density of an atom to calc. no. of atoms per unit cell.
PROBLEM Al has density $=\mathbf{2 . 6 9 9} \mathbf{~ g} / \mathbf{c m}^{\mathbf{3}}$ and AI radius $=143 \mathrm{pm}$. Verify that Al is FCC .
SOLUTION

1. Calc. unit cell edge (cm)
see handout: edge $=4$ * radius $/ \sqrt{ } 2$
edge $=4$ * $143 \mathrm{pm} / \sqrt{ } 2=404 \mathrm{pm}$
404 pm * $\left(10^{-10} \mathrm{~cm} / \mathrm{pm}\right)=4.04 * 10^{-8} \mathrm{~cm}$
MAR

Finding the Lattice Type
PROBLEM AI has density $\mathbf{=} \mathbf{2 . 6 9 9} \mathbf{~ g} / \mathbf{c m}^{\mathbf{3}}$ and AI radius $=\mathbf{1 4 3} \mathbf{~ p m}$. Verify that Al is FCC.
SOLUTION
4. Calculate number of AI per unit cell from mass of unit cell.
Mass 1 Al atom $=\frac{26.98 \mathrm{~g}}{\mathrm{~mol}} \cdot \frac{1 \mathrm{~mol}}{6.022 \times 10^{23} \text { atoms }}$
1 atom $=4.480 \times 10^{-23} \mathrm{~g}$, so
$\frac{1.79 \times 10^{-22} \mathrm{~g}}{\text { unit cell }} \cdot \frac{1 \text { atom }}{4.480 \times 10^{-23} \mathrm{~g}}=3.99 \mathrm{Al}$ atoms/unit cell

End of Chapter 10

See:

- Chapter Ten Study Guide
- Chapter Ten Concept Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

Important Equations, Constants, and Handouts
Intermolecular (IM) Forces: know when they apply, strength (strongest to weakest):

- metallic/ion-ion
- ion-dipole
- dipole-dipole (with Hydrogen bonding for \mathbf{O}, \mathbf{F} and \mathbf{N} to \mathbf{H})
- dipole-induced dipole
- induced dipole-induced dipole (ID-ID)
Solids: unit cell type:
- simple cubic (SC)
- body centered cubic (BCC)
- face centered cubic (FCC)

States of Matter: solids, liquids, gases, phase diagrams, triple point, "normal" boiling and freezing points, the slope of the solid-liquid line in a phase diagram, $\mathrm{q}=\mathrm{mC} \Delta \mathrm{T}$ and $\mathrm{q}=$ "mass*heat", vapor pressure
sc: 1 atom, $d_{0}=2 r$ bcc: 2 atoms, $d_{0}=4 r / \sqrt{3}$ fcc: 4 atoms, $d_{0}=4 r / \sqrt{ } 2$ mole $=6.022 \times 10^{23}$
2. Ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, has a vapor pressure of 59 mm Hg at $25^{\circ} \mathrm{C}$. What quantity of heat energy is required to evaporate 125 mL of the alcohol at $25^{\circ} \mathrm{C}$? The enthalpy of vaporization of the alcohol at $25^{\circ} \mathrm{C}$ is $42.32 \mathrm{~kJ} /$ mol . The density of the liquid is $0.7849 \mathrm{~g} / \mathrm{mL}$.
3. Liquid ammonia, $\mathrm{NH}_{3}(\mathrm{I})$, was once used in home refrigerators as the heat transfer fluid. The specific heat of the liquid is $4.7 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$ and that of the vapor is $2.2 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$. The enthalpy of vaporization is $23.33 \mathrm{~kJ} / \mathrm{mol}$ at the vapor is $2.2 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$. The enthalpy of vaporization is $23.33 \mathrm{~kJ} / \mathrm{mol}$ at the boiling point. If you heat 12 kg of liquid ammonia from $-50.0^{\circ} \mathrm{C}$ to its
boiling point of $-33.3^{\circ} \mathrm{C}$, allow it to evaporate, and then continue warming boiling point of $-33.3^{\circ} \mathrm{C}$, allow it to evaporate, and the
to $0.0^{\circ} \mathrm{C}$, how much heat energy must you supply?
4. Aluminum has a face centered cubic crystal lattice and a density of 2.699

Aluminum has a face centered cubic crystal lattice and a density of 2.699
$\mathrm{~g} / \mathrm{cm}^{3}$. What is the radius of an aluminum atom?

1. liquid O_{2} : ID-ID, $\mathrm{H}_{2} \mathrm{O}$: Hydrogen bonding, CH_{3} : Dipole-dipole, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$: Hydrogen bonding
2. 90.1 kJ
3. The total heat required is the sum of the heat required to (1) heat the liquid from $-50.0^{\circ} \mathrm{C}$ to its boiling point, (2) vaporize the gas, and (3) heat the vapor to $0.0^{\circ} \mathrm{C}$. Answer (1) $=940 \mathrm{~kJ}$, Answer (2) $=16000 \mathrm{~kJ}$, Answer $(3)=880 \mathrm{~kJ}$, and total energy $=18000 \mathrm{~kJ}$
4. 143.2 pm
5. $7.8740 \mathrm{~g} / \mathrm{cm}^{3}$
6. Iron has a body centered cubic unit cell and a radius of 126 pm . Find the

Iron has a body centered cubic unit cell and a radius of 126 pm . Find the
density of iron.

Some Definitions

A solution is a
HOMOGENEOUS mixture of 2 or more substances in a single phase.
Solutions, Colloids and Suspensions are all examples of homogenous mixtures
Solutions most important to chemists

Definitions

Solutions can be classified as unsaturated or saturated.

A saturated solution contains the maximum quantity of solute that dissolves at that temperature.

Solution Behavior

Why does a raw egg swell or shrink when placed in different solutions?

Last update 4/29/24 MAR

Some Definitions

Definitions

SUPERSATURATED SOLUTIONS contain more than is possible and are unstable.
Unstable solutions;
crystallization can usually be stimulated by adding a "seed crystal" or scratching the side of the flask.

Solution Definitions

Miscible: Two (or more) liquids that are completely soluble in each other
Solubility: A measure of how much solute will dissolve in a solvent at a specific temperature

Factors Affecting Solubility

Chemists use the axiom "like dissolves like"
-The closer the intermolecular forces of two phases of matter, the more likely they will dissolve to make a solution
-Polar substances tend to dissolve in polar solvents. -Nonpolar substances tend to dissolve in nonpolar solvents.

Factors Affecting Solubility

"Like dissolves like"
Example: water (polar, H-bonds) dissolves in acetone (polar)
Example: benzene (ID-ID) dissolves in toluene (ID-ID)
Example: benzene (ID-ID) does not dissolve very well in water (polar, H-bonds)

See Solubility Handout

Gas solubility (M) $=S_{g}=k \cdot P_{g}$
k for $\mathrm{O}_{2}=1.66 \times 10^{-6} \mathrm{M} / \mathrm{mm} \mathrm{Hg}$
When P_{g} drops, solubility drops.

Temperature and Solubility

Generally, the solubility of solid solutes in liquid solvents increases with increasing temperature.

Temperature and Solubility

The opposite is true for gases.
Carbonated soft drinks are more "bubbly" if stored in the refrigerator.
Warm lakes have less O_{2} dissolved in them than cool lakes.

Concentration Units

- MOLE FRACTION, X

For a mixture of A, B, and C
$\mathrm{X}_{A}=\operatorname{mol}$ fraction $\mathrm{A}=\frac{\mathrm{mol} \mathrm{A}}{\mathrm{mol} \mathrm{A}+\operatorname{mol~B}+\operatorname{mol~C}}$

- MOLALITY, m

$$
\mathrm{m} \text { of solute }=\frac{\text { mol solute }}{\text { kilograms solvent }}
$$

- WEIGHT \% = grams solute per total \mathbf{g} in solution see Concentration Units Handout

Calculating Concentrations

Dissolve $62.1 \mathrm{~g}(1.00 \mathrm{~mol})$ of ethylene glycol in $250 . \mathrm{g}$ of $\mathrm{H}_{2} \mathrm{O}$. Calculate X, m, and $\%$ of glycol.

250. $\mathrm{g} \mathrm{H}_{2} \mathrm{O}=13.9 \mathrm{~mol}$

$$
\begin{aligned}
\mathrm{X}_{\text {glycol }} & =\frac{1.00 \mathrm{~mol} \text { glycol }}{1.00 \mathrm{~mol} \text { glycol }+13.9 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \\
\mathbf{x}_{\text {glycol }} & =0.0672 \\
\mathrm{X}_{\text {water }} & =1-0.0672=0.9328
\end{aligned}
$$

Colligative Properties

On adding a solute to a solvent, the solvent properties are modified.

- Vapor pressure
- Melting point
- Boiling point decreases
- Osmosis is possible (osmotic pressure)

These changes are called COLLIGATIVE PROPERTIES.
They depend only on the NUMBER of solute particles relative to solvent particles, not on the KIND of solute particles. We need new
MAR concentration units! (more than molarity, M)

M vs m, X and wt\% Converting between molality (m), mole fraction (X) and weight percent (wt\%) relatively straightforward

Molarity (M) = mol solute per Liter of solution

Converting from m, X or $\mathrm{wt} \%$ to molarity (M) requires solution density in units of $\mathbf{g} / \mathbf{m L}$ or $\mathbf{g} / \mathbf{c m}^{3}$
Recall: solution $=$ solute + solvent
MAR

M vs m, X and wt\%
Example: Convert a 10.7 m aqueous NaOH solution to X , $\mathbf{w t} \%$ and M if the solution density $=1.33 \mathrm{~g} / \mathrm{cm}^{3}$.
$\mathrm{X}_{\mathrm{NaOH}}=10.7 /(10.7+55.5)=0.162$
$w t \%_{\text {NaOн }}=428 /(1000+428) * 100 \%$
$w^{\mathbf{w}} \%_{\mathrm{NaOH}}=30.0 \%$

You do not need the density of the solution to calculate wt\% and X from molality!

Parts Per Million (ppm)

Expresses very dilute concentrations; used by environmental chemists, biologists, geologists, etc.
$1.0 \mathrm{ppm}=1.0 \mathrm{~g}$ of a substance in a sample with a total mass of 1.0 million (10^{6}) g
Density of water about $1.0 \mathrm{~g} / \mathrm{mL}$, units often interconverted
Also parts per thousand (ppt), parts per billion (ppb), etc.

Different than the lab parts per thousand, which is a measure of precision

M vs m, X and wt\%

Example: Convert a 10.7 m aqueous NaOH solution to $\mathrm{X}, \mathrm{wt} \%$ and M if the solution density $=1.33 \mathrm{~g} / \mathrm{cm}^{3}$.

Solution:

Assume 1 kg solvent and 10.7 mol solute
1 kg water $=1000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=55.5 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
$10.7 \mathrm{~mol} \mathrm{NaOH}^{*} 40.0 \mathrm{~g} \mathrm{~mol}^{-1}=428 \mathrm{~g} \mathrm{NaOH}$

MAR

M vs m, X and wt\%

Example: Convert a 10.7 m aqueous NaOH solution to $\mathrm{x}, \mathrm{wt} \%$ and M if the solution density $=1.33 \mathrm{~g} / \mathrm{cm}^{3}$.
If we have 1000 g of solvent $\left(\mathrm{H}_{2} \mathrm{O}\right)$,
then we have 428 g of solute (NaOH) or 1428 g of solution $\left(\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O}\right)$

Volume of solution $=1428 \mathrm{~g}$ * $\left(\mathrm{cm}^{3} / 1.33 \mathrm{~g}\right)$
Volume of solution $=1070 \mathrm{~mL}=1.07 \mathrm{~L}$
Molarity $=10.7 \mathbf{~ m o l ~ N a O H ~ / ~ 1 . 0 7 ~ L ~ s o l u t i o n ~}$ Molarity $\mathrm{NaOH}=10.0 \mathrm{M}$
see Concentration Units Handout

Understanding Colligative Properties

To understand colligative properties, study the LIQUID-VAPOR EQUILIBRIUM for a solution.

The right animation assumes a non-volatile solute

Understanding

Colligative Properties
Vapor Pressure of $\mathrm{H}_{2} \mathrm{O}$ over a solution depends on the number of $\mathrm{H}_{2} \mathrm{O}$ molecules per solute molecule.

$$
\begin{aligned}
& \mathbf{P}_{\text {solvent }} \text { proportional to } \mathrm{X}_{\text {solvent }} \\
& \text { or } \\
& \mathbf{P}_{\text {solvent }}=\mathrm{X}_{\text {solvent }} \cdot \mathrm{P}_{\text {solvent }}
\end{aligned}
$$

Vapor Pressure of solvent over solution = (Mol frac solvent)•(VP pure solvent)
RAOULT'S LAW: The vapor pressure of solvent over a solution is always LOWER than the pure solvent!

MAR

Raoult's Law

Previous examples assumed a non-volatile solute to calculate vapor pressure. If solute is volatile, then:
$P_{\text {total }}=X_{A} \cdot \mathrm{Po}_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}} \cdot \mathrm{Po}_{\mathrm{B}}+\mathrm{X}_{\mathrm{C}} \cdot \mathrm{Po}_{\mathrm{C}}+\ldots$
Example: At $25{ }^{\circ} \mathrm{C}$, heptane ($\mathrm{P} \circ=31$ torr) and octane ($\mathrm{P}^{\circ}=11$ torr) are mixed such that $X_{\text {heptane }}=0.15$. Calculate the total vapor pressure of the system.
Solution: This is a two component system.

$$
\begin{aligned}
& \text { If } X_{\text {heptane }}=0.15, \text { then } \\
& X_{\text {octane }}=1-0.15=0.85
\end{aligned}
$$ solution is higher than that of the pure solvent.

MAR

Elevation of Boiling Point
 Elevation in $B P=\Delta T_{B P}=K_{B P} \bullet m$
 (where $K_{B P}$ is characteristic of solvent)

Change in Boiling Point

Dissolve 62.1 g of glycol (1.00 mol) in $250 . \mathrm{g}$ of water. What is the BP of the solution?
$\mathrm{K}_{\mathrm{BP}}=0.512{ }^{\circ} \mathrm{C} /$ molal for water (see Textbook)
Solution

1. Calculate solution molality $=4.00 \mathrm{~m}$
2. $\Delta \mathrm{T}_{\mathrm{BP}}=\mathrm{K}_{\mathrm{BP}} \cdot \mathrm{m}$
$\Delta \mathrm{T}_{\mathrm{BP}}=0.512{ }^{\circ} \mathrm{C} / \mathrm{molal}$ (4.00 molal)
$\Delta \mathrm{T}_{\mathrm{BP}}=2.05{ }^{\circ} \mathrm{C}$
$B P=100.00+2.05=102.05{ }^{\circ} \mathrm{C}$

MAR

The freezing point of a solution is lower than that of the pure solvent.

How much NaCl must be dissolved in 4.00 kg of water to lower FP to $-10.00{ }^{\circ} \mathrm{C}$?
Solution
Calculate required molality
$\Delta \mathrm{T}_{\mathrm{FP}}=\mathrm{K}_{\mathrm{FP}} \cdot \mathrm{m}$
$\left(0--10.00{ }^{\circ} \mathrm{C}\right)=\left(1.86{ }^{\circ} \mathrm{C} /\right.$ molal $) \cdot \mathrm{m}$
$\mathrm{m}=5.38 \mathrm{molal}$
Use - $10{ }^{\circ} \mathrm{C}$ for ΔT if $-1.86{ }^{\circ} \mathrm{C} / \mathrm{m}$

Freezing Point Depression of Electrolytes
How much NaCl must be dissolved in 4.00 kg of water to lower FP to $-10.00{ }^{\circ} \mathrm{C}$?
Solution
Concentration required $=5.38$ molal
This means we need 5.38 mol of dissolved particles per kg of solvent.
Recognize that m represents the total concentration of all dissolved particles.

Recall that $1 \mathrm{~mol} \mathrm{NaCl}(\mathrm{aq})$

--> 1 mol $\mathrm{Na}^{+}(\mathrm{aq})+1 \mathrm{~mol} \mathrm{Cl}(\mathrm{aq}) \ldots$ or: 2 mol of particles per 1 mol of ionic solute!

Freezing Point Depression of Electrolytes

How much NaCl must be dissolved in 4.00 kg of water to lower FP to $-10.00{ }^{\circ} \mathrm{C}$?
Solution
Concentration required $=5.38$ molal
We need 5.38 mol of dissolved particles per kg of solvent. $\mathrm{NaCl}(\mathrm{aq})$--> $\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})$

2 particles per mol NaCl!

To get $5.38 \mathrm{~mol} / \mathrm{kg}$ of particles we need
$5.38 \mathrm{~mol} / 2=2.69 \mathrm{~mol} \mathrm{NaCl} / \mathrm{kg}$
$2.69 \mathrm{~mol} \mathrm{NaCl} / \mathrm{kg}$---> $157 \mathrm{~g} \mathrm{NaCl} / \mathrm{kg}$
$(157 \mathrm{~g} \mathrm{NaCl} / \mathrm{kg}) \cdot(4.00 \mathrm{~kg})=629 \mathrm{~g} \mathrm{NaCl}$

Colligative Properties and Molar Mass

Can use colligative properties to find molar mass of solute Molar mass = grams solute $/ \mathrm{moles}$ solute
Example: Find the molar mass of azulene if 0.640 g are dissolved in 99.0 g of benzene ($\mathrm{k}_{\mathrm{b}}=2.53^{\circ} \mathrm{C} / \mathrm{m}$), and the observed boiling point is $80.230^{\circ} \mathrm{C}$. (normal bp $=80.100{ }^{\circ} \mathrm{C}$)

Osmosis

MM = (grams solute * k)/($\Delta \mathrm{T}^{*} \mathrm{~kg}$ solvent) Solution: useful for both bp and fp calculations
$\Delta T=(80.230-80.100)=0.130{ }^{\circ} \mathrm{C}$
$\mathrm{m}=\Delta \mathrm{T} / \mathrm{k}_{\mathrm{b}}=0.130^{\circ} \mathrm{C} / 2.53^{\circ} \mathrm{C} / \mathrm{m}=5.14^{\star} 10^{-2} \mathrm{~mol} / \mathrm{kg}$
$0.0990 \mathrm{~kg}{ }^{*} 5.14^{*} 10^{-2} \mathrm{~mol} / \mathrm{kg}$ solvent $=5.05^{*} 10^{-3} \mathrm{~mol}$
Molar mass $=$ grams solute $/$ moles solute
Molar mass $=0.640 \mathrm{~g} / 5.05^{*} 10^{-3}$ moles $=127 \mathrm{~g} \mathrm{~mol}^{-1}$

MAR

Osmosis

The semipermeable membrane allows only the movement of solvent molecules

Solvent molecules move from pure solvent to solution in an attempt to make both have the same concentration of solute.

Driving force is entropy (CH 223)

Boiling Point Elevation and Freezing Point Depression

$$
\Delta T=k \cdot m \cdot i
$$

A generally useful equation

i = van't Hoff factor = number of particles produced per formula unit.

Compound	Theoretical Value of i
glycol	1
NaCl	2
CaCl_{2}	3

Process of Osmosis

Osmosis Calculating a Molar Mass

Dissolve 35.0 g of hemoglobin in enough water to make 1.00 L of solution. π measured to be 10.0 mm Hg at $25^{\circ} \mathrm{C}$. Calc. molar mass of hemoglobin.
Solution
(a) Calc. π in atmospheres $\pi=10.0 \mathrm{~mm} \mathrm{Hg} \cdot(1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg})$ $\pi=0.0132 \mathrm{~atm}$

Osmosis

Calculating a Molar Mass

Dissolve 35.0 g of hemoglobin in enough water to make 1.00 L of solution. π measured to be 10.0 mm Hg at $25{ }^{\circ} \mathrm{C}$. Calc. molar mass of hemoglobin.
Solution
(b) Calc. concentration from $\pi=\mathbf{c R T}$

Conc $=\frac{0.0132 \mathrm{~atm}}{(0.082057 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol})(298 \mathrm{~K})}$
Conc $=5.40 \times 10-4 \mathrm{~mol} / \mathrm{L}(* 1 \mathrm{~L})$
(c) Calc. molar mass

Molar mass $=\mathbf{3 5 . 0} \mathbf{~ g} / 5.40 \times 10^{-4} \mathbf{~ m o l}$
Molar mass $=64,800 \mathrm{~g} / \mathrm{mol}$
MAR

Osmosis

Other Homogeneous Mixtures

Homogeneous mixtures: more than just solutions!

- Solutions - most important, particles in the range $0.2-2 \mathrm{~nm}$ in diameter (salt water, acids, etc.)
- Colloids - a "solution" with particles in the range 2-1000 nm (milk, fog, etc.)
- Suspensions - contain particles greater than 1000 nm in diameter (blood, paint, aerosol sprays, etc.)

MAR

The Tyndall Effect

Colloids

Colloids have a dispersed phase ("solute") and a dispersing medium ("solvent"). Many types of colloids:

Type	D Medium	D Phase	Examples
aerosol	gas	liquid	fog, clouds
aerosol	gas	solid	smoke, viruses
foam	liquid	gas	shaving cream
emulsion	liquid	liquid	milk, mayonnaise
sol	liquid	solid	mud, paint, ink
foam	solid	gas	foam rubber, sponge
gel	solid	liquid	jelly, cheese, yogurt
solid sol	solid	solid	steel, bronze, pearls

Surfactant Emulsifying Agents

Surfactants (or Surfactant Emulsifying Agents) promote the formation of colloids by coating dispersed phase, preventing the formation of large particles.
Surfactants used for cleaning called detergents.

Surfactant Emulsifying Agents

Soaps and detergents: surfactants with both a hydrophobic (nonpolar) and a hydrophilic (polar) end. Can remove nonpolar oils and polar compounds. Soaps often grouped in micelles with like-polarities grouped together.

Oil and Water
Oil and water do not mix due to differences in polarity; water excludes oil due to stronger intermolecular forces
Soap removes oil readily using nonpolar end of micelle

MAR
MAR

End of Chapter 11

Important Equations, Constants, and Handouts

from this Chapter:	Henry's Law:
- solution = solute + solvent	$S_{g}=k \bullet P_{g}$
- see Concentration Units Handout	

- see Concentration Units Handout

Raoult's Law / Vapor Pressure Depression:

$$
\text { Molarity }(M)=\frac{\text { mol Solute }}{I \text { Colwtion }}
$$

$$
P_{\text {solvent }}=\chi_{\text {solvent }} \cdot P_{\text {solvent }}^{o}
$$

$$
\text { molality }(m)=\frac{\text { mol Solute }}{\text { kg Solvent }}
$$

$$
\text { weight } \%=\frac{\text { mass Solute }}{\text { Total mass }}
$$

$$
\text { mole fraction }(\chi)=\frac{\text { mol } A}{\text { total mol }}
$$

$$
p p m=\frac{1.0 \mathrm{~g} \text { of substance }}{1.0 \text { million } \mathrm{g} \text { sample }}
$$

See:

- Chapter Eleven Study Guide
- Chapter Eleven Concept Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)
MAR

Chemistry 222 Exam II Review

Chapters 9, 10 and 11

last update: Chemistry 222 ${ }_{M A R}^{4 / 29 / 24}$ Professor Michael Russell

Gas density: Which has the greatest density at $25^{\circ} \mathrm{C}$ and 1.00 atm pressure?
A. O_{2}
B. N_{2}
C. H_{2}
D. CO_{2}
E. Xe

Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$, burns in air according to the equation:
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
There are three gases involved in the reaction above. Place them in order of increasing velocity.
A. $\mathrm{B}_{2} \mathrm{H}_{6}<\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{O}_{2}<\mathrm{B}_{2} \mathrm{H}_{6}<\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{H}_{2} \mathrm{O}<\mathrm{B}_{2} \mathrm{H}_{6}<\mathrm{O}_{2}$
D. $\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}<\mathrm{B}_{2} \mathrm{H}_{6}$

A sample of gas has a volume of 222 mL at 695 mm Hg and $0^{\circ} \mathrm{C}$. What would be the volume of this same sample of gas if it were measured at 333 mm Hg and $0^{\circ} \mathrm{C}$?
A. 894 mL
B. 463 mL
C. 657 mL
D. 359 mL
E. -155 mL

Diborane reacts with O_{2} to give boric oxide and water vapor:

$$
\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

If 1.5 L of $\mathrm{B}_{2} \mathrm{H}_{6}$ is mixed with O_{2}, what volume of O_{2} is required for reaction? Assume constant T and P.
A. 1.5 L
B. 4.5 L
C. 0.50 L
D. 6.0 L
E. 0.0 L

MAR

Equal masses of helium and neon are placed in separate containers of equal V at the same T . Compare the pressures of the gases.
A. $\mathrm{P}(\mathrm{He})>\mathrm{P}(\mathrm{Ne})$
B. $\mathrm{P}(\mathrm{Ne})>P(\mathrm{He})$
C. $\mathrm{P}(\mathrm{He})=\mathrm{P}(\mathrm{Ne})$
D. Too much pressure!

Using intermolecular forces, the predicted order of decreasing boiling points for the following substances is
A. $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{CH}_{4}>\mathrm{H}_{2}$
B. $\mathrm{CH}_{3} \mathrm{OH}>\mathrm{H}_{2}>\mathrm{CH}_{4}$
C. $\mathrm{CH}_{4}>\mathrm{CH}_{3} \mathrm{OH}>\mathrm{H}_{2}$
D. $\mathrm{CH}_{4}>\mathrm{H}_{2}>\mathrm{CH}_{3} \mathrm{OH}$
E. $\mathrm{H}_{2}>\mathrm{CH}_{4}>\mathrm{CH}_{3} \mathrm{OH}$

MAR

When KCl dissolves in water, what types of intermolecular bonds are formed?
A. ion-ion
B. ion-dipole
C.hydrogen bonds
D.ion-ion forces and H-bonds
E. matrimony bonds

The unit cell for a compound of copper and oxygen is illustrated here. All the grey copper atoms are within the unit cell. Determine the formula of the compound.

[^4]

Rank the following molecules in order of increasing intermolecular forces:

$$
\mathrm{SO}_{2}, \mathrm{NaCl}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{He}
$$

A. $\mathrm{NaCl}<\mathrm{He}<\mathrm{SO}_{2}<\mathrm{CH}_{3} \mathrm{OH}$
B. $\mathrm{He}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{SO}_{2}<\mathrm{NaCl}$
C. $\mathrm{He}<\mathrm{SO}_{2}<\mathrm{CH}_{3} \mathrm{OH}<\mathrm{NaCl}$
D. $\mathrm{He}<\mathrm{SO}_{2}<\mathrm{NaCl}<\mathrm{CH}_{3} \mathrm{OH}$

MAR
MAR

Which of the following should have the highest $\Delta \mathrm{H}_{\text {vap }}$?
A. F_{2}
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. NH_{3}
E. all have the same
$\Delta H_{\text {vap }}$ value

Below is a phase diagram for O_{2}. What is the name of the point at $P=2 \mathrm{~mm} \mathrm{Hg}$ and $T=54.34 \mathrm{~K}$?

A. normal freezing point
B. triple point
C. normal boiling point
D. critical point
E. freak out point

At right is a phase diagram for
O_{2}. Which statement is correct regarding the densities of solid and liquid O_{2} at the same temperature?

A. The density of liquid O_{2} is $1.426 \mathrm{~g} / \mathrm{cm}^{3}$ whereas the density of solid O_{2} is $1.149 \mathrm{~g} / \mathrm{cm}^{3}$.
B. The density of solid O_{2} is $1.426 \mathrm{~g} / \mathrm{cm}^{3}$ whereas the density of liquid O_{2} is $1.149 \mathrm{~g} / \mathrm{cm}^{3}$.
C. The densities of solid and liquid O_{2} are the same.

Calculate the energy required to convert 1.00 L of
liquid ethanol at $25.0^{\circ} \mathrm{C}$ to a gas at $78.3^{\circ} \mathrm{C}$.
Constants for ethanol:
A. -329 kJ

- density $=0.7849 \mathrm{~g} / \mathrm{mL}$
B. 329 kJ
- molar mass $=46.08 \mathrm{~g} / \mathrm{mol}$
C. -759 kJ
- boiling point $=78.3^{\circ} \mathrm{C}$
D. 759 kJ
- heat capacity $=2.44 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$
- heat of vaporization $=38.56 \mathrm{~kJ} / \mathrm{mol}$
E. 0 KJ

MAR

MAR

MAR

You dissolve 92.0 grams of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, ethanol, in 270. g of water. What is the weight percent of ethanol in the solution?
A. 34.1%
B. 17.0 \%
C. 25.4 \%
D. 74.8 \%
E. 100. \%

Below is a phase diagram for O_{2}. In what phase is oxygen found at a pressure of 1 mmHg and a temperature of 55 K ?
A. solid
B. liquid
C. vapor
D. plasma

You dissolve 92.0 grams of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, ethanol, in 270 g of water. What is the mole fraction of ethanol in the solution?
A. 2.0
B. 0.12
C. 0.067
D. 0.0083
E. 0

You dissolve 92.0 grams of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, ethanol, in 270. g of water. What is the molality of ethanol in the solution?
A. 341 m
B. 170 . m
C. 0.341 m
D. 7.41 m
E. 18.0 m

You dissolve 92.0 grams of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, ethanol, in 270. g of water, and the density of the solution is $0.9780 \mathrm{~g} / \mathrm{mL}$. What is the molarity of ethanol in the solution?
A. 0.370 M
B. 2.00 M
C. 7.42 M
D. 3.05 M
E. 5.41 M

MAR

The Henry's Law constant for N_{2} in water at $53^{\circ} \mathrm{C}$ is $8.4 \times 10^{-7} \mathrm{M} / \mathrm{mm} \mathrm{Hg}$, and the vapor pressure of water at $53^{\circ} \mathrm{C}$ is 107 torr. Find the equilibrium concentration of N_{2} in water if the total pressure equals 1 atm.
A. $5.5 \times 10^{-4} \mathrm{M}$
B. $9.0 \times 10^{-5} \mathrm{M}$
C. $6.4 \times 10^{-4} \mathrm{M}$
D. $3.2 \times 10^{-5} \mathrm{M}$

E. 42 M

What mass of ethylene glycol $\left(\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{OH}\right.$, molar mass $=62.0 \mathrm{~g} / \mathrm{mol}$) must be added to 125 g of water to raise the boiling point by $1.00^{\circ} \mathrm{C}$? $\left(\mathrm{k}_{\mathrm{bp}}\left(\mathrm{H}_{2} \mathrm{O}\right)=+0.512{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$

A. 1.95 g

B. 0.244 g
C. 15.1 g
D. 31.0 g

E. 0 g

An aqueous solution of ethanol $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right)$ has a solution density of $0.9163 \mathrm{~g} / \mathrm{mL}$ and a concentration of 0.801 M . What is the mole fraction of ethanol in the solution?
A. 0.911
B. 1.1111
C. 0.9839
D. 0.0161
E. 4.03

MAR
\square 0.0400 mol of $\mathrm{I}_{2}(10.1 \mathrm{~g})$ is dissolved in 1.96 mol of $\mathrm{CCl}_{4}(300 \mathrm{~g})$ at $65^{\circ} \mathrm{C}$. Given that the vapor pressure of pure CCl_{4} is 504 mm Hg at this temperature, what is the vapor pressure of the CCl_{4} over this solution?
A. 504 mm Hg
B. 514 mm Hg
C. 494 mm Hg
D. 10.1 mm Hg
E. Too much pressure!

MAR

Which water-based solution is expected to have the higher boiling point?

A. 0.10 molal NaCl

B. 0.15 molal sugar
C.both the same
D.not enough
information
29.3 g of NaCl (molar mass $=58.5 \mathrm{~g} / \mathrm{mol}$) is dissolved in 500 . grams water. What is the boiling point of this solution? $\left(\mathrm{k}_{\text {bp }}\left(\mathrm{H}_{2} \mathrm{O}\right)=+0.512^{\circ} \mathrm{C} / \mathrm{m}\right)$
A. $100.512^{\circ} \mathrm{C}$
B. $98.976{ }^{\circ} \mathrm{C}$
C. $101.02{ }^{\circ} \mathrm{C}$
D. $1.024^{\circ} \mathrm{C}$
E. $10^{4}{ }^{\circ} \mathrm{K}$

Erythritol occurs naturally in algae and fungi. A solution of 2.50 g of erythritol in 50.0 g of water freezes at $-0.762{ }^{\circ} \mathrm{C}$. What is the molar mass of the compound? $\left(\mathrm{k}_{\mathrm{fp}}\left(\mathrm{H}_{2} \mathrm{O}\right)=-1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$
A. $26.9 \mathrm{~g} / \mathrm{mol}$
B. $35.5 \mathrm{~g} / \mathrm{mol}$
C. $122 \mathrm{~g} / \mathrm{mol}$
D. $224 \mathrm{~g} / \mathrm{mol}$
E. $0.0100 \mathrm{~g} / \mathrm{mol}$

Insulin (20.0 mg) dissolved in 5.00 mL of water at 300.
K provides an osmotic pressure of 12.5 mm Hg . What is the molar mass of insulin?
A. $18.0 \mathrm{~g} / \mathrm{mol}$
B. $42.0 \mathrm{~g} / \mathrm{mol}$
C. $3980 \mathrm{~g} / \mathrm{mol}$
D. $6010 \mathrm{~g} / \mathrm{mol}$
E. $12,100 \mathrm{~g} / \mathrm{mol}$

End of Review good luck with your studying!

Need more practice?

- Practice Problem Sets (online)
- Concept Guides (Companion and online)
- Chapter Guides (online)
- End of Chapter Problems in Textbook (every other question has answer at end)
Good luck with your studying! MAR

Chemical Kinetics: The Rates of Chemical Reactions
 Chapter 12

Chemistry 222
Professor Michael Russell

An automotive catalytic muffler

Last update:
Last update:
$4 / 29 / 24$

Shroud of Turin

Shroud of Jesus?!?
Fake or Real?
Explored with Kinetics

Chemical Kinetics

We can use thermodynamics to tell if a reaction is product or reactant favored.
But this gives us no info on HOW FAST reaction goes from reactants to products.
KINETICS - the study of REACTION RATES and their relation to the way the reaction proceeds, i.e., its MECHANISM.

Reaction Rates

Reaction rate is the change in concentration of a reactant or product with time
Reactants disappear with time (hence, negative sign), and products appear with time (hence, positive sign)
Ex: for $\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4 (\mathrm { g })}} \rightarrow \mathbf{2} \mathbf{N O}_{\mathbf{2 (g)}}$

$$
\text { rate }=-\frac{\Delta\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\Delta t}=+\frac{1}{2} \frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta t}
$$

Reaction Rates

Reaction rate is the change in concentration of a reactant or product with time
Ex: for $\mathbf{A} \rightarrow \mathbf{B}$

MAR

Reaction Rates

$$
E x: \mathbf{N}_{2(\mathrm{~g})}+\mathbf{O}_{\mathbf{2 (g)}} \rightarrow \mathbf{2} \mathbf{N O}_{(\mathrm{g})}
$$

Rate of N_{2} consumption $=-\frac{\Delta\left[\mathrm{N}_{2}\right]}{\Delta t}=-\frac{\left[\mathrm{N}_{2}\right]_{\text {final }}-\left[\mathrm{N}_{2}\right]_{\text {initial }}}{t_{\text {final }}-t_{\text {initial }}}$
Rate of O_{2} consumption $=-\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=-\frac{\left[\mathrm{O}_{2}\right]_{\text {final }}-\left[\mathrm{O}_{2}\right]_{\text {initial }}}{t_{\text {final }}-t_{\text {initial }}}$
Reaction Rate $=-\frac{\Delta\left[\mathrm{N}_{2}\right]}{\Delta t}=-\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}=\frac{1}{2} \frac{\Delta[\mathrm{NO}]}{\Delta t}$

Factors Affecting Rates

Concentration
Greater concentration of
reactants means more
collisions and faster
rates
Temperature
Higher temperatures
means particles collide
with greater kinetic
energy, increasing the
rates

Surface Area
Increased surface area means
greater chances for collisions and faster rates

Catalysts
Catalysts speed up reactions
without being used up. They lower the activation energy and increase the rates

Average, Instantaneous, Reaction Rates

We will use "average rate" in CH 222

Factors Affecting Rates

Factors Affecting Rates

Surface area of reactants

Lycopodium powder is a yellow-tan dust-like powder

Factors Affecting Rates

Catalysts: catalyzed decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ with MnO_{2}

Factors Affecting Rates

Temperature

Concentrations and Rates

Take reaction where Cl in cisplatin $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is replaced by $\mathrm{H}_{2} \mathrm{O}$

> Rate of change of conc of Pt compd
> $=\frac{\text { Am't of cisplatin reacting (mol/L) }}{\text { elapsed time }(\mathrm{t})}$

Rate of change of conc of Pt compd
$=\frac{\text { Am't of cisplatin reacting }(\mathrm{mol} / \mathrm{L})}{\text { elapsed time }(\mathrm{t})}$
Rate of reaction is proportional to $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
We express this as a RATE LAW
Rate of reaction $=k\left[\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
where $\mathrm{k}=$ rate constant
k is independent of conc. but increases with T

Concentrations and Rates

To postulate a reaction mechanism, we study its

reaction rate and

 concentration dependence

Concentrations and Rates

Rate of change of conc of Pt compd
$=\frac{\text { Am't of cisplatin reacting }(\mathrm{mol} / \mathrm{L})}{\text { elapsed time }(\mathrm{t})}$
If calculated rate $=4.3 \times 10^{-6} \mathrm{M} \mathrm{s}^{-1}$ and [cisplatin] $=$ 0.00250 M , then approximate time for cisplatin to react:
rate $=$ [cisplatin] / time, and
time $=$ [cisplatin] $/$ rate
time $=0.00250 \mathrm{M} / 4.3 \times 10^{-6} \mathrm{M} \mathrm{s}^{-1}$ time $=580$ s

Concentrations, Rates, and Rate Laws

In general, for
$a A+b B=->x X$ with a catalyst C
Rate $=k[A]^{m}[B]^{n}[C]^{p}$
The exponents m, n, and p

- are the reaction order
- can be 0 , 1, or 2 (in CH 222 - CH 223!)
- must be determined by experiment!
- overall order = m + $\mathbf{n}+\mathbf{p}$

Ros. oc Interpreting Rate Laws

Example: Rate $=k[A] m$

If $m=1, r x n$. is $1 s t$ order in A
Rate $=k[A]^{1}$
If [A] doubles, then rate goes up by factor of ?
If $\mathbf{m}=\mathbf{2}, r \times n$. is $\mathbf{2 n d}$ order in \mathbf{A}.
Rate $=k[A]^{2}$
Doubling [A] increases rate by ?
If $\mathbf{m}=0, r \times n$. is zero order.
Rate $=k[A]^{0}$
If $[A]$ doubles, rate ?

Expt.	Deriving Rate Laws	
	[$\mathrm{CH}_{3} \mathrm{CHO}$] (mol/L)	Rate of $\mathrm{CH}_{3} \mathrm{CHO}$ ($\mathrm{mol} / \mathrm{L} \cdot \mathrm{sec}$)
1	0.10	0.020
2	0.20	0.081
3	0.30	0.182
4	0.40	0.318

Let's find the order (x) with respect to $\mathrm{CH}_{3} \mathrm{CHO}$ Use two trials where [$\mathrm{CH}_{3} \mathrm{CHO}$] changes - any change in rate is caused by $\mathrm{CH}_{3} \mathrm{CHO}$
Apply the rate law to these two trials:

So the order of reaction for $\mathrm{CH}_{3} \mathrm{CHO}$ is " 2 ". We say the
reaction is second order with respect to $\mathrm{CH}_{3} \mathbf{C H O}$

Concentration/Time Relations

Chemists need to know what the concentration of reactant is as function of time.
Most reactions are first order (radioactive, biological, etc.)

Let's consider FIRST ORDER REACTIONS

For 1st order reactions (1), the rate law is:

$$
-(\Delta[R] / \Delta \text { time })=k[R]^{1}
$$

Integration (calculus): $\quad \int_{0}^{t} \frac{1}{[R]} d R=-k \int_{0}^{t} d t$

Example: Derive rate law and k for

$$
\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{~g})-->\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

from experimental data for rate of disappearance of $\mathrm{CH}_{3} \mathrm{CHO}$

Expt.	$\left[\mathrm{CH}_{3} \mathrm{CHO}\right]$ $(\mathrm{mol} / \mathrm{L})$	Disappear of $\mathrm{CH}_{3} \mathrm{CHO}$ $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{sec})$
1	0.10	0.020
2	0.20	0.081
3	0.30	0.182
4	0.40	0.318
	The rate law:	rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{x}$

Ros. Deriving Rate Laws
Rate of $\mathrm{rxn}=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{2}$
Here the rate goes up by ___ when initial conc. doubles. Therefore, we say this reaction is order.
Now determine the value of k. Use expt. \#3 data on earlier slide,

```
0.182 mol}/\textrm{L}\cdot\textrm{s}=k(0.30 \mathbf{mol}/\textrm{L})\mp@subsup{)}{}{2
```

$$
k=2.0(\mathrm{~L} / \mathrm{mol} \cdot \mathrm{~s})
$$

Using k you can calc. rate at other values of [$\mathrm{CH}_{3} \mathrm{CHO}$] at same T .

Integrating $-(\Delta[\mathbf{R}] / \Delta$ time $)=\mathbf{k}[\mathrm{R}]$ we get:

$[R]_{t} /[R]_{0}=$ fraction remaining after time t has elapsed.
This is the integrated first-order rate law.

Sucrose decomposes to simpler sugars
Rate of disappearance of sucrose = k [sucrose] $\mathrm{k}=0.21 \mathrm{hr}^{-1}$ Initial [sucrose] = 0.010 M

How long to drop 90% (to 0.0010 M)?

Using the Integrated Rate Law

The integrated rate law suggests a way to tell if a reaction is first order based on experiment.
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g})--->4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Rate $=k\left[N_{2} \mathrm{O}_{5}\right]$

Time (min)	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right](\mathrm{M})$	$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$
0	1.00	0
1.0	0.705	-0.35
2.0	0.497	-0.70
5.0	0.173	-1.75

Using the Integrated Rate Law

Plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ vs. time is a straight line! Eqn. for straight line:
$y=a x+b$
$\begin{array}{lll}\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right] & =-\mathrm{kt} \\ \Uparrow & \| & \ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0} \\ \begin{array}{ll}\text { conc at } & \text { rate const } \\ \text { conc at }\end{array} \\ \text { time } t & =\text { slope } & \text { time }=0\end{array}$
Al/ 1st order reactions have straight line plot for In [R] vs. time.
(2nd order gives straight line for plot of $1 /[R]$ vs. time; zero order [R] vs. time) - see Handout

Using the Integrated Rate Law
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \Longrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ Rate $=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$

Data of conc. vs. time plot do not fit straight line.

Plot of $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ vs. time is a straight line!

MAR

Using the Rate Laws

Characteristic Properties of Reactions of the Type"R \longrightarrow Products"					
Order	Rate Equation	Integrated Rate Equation	Straight-Line Plot	Slope	k Units
0	$-\Delta[R] / \Delta T=k[R]^{0}$	$[\mathrm{R}]_{0}-[\mathrm{R}]_{\mathrm{t}}=k t$	$[\mathrm{R}]_{t}$ vs. t	-k	mol/L - time
1	$-\Delta[R] / \Delta T=k[R]^{1}$	$\ln \left([R]_{t} /[\mathrm{R}]_{0}\right)=-k t$	$\ln [\mathrm{R}]_{t}$ v. t	-k	time ${ }^{-1}$
2	$-\Delta[R] / \Delta T=k[R]^{2}$	$\left(1 /[R]_{t}\right)-\left(1 /[R]_{0}\right)=k t$	$1 /[\mathrm{R}]_{t}$ vs. t	k	L/mol - time

Also see the "Kinetics Cheat Sheet" Handout

Half-Life

Reaction after 4 halflives, or 2616 min. 1/16 of the reactant remains.

Half-Life

Half-Life

Rate $=\mathbf{k}[$ sugar $]$ and $\mathbf{k}=3.3 \times 10^{-4} \mathrm{sec}^{-1}$. Half-life is 35 min . Start with 10.00 g sugar. How much is left after 2 hr and 20 min ? ($\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}$)		
Two Solution pathways - The "CH 104" method:		
$\mathbf{2 h r}$ and $\mathbf{2 0 ~ m i n ~}=\mathbf{4}$ half-lives		
Half-life	Time Elapsed	Mass Left
1st	35 min	5.00 g
2nd	70	2.50 g
3rd	105	1.25 g
4th	140	0.625 g answer

Half-Life

Radioactive decay is a first order process.

$$
\begin{array}{lcc}
\text { Tritium }--\gg & \text { electron }+ & \text { helium } \\
{ }_{3}{ }_{1} \mathrm{H} & { }_{-1} \mathrm{e} & { }_{3}{ }_{2} \mathrm{He}
\end{array}
$$

If you have 1.50 mg of tritium, how much is left after 49.2 years? $\mathrm{t}_{1 / 2}=12.3$ years

Half-Life

Rate $=\mathrm{k}[\mathrm{sugar}]$ and $\mathrm{k}=3.3 \times 10^{-4} \mathbf{~ s e c}^{-1}$. What is the half-life of this reaction?
Solution
$[R] /[R]_{0}=1 / 2$ when $t=t_{1 / 2}$
Therefore, $\ln (1 / 2)=-k \cdot \mathbf{t}_{1 / 2}$

$$
\begin{aligned}
& -0.693=-k \cdot t_{1 / 2} \\
& t_{1 / 2}=0.693 / k
\end{aligned}
$$

So, for sugar,
$\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}=2100 \mathrm{sec}=35 \mathrm{~min}$
see Handout

Half-Life

Rate $=\mathbf{k}$ [sugar] and $\mathbf{k}=3.3 \times 10^{-4} \mathrm{sec}^{-1}$. Half-life is 35 min . Start with 10.00 g sugar. How much is left after 2 hr and 20 min ? ($\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}$)
Two Solution Pathways - The "CH 222" Method:
Convert 2 hrs 20 min to 8400 seconds
$\ln (R / 10.00 \mathrm{~g})=-\left(3.3 \times 10^{-4} \mathrm{sec}^{-1}\right)(8400 \mathrm{~s})$
$\ln (R / 10.00 \mathrm{~g})=\mathbf{- 2 . 7 7 2}$
Take antilog: $\left(\mathrm{R} / \mathbf{1 0 . 0 0 \mathrm { g }) = \mathrm { e } ^ { - 2 . 7 7 2 } = 0 . 0 6 2 5}\right.$
$\mathrm{R}=10.00 \mathrm{~g}$ * $0.0625=0.625 \mathrm{~g}$
CH 222 Method recommended, not limited to whole number of half-lives, etc. $\mathrm{e}=$ "Euler's number" in math $=2.71828 . .$.

Half-Life

Start with 1.50 mg of tritium, how much is left after $\mathbf{4 9 . 2}$ years? $\mathrm{t}_{1 / 2}=12.3$ years
$\ln [R] /[R]_{0}=-k t$
$[R]=? \quad[R]_{0}=1.50 \mathrm{mg} \quad \mathrm{t}=49.2 \mathrm{yrs}$
Need k, so we calc k from: $\quad k=0.693 / t_{1 / 2}$
Obtain k $=0.0564 \mathrm{y}^{-1}$
Now $\ln [R] /[R]_{0}=-k t=-\left(0.0564 y^{-1}\right) \cdot(49.2 y)$
$=-2.77$
Take antilog: $[R] /[R]_{0}=e^{-2.77}=0.0627$
0.0627 is the fraction remaining
$[R]_{0}=1.50 \mathrm{mg}$, so $[R]=1.50 * 0.0627=0.0941 \mathrm{mg}$

Half-Life

$$
\begin{aligned}
& \text { Half-Life for first order reactions: } \\
& t_{1 / 2}=0.693 / \mathrm{K}
\end{aligned}
$$

All biological, radioactive processes first order, most useful

Half-Life for second order reactions:

$$
t_{1 / 2}=1 /(K[A] 0)
$$

Half-Life for zero order reactions:
$t_{1 / 2}=[A]_{0} / 2 k$
[A]o is the initial concentration of the reactant

Half-Lives of Radioactive Elements

Rate of decay of radioactive isotopes given in terms of half-life ($\mathrm{t}_{1 / 2}$).	
238 U --> ${ }^{234} \mathrm{Th}+\mathrm{He}$	$4.5 \times 10^{9} \mathrm{y}$
${ }^{14} \mathrm{C}$--> ${ }^{14} \mathrm{~N}+$ beta	5730 y
131] --> 131 Xe + beta	8.05 d
$\begin{aligned} & \text { Element } 106-\text { seaborgium } \\ & 263 \mathrm{Sg} \rightarrow->259 \mathrm{Rf}+\mathrm{He} \end{aligned}$	0.8 s
Element 111 - roentgenium ${ }^{272} \mathrm{Rg}-->{ }^{268} \mathrm{Mt}+\mathrm{He}$	0.0015 s

Half-life also used in medicine; $t_{1 / 2}$ caffeine $=3.5$ hours in the body

MECHANISMS
A Microscopic View of Reactions
How are reactants converted to products at the molecular level?

We want to connect the
RATE LAW to the MECHANISM
the experiment to the theory

MAR

Reaction Coordinate Diagrams

It is helpful to visualize energy changes throughout a process on a reaction coordinate diagram.
This diagrams shows the rearrangement of methyl isocyanide to methyl cyanide (acetonitrile).

MAR

Reaction Coordinate Diagrams

The species present at the transition state is called the activated complex.
The energy gap, E_{a} between the reactants and the activated complex is the activation energy barrier.

Activation Energy
There is a minimum amount of energy required for a reaction: the activation energy, E_{a}.
In general, differences in activation energy are the reason reactions vary from fast to slow.

 player nust give it sufficient energy.

Temperature and Rate

Generally, as temperature increases, so does the reaction rate.

This is because k is temperature dependent.

Find activation energy through changes in temperature.

Collision Theory

To break and make bonds, reactions require
(a) activation energy and
(b) correct geometry.
$\mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})-->\mathrm{O}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})$

Activation Energy and Temperature

Reactions are slower at lower T because a smaller fraction of reactant molecules have enough energy to convert to product molecules.

Effect of Temperature

Iodine clock reaction $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{I}-+2 \mathrm{H}^{+}$--> $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$

MAR

Collision Theory

To break and make bonds, reactions require
(a) activation energy and
(b) correct geometry.

$$
\mathrm{O}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})-->\mathrm{O}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})
$$

$$
\begin{array}{ll}
0-0 & 0=\mathrm{N} \\
\text { II } \\
0
\end{array}
$$

Correct activation energy and geometry

MAR

More About the Frequency Factor, A
Frequency Factor often expressed as:

We will be seeing entropy (Δ S) again in CH 223.

MOLECULARITY

The molecularity of a process tells how many molecules are involved in the elementary step.
UNIMOLECULAR - only one reactant is involved.
BIMOLECULAR - two different molecules must collide
TERMOLECULAR - three different molecules collide

Elementary Reactions and Their Rate Laws		
Molecularity	Elementary Reaction	Rate Law
Unimolecular	$\mathrm{A} \longrightarrow$ products	Rate $=k[A]$
Bimolecular	$\mathrm{A}+\mathrm{A} \longrightarrow$ products	Rate $=k[A]^{2}$
Bimolecular	$\mathrm{A}+\mathrm{B} \longrightarrow$ products	Rate $=k[A][B]$
Termolecular	$\mathrm{A}+\mathrm{A}+\mathrm{A} \longrightarrow$ products	Rate $=k[A]^{3}$
Termolecular	$\mathrm{A}+\mathrm{A}+\mathrm{B} \longrightarrow$ products	Rate $=k[A]^{2}[B]$
Termolecular	$\mathrm{A}+\mathrm{B}+\mathrm{C} \longrightarrow$ products	Rate $=k[A][B][C]$

MECHANISMS

Most reactions involve a sequence of elementary steps.
Adding elementary steps gives NET reaction.
Every elementary step gets a
"hump" in the diagram

REACTION MECHANISMS

A reaction mechanism is
the sequence of events
that describes the actual
process by which
reactants become
products.
Reactions may occur all at

once ("single step") or
through several discrete
steps.

Each of these steps known
as an elementary step

A bimolecular reaction

MECHANISMS

Some reactions occur in a single elementary step. Most reactions involve a sequence of elementary steps.
Adding elementary steps gives NET reaction.

\rightarrow Overall reaction $\quad 2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$

Every elementary step gets a
"hump" in the diagram

Mechanisms

In multistep mechanisms, one step will be slower than all others - this is the rate determining step (rds).
Most reactions involve a sequence of elementary steps. Example:

$$
2 \mathrm{I}^{-}+\mathrm{HOOH}+2 \mathrm{H}^{+}-->\mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\text { Rate }=k\left[I-1\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\right.
$$

Note that the rate law comes from experiment.
Also note that order of reactants in rate law not necessarily the same as stoichiometric coefficients!

MECHANISMS

$2 \mathrm{I}^{-}+\mathrm{HOOH}+2 \mathrm{H}^{+}-->\mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Rate $=\mathbf{k}[\mathrm{l}-\mathrm{l}$ [HOOH$]$
A scientist proposes the following mechanism for this reaction:
Step 1 - slow $\mathrm{HOOH}+\mathrm{I}^{-}$--> $\mathrm{HOI}+\mathrm{OH}^{-}$
Step 2 - fast $\mathrm{HOI}+\mathrm{I}^{-}-->\mathrm{I}_{2}+\mathrm{OH}^{-}$
Step 3 - fast $2 \mathrm{OH}^{-}+2 \mathrm{H}^{+}$--> $2 \mathrm{H}_{2} \mathrm{O}$
Note that H^{+}not involved in slow step, so $\left[\mathrm{H}^{+}\right]$is not in the rate law (a zero order reactant.)
Bimolecular slow step reflected in the rate law; this is a legitimate mechanism.

Mechanisms - Uses

Mechanisms help predict the products of a reaction
Very useful in organic chemistry: the $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$ mechanisms
$S_{N}=$ substitution nucleophilic

$S_{N} 1$

$$
\mathrm{S}_{\mathrm{N}} 2
$$

CATALYSIS - Uses

1. In auto exhaust systems - Pt , NiO , PtO $2 \mathrm{CO}+\mathrm{O}_{2}-\mathrm{-} \mathrm{CO}_{2}$ $2 \mathrm{NO}--->\mathrm{N}_{2}+\mathrm{O}_{2}$

MECHANISMS

$$
\begin{aligned}
& 2 \mathrm{I}+\mathrm{HOOH}+2 \mathrm{H}^{+}---\mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \text { Rate }=k[1-][\mathrm{HOOH}] \\
& \text { Step } 1 \text { - slow } \mathrm{HOOH}+\mathrm{I}^{-} \text {--> } \mathrm{HOI}+\mathrm{OH}^{-} \\
& \text {Step } 2 \text { - fast } \mathrm{HOI}+\mathrm{I}^{-}->\mathrm{I}_{2}+\mathrm{OH}- \\
& \text { Step } 3 \text { - fast } 2 \mathrm{OH}^{-}+2 \mathrm{H}^{+} \xrightarrow{-->} 2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Step 1 is bimolecular and involves I - and HOOH .
Therefore, this predicts the rate law should be
Rate α [- -] [HOOH] - as observed!!
The species HOl and OH - are reaction intermediates; critical for providing evidence for or against a proposed mechanism.
See: Reaction Mechanisms Guide

$$
M A R
$$

CATALYSIS

Catalysts speed up reactions by altering the mechanism to lower the activation energy barrier.

CATALYSIS - Uses
2. Polymers: $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$---> polyethylene
3. Acetic acid: $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CO}-->$ $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
4. Enzymes - biological catalysts

CATALYSIS
Catalysis and activation energy

Uncatalyzed reaction
— Catalyzed reaction
decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$
$2 \mathrm{H}_{2} \mathrm{O}_{2}$---> $2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

lodine-Catalyzed Isomerization of cis-2-Butene

Important Equations, Constants, and Handouts from this Chapter:

The Rate Law:
Rate $=k[A]^{p}[B]^{m}[C]^{n} \ldots$
$m, n, p=0,1$ or 2 only (in our classes)
1st Order Integrated Rate Law;

,
$\begin{aligned} \ln \frac{L R]}{\left[R_{0}\right]} & =-k t \\ t_{\frac{1}{2}} & =\frac{0.693}{k}\end{aligned}$

$$
\begin{gathered}
\text { The Arrhenius Equation: } \\
\ln (k)=-\left(\frac{E_{a}}{R}\right)\left(\frac{1}{T}\right)+\ln (A)
\end{gathered}
$$

> End of Chapter Problems: Answers

1. The reaction between ozone and nitrogen dioxide at 231 K is first order in both NO_{2} and $\mathrm{O}_{3}: 2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$ Write the rate equation for the reaction. If the concentration of NO_{2} is tripled, what is the change in the reaction rate?
2. After 2.57 h at $27^{\circ} \mathrm{C}$, a first order sucrose concentration decreased from 0.0146 M to 0.0132 M . Find the rate constant, k
3. The compound $\mathrm{Xe}\left(\mathrm{CF}_{3}\right)_{2}$ decomposes in a first-order reaction to elemental Xe with a half-life of 30 . min. If you place 7.50 mg of $\mathrm{Xe}\left(\mathrm{CF}_{3}\right)_{2}$ in a flask, how long must you wait until only 0.25 mg of $\mathrm{Xe}\left(\mathrm{CF}_{3}\right)_{2}$ remains?
4. Gaseous NO_{2} decomposes at $573 \mathrm{~K}: 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ The concentration of NO_{2} was measured as a function of time. A graph of 1 $\left[\mathrm{NO}_{2}\right]$ versus time gives a straight What is the rate law for the following elementary reaction:
5. What is the rate law for the following elementary reaction: $\quad \mathrm{NO}(\mathrm{g})$
$+\mathrm{NO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ $+\mathrm{NO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
6. For a reaction, In k versus $1 / T(\mathrm{~K})$ is plotted, and the linear regression line is: $y=-6373.3 x+18.19, r=-0.997$ What is the activation energy for this
reaction? reaction?
7. Rate $=k[\mathrm{NO} 2][\mathrm{O} 3]$; tripling NO triples the rate.
8. $0.0392 \mathrm{~h}^{-1}$
9. 150 min Rate $=k\left[\mathrm{NO}_{2}\right]^{2}, k=1.1 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}$
10. Rate $=k[\mathrm{NO}]\left[\mathrm{NO}_{3}\right]$
11. $53.0 \mathrm{~kJ} / \mathrm{mol}$

Early Nuclear Chemistry Pioneers:

Atomic Number, Z

All atoms of the same element have the same number of protons in the nucleus, Z .

Mass Number, A

Mass Number
= \# protons + \# neutrons
A boron atom can have
$A=5 p+5 n=10$ and
$Z=5$ protons $=5$

$$
A \longrightarrow 10
$$

[^5] same \# of protons (Boron-10, Boron-11)

Radioactive Particles

ALPHA	helium nucleus	${ }_{2}^{4} \mathrm{He}$ or ${ }_{2}^{4} \alpha$
BETA	electron	${ }_{-1}^{0} \mathrm{e}$ or ${ }_{-1}^{0} \beta$
GAMMA	energy (massless)	γ
PROTON	proton	${ }_{1}^{1} p$ or ${ }_{1}^{1} \mathrm{H}$
NEUTRON	neutron	${ }_{0}^{1} \mathrm{n}$
POSITRON	antielectron	${ }_{+1}^{0} \mathrm{e}$ or ${ }_{+1}^{0} \beta$

Radioactive Particles

Each particle has different properties

Balancing Nuclear Reactions

Problem: Uranium-235 decomposes through beta decay to a new product. Find the identity of the new product.

Solution:

Uranium has 92 protons, so:

$$
{ }_{92}^{235} \mathrm{U}
$$

Beta decay means "losing a beta particle", or generating a beta particle as a product, so:

$$
{ }_{92}^{235} \mathrm{U} \longrightarrow{ }_{-1}^{0} \mathrm{e}^{+}{ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X}
$$

.

Alpha - stopped by clothes Beta - stopped by skin Gamma - stopped by lead

Emission, Decay and Capture

Emission and Decay imply a product particle
An example of positron emission:

$$
{ }_{84}^{207} \mathrm{Po} \longrightarrow \underset{+1}{0} \beta+{ }_{83}^{207} \mathrm{Bi}
$$

Capture implies a reactant particle
An example of neutron capture:

$$
{ }_{9}^{19} \mathrm{~F}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{9}^{20} \mathrm{~F}
$$

Many types of "particles" and "decays"

Balancing Nuclear Reactions

* Number of reactant protons must equal the number of product protons
* Number of reactant neutrons must equal the number of product neutrons

Example:

$$
{ }_{88}^{226} \mathrm{Ra} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{86}^{222} \mathrm{Rn}
$$

A: $226=4+222$
Z: $88=2+86$

Balancing Nuclear Reactions

Problem: Uranium-235 decomposes through beta decay to a new product. Find the identity of the new product.

$$
{ }_{92}^{235} \mathrm{U} \longrightarrow{ }_{-1}^{0} e^{+}{ }_{Z}^{\mathrm{A}} \mathrm{X}
$$

Solution:

$235=0+A$, therefore $A=235$
$92=-1+Z$, therefore $Z=93$
If $Z=93, X=\operatorname{Neptunium}(N p)$, and

$$
{ }_{92}^{235} \mathrm{U} \longrightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{93}^{235} \mathrm{~Np}
$$

The "inner reaction":

$$
{ }_{0}^{1} n \longrightarrow{ }_{-1}^{0} e+{ }_{1}^{1} p
$$

Positrons and Antimatter

Paul Dirac first predicted antimatter in 1928, identical to "regular" matter except for opposite charge
Positrons are antielectrons; combining with electrons leads to annihilation (gamma)

electron + positron ---> gamma radiation Used in Positron Emission Tomography (PET)

Many examples of annihilation reactions are known:

$$
\boldsymbol{v}+\overline{\boldsymbol{v}} \quad \longrightarrow \quad 2 \boldsymbol{\gamma}
$$

neutrino + antineutrino ---> gamma radiation

Decay Scheme for Uranium-238

The Four Forces of Nature

Gravitation: weak, long range force
Weak nuclear: short range, gives beta decay Electromagnetic (E/M): long range, keeps electrons around nucleus, 10^{36} times more powerful than gravity (aka electrostatic, Coulombic, etc.)
Strong nuclear: 10^{6} times more powerful than E/M, very short range ($10^{-15} \mathrm{~m}$); overpowers E/M repulsion between protons. Strong keeps (protons + neutrons) and (neutrons + neutrons) together. "Glue" that keeps nucleus together

A "peninsula of stability" (black dots) in a "sea of instability" (red dots)

Metastable Nuclei

When electrons are excited in an atom, they relax and emit UV, IR and visible radiation
A metastable nuclei is created when a nucleus is excited. Relaxation results in high energy gamma ray emission

metastable Tc ---> "regular" Tc + gamma ray Note the " m " for "metastable" and no change in atomic or mass numbers
Metastable nuclei (especially Technetium-99m) used extensively in medical imaging

Nuclear Stability

Why are nuclei unstable? E/M Force (long range) begins overpowering strong force (short range)
Magnetic dilution (more neutral neutrons than positive protons) helps stabilize nuclei - to a point
Up to calcium ($Z=20$), most stable nuclei occur when \# protons = \# neutrons
Exceptions: helium-3 and hydrogen-1
Up to lead ($Z=82$), most stable nuclei occur when \# protons < \# neutrons
Beyond lead, all isotopes unstable and radioactive

Glenn Seaborg and Ken Moody believe that heavier elements can be made - exciting!

Interested? See: http://www.pbs.org/wgbh/nova/ sciencenow/3313/02.html

Nuclear Stability

Energy required to overcome positivepositive repulsion of protons is substantial use strong (and weak) forces

- Strong and weak forces much stronger than electromagnetic force or gravity
Nuclear binding energy, E_{b}, used to estimate force contribution
- E_{b} is the negative of the energy change if nucleus formed directly from individual protons and neutrons

Nuclear Stability

Problem: Calculate the binding energy, E_{b}, for deuterium (hydrogen-2). $\Delta \mathrm{m}=-0.00239 \mathrm{~g} / \mathrm{mol}$
Solution:

$$
\begin{aligned}
& \text { Now use Einstein's equation: } \Delta E=\Delta \mathrm{mc}^{2} \\
& \Delta E=\left(-2.39^{*} 10^{-6} \mathrm{~kg} \mathrm{~mol}^{-1}\right)\left(2.998^{*} 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\
& \Delta E=-2.15^{*} 10^{11} \mathrm{~J} \mathrm{~mol}^{-1} \text {, and } \\
& E_{b}=-\Delta E, \text { so } \\
& \mathrm{E}_{\mathrm{b}}=2.15^{*} 10^{8} \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \quad \begin{array}{l}
\text { very negative (exothermic) - lots of } \\
\text { energy produced. } E_{b} \text { very positive - lots } \\
\text { of energy saved through stabilization }
\end{array}
\end{aligned}
$$

Nuclear Stability
β-decay occurs in isotopes with a high neutron to proton ratio. Result: higher atomic number, same mass number

$$
{ }_{92}^{235} \mathrm{U} \longrightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{93}^{235} \mathrm{~Np}
$$

Low neutron to proton ratio: positron emission or electron capture. Result: lower atomic number, same mass number

Nuclear Stability

Problem: Calculate the binding energy, E_{b}, for deuterium (hydrogen-2).

Solution:
The process:
${ }_{1}^{1} p+{ }_{0}^{1} n \longrightarrow{ }_{1}^{2} H$
Note that: mass $_{\mathbf{p}}+\operatorname{mass}_{\mathbf{n}} \neq \operatorname{mass}_{\mathbf{D}}$ $1.007825+1.00865 \neq 2.01410$ $2.016475 \neq 2.01410$ $\Delta m=-0.00239 \mathrm{~g} / \mathrm{mol}$ mass is not conserved!

Nuclear Stability

Problem: Calculate the binding energy, E_{b}, for deuterium (hydrogen-2). $\Delta m=-0.00239 \mathrm{~g} / \mathrm{mol}$
Solution:
Now use Einstein's equation: $\quad \Delta E=\Delta \mathrm{mc}^{2}$ $\Delta E=\left(-2.39^{*} 10^{-6} \mathrm{~kg} \mathrm{~mol}^{-1}\right)\left(2.998^{*} 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}$ $\Delta E=-2.15^{*} 10^{11} \mathrm{~J} \mathrm{~mol}^{-1}$, and $E_{b}=-\Delta E$, so $\mathrm{E}_{\mathrm{b}}=2.15^{*} 10^{8} \mathrm{~kJ} \mathrm{~mol}^{-1}$
\underline{E}_{b} per nucleon $=2.15^{*} 10^{8} /(1 p+1 n)$ nucleons $=1.08 * 10^{8} \mathrm{~kJ} \mathrm{~mol}^{-1}$ nucleon ${ }^{-1}$
This is the strong force contribution in the nucleus!

Nuclear Stability

Can use
Binding energy $\left(E_{b}\right)$ to calculate stability of nuclei:

Tremendous amounts of energy are generated when light nuclei combine to form heavier nuclei - nuclear fusion
"Clean" energy, used in stars and bombs, requires plasma and/or high temperatures - high activation energy barrier
No "meltdown" - reaction just stops, no waste

$$
\begin{aligned}
&{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \longrightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n} \\
& \mathrm{E}=-1.7^{*} 10^{9} \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Fusion

Note that iron-56 is the most stable element thermodynamically - end of solar cycles, etc.
Elements with $Z<\mathbf{2 6}$ can use fusion to become more like iron-56

Elements with Z > $\mathbf{2 6}$ can use fission to become more like iron-56

Kinetics of nuclear reactions
 important - half life, rate of decay, etc.

Nuclear Stability

Plasma

Plasma is the fourth state of matter - along with solids, liquids and gases

MAR

Plasma - in your microwave?

Video by Sergiu and Ben Todor 2010
Grape microwave "plasma" - ?!?

Fusion - Tokamak Reactor

Tokamak reactor uses magnetic fields to constrict plasma for fusion in "donut" shape; most promising "future" magnetic fusion device

MAR

Fission

Tremendous amounts of energy (electricity) generated when heavy nuclei split to form lighter nuclei - nuclear fission
Generally requires a "neutron trigger"

Fusion - Tokamak Reactor

Tokamak reactors - inside and outside views

MAR

Excess neutrons must be controlled!
Fission Supercritical chain reactions can result without proper caution
Waste products from fission messy and virtually perpetual
More than 400 nuclear fission plants in 30 different countries!

Uses for Nuclear Chemistry

Energy: Fission (commercial) and Fusion (coming!)

LISE MEITNER - unsung hero

Meitner and colleagues Otto Hahn, Fritz Strassmann \& Otto Frisch explained the process of fission (1938)
Meitnerium (Mt, \#109) named after her
Forced to work in basement, never got Nobel Prize (but Hahn did!)
Pioneering woman in a male-dominated field; deserves more credit for her work

Radiation and Health

Some radiation is around us all of the time

Geiger counters measure the amount of radioactive activity present in a sample. The radiation creates ions which conduct a detectable current.

Nuclear Transformations

Nuclear transformations can be induced by accelerating a particle and colliding it with the nuclide.

- Linear accelerator-uses alternating electric fields to accelerate particle.
- Cyclotron-uses combination of electric and magnetic fields to accelerate particles in spiral pathway.

Uses for Nuclear Chemistry
Astronomers and chemists work together to define the origin of elements. Many made through fusion, some via fission, much not understood

Particle Accelerators
These particle accelerators are enormous, having circular tracks with radii that are miles long. New elements created by "smashing" smaller nuclei together.

Uses for Nuclear Chemistry
 Medicine: PET and MRI

Tc (in PET) not found in
nature, created via Mo:
${ }_{42}^{99} \mathrm{Mo} \longrightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{43}^{99 \mathrm{~m}} \mathrm{Tc}$

- Tc-99m: metastable; $t_{1 / 2}=6.0 \mathrm{hrs}$.
- Can be incorporated
into variety
of compounds
(heart, etc.).
PET = Positron Emission Tomography MRI = Magnetic Resonance Imaging

Page III-21-9 / Chapter Twenty-One Lecture Notes

End of Chapter Problems: Answers

1. beta particle
2. alpha particle
3. positron particle
4. hafnium-178
5. boron-10: $6.26 \times 10^{8} \mathrm{~kJ} / \mathrm{mol} \cdot$ nucleons; boron-11: $6.70 \times 10^{8} \mathrm{~kJ} /$ mol.nucleons
6. $0.17 \mu \mathrm{~g}$

Chemistry 222 Final Exam Review Chapters 12 and 21

Chemistry 222

 Professor Michael Russell

MAR

The reduction of NO with hydrogen produces nitrogen and water.

$$
2 \mathrm{NO}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

The reaction is second order in NO and third order overall. The rate law for the reaction is
A. Rate $=k\left[\mathrm{NO}_{[}\left[\mathrm{H}_{2}\right]\right.$
B. Rate $=k\left[\mathrm{NO}_{3}\left[\mathrm{H}_{2}\right]^{2}\right.$
C. Rate $=k\left[\mathrm{NO}^{2}\left[\mathrm{H}_{2}\right]\right.$
D. Rate $=k\left[\mathrm{NO}^{2}\left[\mathrm{H}_{2}\right]^{2}\right.$
E. Rate $=k\left[\mathrm{NO}_{2}\right]\left[\mathrm{H}^{+}\right]^{3}$

For the reaction below, what is $\Delta\left[\mathrm{CH}_{2} \mathrm{O}\right] / \Delta$ t with respect to $\Delta\left[\mathrm{O}_{2}\right] / \Delta t$?

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{2} \mathrm{O}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

A. $\Delta\left[\mathrm{CH}_{2} \mathrm{O}\right] / \Delta \mathrm{t}=2 \cdot \Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}$
B. $\Delta\left[\mathrm{CH}_{2} \mathrm{O}\right] / \Delta t=1 / 4 \cdot \Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}$
C. $\Delta\left[\mathrm{CH}_{2} \mathrm{O}\right] / \Delta \mathrm{t}=-4 \cdot \Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}$
D. $\Delta\left[\mathrm{CH}_{2} \mathrm{O}\right] / \Delta \mathrm{t}=4 \cdot \Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}$
E. $\Delta\left[\mathrm{CH}_{2} \mathrm{O}\right] / \Delta \mathrm{t}=\Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}$

The reduction of NO with hydrogen produces nitrogen and water.

$$
2 \mathrm{NO}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

The reaction is second order in NO and third order overall. The [NO] is increased by a factor of 5 , the rate will increase by a factor of
A. 0
B. 1
C. 5
D. 10
E. 25

MAR

For the reaction $A \rightarrow B$, the disappearance of A is found to be second-order. Which of the following will produce a straight line graph?
A. $\log [A]$ vs. time
B. In $[A]$ vs. time
C. $[A]$ vs. time
D. $1 /[A]$ vs. time
E. $[A]^{2}$ vs. time

For the reaction $A \rightarrow B$, the disappearance of A is found to be first-order. A linear regression analysis of the data yields the equation:

$$
y=-0.00106 x+-3.91
$$

What is the value of the rate constant, k ?
A. -0.00106
B. 0.00106
C. -3.91
D. 3.91
E. 42

MAR

Radioactive gold-198 is used in the diagnosis of liver problems. The half-life of the isotope is 2.7 days. If you begin with 5.6 mg of the isotope, how many days does it take 5.6 mg of gold to become 0.70 mg ?
A. 2.0 days
B. 2.7 days
C.5.4 days
D. 8.1 days
E. 10.8 days

Use the rate laws below to determine which reaction is most likely to occur in a single step:

A. $2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})$	Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]$
B. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$	Rate $=\mathrm{k}\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]^{1 / 2}$
C. $\mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{g})$	Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{2}\right]$
D. $\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$	Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]$

For the reaction $A \rightarrow B$ the disappearance of A is first-order where $\mathrm{k}=0.030 / \mathrm{min}$. If we begin with $[A]=0.36 \mathrm{M}$, what will $[\mathrm{A}]$ be after 46 min ?
A. 0.091 M
B. 0.18 M
C. 0.31 M
D. 0.25 M
E. 0.50 M

The reaction of $\mathrm{NO}_{2}(\mathrm{~g})$ and $\mathrm{CO}(\mathrm{g})$ is thought to occur in two steps:

Step 1 Slow	$\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g})$
Step 2 Fast	$\mathrm{NO}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$

Which of the following rate laws would correspond to this mechanism?
A. Rate $=k\left[\mathrm{NO}_{2}\right][\mathrm{CO}]$
B. Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]$
C. Rate $=k\left[\mathrm{NO}_{2}\right]^{2}$
D. Rate $=k[\mathrm{CO}]$
E. Rate $=k[C O]^{2}$

MAR

Which statement is incorrect?
A. A catalyst provides an alternative mechanism for a reaction
B. A catalyst is regenerated in a reaction
C. A reaction involving a catalyst yields more product
D. A catalyst speeds up the forward and reverse reactions
E. Catalysts are cool! :)

How many neutrons and protons are there in the radioisotope
${ }^{60} \mathrm{Co}$ that is used in cancer therapy?
A. 60 neutrons and 27 protons
B. 27 neutrons and 60 protons
C. 33 neutrons and 27 protons
D. 27 neutrons and 33 protons
E. 0 neutrons and 0 protons

What is the unknown particle in the following nuclear reaction?

$$
{ }_{84}^{207} \mathrm{Po} \rightarrow \text { particle }+{ }_{83}^{207} \mathrm{Bi}
$$

A. alpha
B. beta
C. gamma
D. neutron
E. positron

What is the unknown particle in the following nuclear reaction?

$$
{ }_{92}^{239} \mathrm{U} \rightarrow \text { particle }+{ }_{93}^{239} \mathrm{~Np}
$$

A. alpha
B. beta
C. gamma
D. neutron
E. positron

MAR

What new nucleus is produced in the following nuclear reaction?

$$
{ }_{20}^{41} \mathrm{Ca}+{ }_{-1}^{0} \mathrm{e} \rightarrow \text { ? }
$$

A. ${ }_{21}^{41} \mathrm{Sc}$
B. ${ }^{42} \mathrm{~K}$
C. ${ }_{19}^{41} \mathrm{~K}$

MAR

Which of the following nuclei has the highest binding energy per nucleon?
A. ${ }^{7 L i}$
B. ${ }^{59} \mathrm{Ni}$
C. ${ }^{4} \mathrm{He}$
D. ${ }^{232}$ Th
E. ${ }^{0} \mathrm{Jq}$
Calculate the binding energy per mol of nucleons
(Eb) for carbon-12. Helpful values:

- 1 proton $=1.007825 \mathrm{~g} / \mathrm{mol}$
: 1 neutron $=1.008665 \mathrm{~g} / \mathrm{mol}$
\cdot carbon $-12=12.000000 \mathrm{~g} / \mathrm{mol}$
$-2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}=\mathrm{c}$
A. $7.411 \times 10^{8} \mathrm{~kJ}$
B. $8.893 \times 10^{9} \mathrm{~kJ}$
C. $1.482 \times 10^{9} \mathrm{~kJ}$
D. -0.098940 kJ
E. $0.0001 \times 10^{8} \mathrm{~kJ}$

Calculate the binding energy per mol of nucleons $\left(\mathrm{E}_{\mathrm{b}}\right)$ for carbon-12. Helpful values:

- 1 proton $=1.007825 \mathrm{~g} / \mathrm{mol}$
eutron $=1.008665 \mathrm{~g}$
- $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}=\mathrm{c}$
A. $7.411 \times 10^{8} \mathrm{~kJ}$
B. $8.893 \times 10^{9} \mathrm{~kJ}$
C. $1.482 \times 10^{9} \mathrm{~kJ}$
E. $0.0001 \times 10^{8} \mathrm{~kJ}$

Radioactive iodine-131 is used to treat
hyperthyroidism. It has a half-life of 8.04 days. If you
begin with 8.8 micrograms, what mass remains after 32.3 days?
A. 4.4 micrograms
B. 2.2 micrograms
C. 1.1 micrograms
D. 0.54 micrograms
E. 0.23 micrograms

Gallium citrate, containing radioactive ${ }^{67} \mathrm{Ga}$, is used as a tumor-seeking agent. It has a half-life of 78.2 hours. How long will it take for a sample of gallium citrate to decay to 15% of its original activity?
A. 86.5 hours
B. 157 hours
C. 214 hours
D. 235 hours
E. 150 seconds

> End of Review good luck with your studying!

Need more practice?

- Practice Problem Sets (online)
- Concept Guides (Companion and online)
- Chapter Guides (online)
- End of Chapter Problems in Textbook (every other question has answer at end)
Good luck with your studying!
MAR

Building Lewis Dot Structures

1) Decide on the central atom

Central atom has lowest electron affinity
Never Hydrogen! H only terminal atom
2) Count Valence Electrons \& Electron Pairs \# Valence Electrons = Group Number Electron Pairs $=($ Valence Electrons) $/ 2$
3) Form sigma bond(s) between central atom and surrounding atom(s)

4) Remaining electrons form lone pairs Use the Octet Rule to assign electrons

5) If an atom(s) does not have octet, create pi bond(s) using lone pairs on adjacent atoms

		08I	лвәи!		м.цәшиикs 'S.IIed ио.џәәə \boldsymbol{Z} 'шоңе I :SpnolD әә.Іप.L
${ }^{2} \mathrm{O}$					
$\ddot{\mathrm{O}}=\ddot{O}$.trod-uON	081	лвәи!		мидаишккя 's.ı!еd ио.џэәә \boldsymbol{Z} 'шоұе I spnoID әә.ІІL
${ }^{\text {z }} \mathrm{OS}$					
		0 II			งนฉวшшкรр .!!ed иопџəәə I suole Z :SpnolD әә.Iप.L
		02 I		.18ue\|d [ruosinil	мицวนиккл suole ع spnolつ әә.дЧ.L
	.teroduon	021			
$\ddot{\sim}$		08I	лвәи!	леәи!	иопрәр ои ‘suоде \boldsymbol{Z} :Spnold 0ML
$\ddot{\mathrm{O}}=0=\stackrel{\mathrm{V}}{\mathrm{O}} \mathrm{OD}$.riod-uon	08 I	.120u!	лвәи!	мидаиикк 's.!!ed иоцрәр ои 'suope τ Spnol? oML
गduext			 		

Page IV－7－3／CH 222 Geometry and Polarity Guide

$\begin{aligned} & \text { IOH } \\ & : \ddot{O}-H \end{aligned}$		08I	．ıвәu！		
$\stackrel{{ }^{z} \text { ID }}{\because 0}$	IEIOduON	08I	．лвәи！	［е．прәче．пә」	
	．IE［0d	S60I	IV［nsuv ıo ұuәg	［е．．рәче．ıə	
	$\mathrm{IE}_{\text {［0］}}$	S60I		［е．хрәче．пры	
	$\mathrm{IEP}_{\mathbf{O}} \mathbf{d}$	S＇60I	［е．хрәче．пә」	［е．хрәче．пә」	
	．teloduon	S60I	［е．лрәче．пәЈ	［е．ıрәче．ıə L	
әןduex	К1！．IEIOd	（Səə．І૦əす） （s）əơuv puog			

Page IV-7-4 / CH 222 Geometry and Polarity Guide

	.IETOduon	02 I		P!	
	${ }^{\text {IE }}$ [0]	08I'06	suozt \mathcal{E} рриов!.и ұити!иор pәdeчs-L	P!	
	${ }^{\text {IT }}$ [0d	08I '0ZI `06 & Mrszas & P! & \\ \hline & & & & & \\ \hline & \begin{tabular}{l} suonp.ın8!fuos \\ \({ }^{\varepsilon} X^{\imath} X V\) и!̣дидо \\ u! . iploduou \\ aq uro \(\downarrow п q^{*}\) \\ \({ }^{\mathbf{I L}} \mathrm{EH}_{\mathrm{O}} \mathrm{d}\) \end{tabular} & 08I `0ZI `06 & P!ur.İd!g [ruosiluL & P! & \\ \hline & & & & & \\ \hline & IEIOduon & 08I '0ZI `06	P!		
əןduex's	К1!.IEIOd	(Səว.Іถวəવ) 	К.пәшоәŋ әдечS / ITE[nวəj0W		

Page IV-7-5 / CH 222 Geometry and Polarity Guide

	suolp.ın8ıfuos ${ }^{2}$ K † XV и!̣риวл u! . ıploduou IE [0d	08I '06	[е.грәурұо	[е.грәуряо	
	.IEIOduon	08I '06	[е.хрәчеұо	[р.хрәчеұоо	
	${ }_{\text {IE }} \mathrm{O}_{\mathbf{O}}$ d	081			
-	.teroduon	08I	.Jセəu!	p!ur.ıíd!g [ruosi...L	
	${ }^{1810}{ }^{\text {d }}$	021		p!ur.íd!g [ruosi! ${ }_{\text {L }}$	
ə„durs	Klı.IE[0]	(Səə.Іઠəコ) 			

CH 222 Guide to Polarity

Polarity arises when two atoms in a bond receive unequal distributions of electron density; i.e. one atom is slightly more negative than the other.

Example: In HCl , the Cl is more negative than the H
Polarity is an important property of molecules.
It affects physical properties such as melting point, boiling point and solubility.
Chemical properties also depend on polarity.
Dipole moment, μ, is a quantitative measure of the polarity of a molecule.

A molecule is nonpolar if the central atom is symmetrically substituted by identical atoms.

Examples: $\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{CCl}_{4}$
A molecule will be polar if the geometry is not symmetrical. Examples: $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

The degree of polarity is a function of the number and type of polar bonds as well as the geometry.

For a molecule to be polar, the effects of bond polarity must not cancel out.

CH 222 Guide to Formal Charges

The formal charge for an atom in a molecule or ion is the charge calculated for that atom based on the Lewis structure of the molecule or ion using the following equation:

Formal Charge $=\mathbf{G N}-$ lpe $-\mathbf{1} / \mathbf{2}($ bpe $)$

where $\quad \mathbf{G N}=$ group number for the atom
$\mathbf{l p e}=$ number of lone pair electrons on the atom
bpe $=$ number of bonding pair electrons on the atom

- The sum of the formal charges on the atoms in a molecule or ion always equals its net ionic charge.
- Formal charges can be helpful when deciding on the most likely resonance structure; the structure with the lowest overall formal charges will be the most likely resonance structure
- Alternatively, the most likely resonance structure will have the lowest absolute value of individual formal charges; i.e. the resonance structure with the lowest summation of the absolute values of each formal charge in the molecule or ion will be the most preferred structure

Example: Hydroxide, OH^{-}, has a net ionic charge of -1 and it has the Lewis structure:

The hydrogen atom in hydroxide has a group number $=1$, it has no lone pair electrons, and it has two bonding pair electrons in the single bond. Therefore, the formal charge on the hydrogen atom is: $1-0-\frac{1}{2}(2)=\mathbf{0}$

The oxygen atom in hydroxide has a group number $=6$, it has six lone pair electrons, and it has two bonding pair electrons in the single bond. Therefore, the formal charge on the oxygen atom is: $6-6-1 / 2(2)=\mathbf{- 1}$

The sum of formal charges is $0+(-1)=\mathbf{- 1}$, which is equal to the net ionic charge of -1 .

Example: Carbon dioxide, CO_{2}, has a net ionic charge of zero. Two possible Lewis structures:

Structure A Structure B

The carbon atom in both \mathbf{A} and \mathbf{B} has a group number $=4$, it has no lone pair electrons, and it has eight bonding pair electrons (in \mathbf{A}, eight electrons come two double bonds; in \mathbf{B}, two come from the single bond and six from the triple bond.). Therefore, the formal charge on the carbon atom is: $4-0-\frac{1}{2}(8)=\mathbf{0}$

In structure \mathbf{A}, each oxygen atom has a group number $=6$, four lone pair electrons, and four bonding pair electrons in the double bond. Therefore, the formal charge on the oxygen atom is: $6-4-\frac{1}{2}(4)=\mathbf{0}$

In structure \mathbf{B}, the oxygen atom with the triple bond has a group number $=6$, two lone pair electrons, and six bonding pair electrons from the triple bond. Therefore, the formal charge on this oxygen atom is: $6-2-1 / 2(6)=+\boldsymbol{1}$

In structure \mathbf{B}, the oxygen atom with the single bond has a group number $=6$, six lone pair electrons, and two bonding pair electrons from the single bond. Therefore, the formal charge on this oxygen atom is: $6-6-\frac{1}{2}(2)=\mathbf{- 1}$

Note that the sum of the formal charges in both structures equals the ionic charge:

$$
\begin{aligned}
& \text { In } \mathbf{A}, 0+0+0=0 \\
& \text { In } \mathbf{B}, 0+1-1=0
\end{aligned}
$$

However, structure A is preferred over B because A has lower formal charges overall. Nature prefers resonance structures with lower formal charges.

The most preferred structure will have the lowest absolute value of individual formal charges:
A: $|0|+|0|+|0|=0$
B: $|0|+|1|+|-1|=2$

CH 222 Chapter Seven Study Guide

- Be able to distinguish between valence and core electrons for any given element.
- Know the three primary attractive and repulsive forces that constitute atomic bonds.
- Know the key differences between covalent and ionic bonding. Be able to predict from a formula whether a compound is ionic or covalent.
- Be able to draw Lewis electron dot structures for a given compound.
- Understand the significance of the octet rule in assigning Lewis electron dot structures.
- Realize that certain elements (boron, etc.) do not always obey the octet rule.
- Understand the significance of resonance structures.
- Be able to define and predict trends in bond order, bond length and bond dissociation energy.
- Be able to use bond dissociation energy in calculations.
- Be able to recognize polar bonds in molecules using the concept of electronegativity.
- Be able to calculate the formal charge for a given atom in a molecule.
- Know the difference between formal charge and oxidation number.
- Be able to predict the most likely resonance structure using formal charges.
- Know how to apply VSEPR theory to predict the geometry on a molecule.
- Be able to predict if a molecule is polar or non-polar.
- Be able to solve and understand the assigned problems in problem set \#1.

CH 222 VSEPR Guide

Number of Electron Clouds 2	VSEPR Hybridization	$s p$

Four Principles of Molecular Orbital Theory

Principle \#1: The total number of molecular orbitals produced is always equal to the total number of atomic orbitals contributed by the atoms that have combined.

Principle \#2: The bonding molecular orbital is lower in energy than the parent orbital, and the antibonding orbital is higher in energy than the parent orbital.

Principle \#3: Electrons of the molecule are assigned to orbitals of successively higher energy.

Principle \#4: Atomic orbitals combine to form molecular orbitals most effectively when the atomic orbitals are of similar energy.

MO Diagram for $\mathbf{B}_{\mathbf{2}}$ Through $\mathbf{N}_{\mathbf{2}}$

Page IV-8-3 / MO Diagram - B_{2} through N_{2}

MO Diagram for $\mathbf{O}_{\mathbf{2}}$ Through $\mathbf{N e}_{\mathbf{2}}$

Page IV-8-4 / MO Diagram- O_{2} through Ne_{2}

CH 222 Chapter Eight Study Guide

- Be able to describe the main features of valence bond theory. Realize that valence bond theory views bonding as arising from the idealized overlap between two atomic orbitals; the electron density remains localized along the bond axis, but the overall energy of the system does not change.
- Be able to describe the main features of molecular orbital theory. Realize that the number of molecular orbitals always equals the number of atomic orbitals used in the combining atoms. Know that some of the bonds will be bonding and others will be antibonding.
- Understand how a sigma bond forms. Know the three types of sigma bond formation ($s+s, p+s, p+p$).
- Understand the concept of pi bonds under both molecular orbital and valence bond theories.
- Be able to use the concept of orbital hybridization to describe the bonding form of atoms in molecules. Know how to assign $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{3} \mathrm{~d}$, and $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization to the appropriate atoms, and know what geometry each of these hybridization forms will give the molecule (ex: $\mathrm{sp}=$ linear, etc.)
- Be able to draw molecular orbital diagrams for all diatomic molecules $\left(\mathrm{Li}_{2}, \mathrm{O}_{2}\right.$, etc.) up to neon. Know how to handle a charged diatomic molecule (ex: $\mathrm{O}_{2}{ }^{2-}$) using molecular orbital theory. Realize that you will be expected to determine the correct molecular orbital diagram for oxygen, fluorine and neon diatomics.
- Be able to apply Hund's Rule and the Pauli Exclusion Principle when assigning electrons to molecular orbitals.
- Be able to predict paramagnetic behavior and the bond order from molecular orbital diagrams. Know what these predictions mean for the molecule.
- Realize the implications of the application of molecular orbital theory to solids (band theory), especially for industrial processes.
- Be able to solve and understand the assigned problems in problem set \#2.

Chemistry 222 Organic Chemistry Nomenclature Guide

Many molecules in organic chemistry can be named using alkyl groups. MEMORIZE THEM!
Common Alkyl (R) Groups

Number of Carbons	Formula	Name	
1	$-\mathrm{CH}_{3}$	methyl	
2	$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	ethyl	
3	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	propyl	
4	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	butyl	
5	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	pentyl	
6	$-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$	hexyl	
7	$-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$	heptyl	
8	$-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$	octyl	
9	$-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	nonyl	

Alkyl groups are generically referred to as R-groups, where \mathbf{R} could be a methyl group, ethyl group, octyl group, etc.

Organic compounds are often lumped into families or classes of compounds. The classes we will study this term include the following:

$\mathrm{R}-\mathrm{H}$ Alkanes	 Cycloalkanes	$\mathrm{R}-\ddot{\mathrm{X}}:$ Alkyl Halides or haloalkanes	$\mathrm{R}-\ddot{\mathrm{O}}-\mathrm{H}$ Alcohols	$R-\ddot{\mathrm{O}}-\mathrm{R}$ Ethers
 Ketones	 Aldehydes	 Alkynes	 Alkenes	 Aromatics
 Amines	 Carboxylic Acids	 Esters	 Amides	All of these families are detailed in the pages that follow.

Alkanes

Elemental Formula: $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{\mathbf{2 n}+2}$
Nomenclature Guidelines: -yl on alkyl group, +ane to ending
Notes: An alkane is an alkyl group plus a hydrogen, often referenced as R-H. Alkanes contain only carbon and hydrogen atoms in long chains with no rings. Each carbon atom is $s p^{3}$ hybridized. Alkanes make great fuels but are generally unreactive.

Example: $\mathbf{C H}_{4}$ - methane - is a methyl group plus a hydrogen $\left(\mathrm{CH}_{3}-\mathrm{H}\right)$
Example: $\mathbf{C}_{2} \mathbf{H}_{\mathbf{6}}$ - ethane - is a ethyl group plus a hydrogen $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{H}\right)$

methane, CH_{4}

Cycloalkanes

Elemental Formula: $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{2 \mathrm{n}}$
Nomenclature Guidelines: cyclo+ -yl on alkyl group, +ane to ending
Notes: Cycloalkanes are alkanes which form an internal ring within the molecule. Cycloalkanes have two less hydrogens than their straight chain alkane counterparts. Cycloalkanes are generally somewhat more reactive than alkanes.

Example: $\mathbf{C}_{3} \mathbf{H}_{\mathbf{6}}$ - cyclopropane - is a propyl group in a triangular ring

cyclopropane, $C_{3} H_{6}$

Example: $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 2}}$ - cyclohexane - is a hexyl group in a six sided ring

Alkyl Halides or Haloalkanes

Elemental Formula: $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{2 \mathrm{n}+1} \mathbf{X}$ or $\mathbf{R}-\mathbf{X}$ (where $\boldsymbol{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I)
Nomenclature Guidelines: alkyl name + halide (anionic halogen) or haloalkane
Notes: Alkyl halides are often reported using two nomenclature systems. The older alkyl halide system (such as methyl chloride) is in use, but IUPAC guidelines propose a gradual transition to haloalkane nomenclature (such as chloromethane instead of methyl chloride). The latter system is preferred due to its flexibility when dealing with multiple halogens (i.e. 1,2-dichloroethane, etc.)

Example: $\mathbf{C H}_{3} \mathbf{C l}$ - chloromethane or methyl chloride - This is a methyl group plus a chloride
Example: $\mathbf{C H}_{3} \mathbf{C H I}\left(\mathbf{C H}_{2}\right)_{4} \mathbf{C H}_{3}$ - 2-iodoheptane or 2-heptyl iodide - is a heptyl group plus an iodide on the second carbon of the heptyl group

Example: $\mathbf{C H}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$-dichloromethane
Example: $\mathbf{C H}_{2} \mathbf{I}-\mathbf{C H I}-\left(\mathbf{C H}_{2}\right)_{4} \mathbf{C I H}_{2}$ - 1,2,7-triiodoheptane

Alcohols

Elemental Formula: $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{2 \mathrm{n}+2} \mathbf{O}$ or $\mathbf{R}-\mathbf{O H}$
Nomenclature Guidelines: -yl on alkyl group, +anol to ending
Notes: Alcohols are wonderful starting reagents for a variety of syntheses. If two -OH units are present, the compound is a diol, and if three -OH units are present, it is called a triol, etc.

methanol, $\mathrm{CH}_{3} \mathrm{OH}$

Example: $\mathbf{C H}_{3} \mathbf{O H}$ - methanol - is a methyl group plus an $\mathrm{OH}\left(\mathrm{CH}_{3}-\mathrm{OH}\right)$
Example: $\mathbf{C H}_{\mathbf{3}}\left(\mathbf{C H}_{2}\right)_{\mathbf{4}} \mathbf{C H}_{\mathbf{2}} \mathbf{O H}$ - hexan-1-ol - OH on first carbon
Example: $\mathbf{C H}_{3} \mathbf{C H}(\mathbf{O H})\left(\mathbf{C H}_{2}\right)_{3} \mathbf{C H}_{3}$ - hexan-2-ol- OH on second carbon
Example: $\left.\left.\mathbf{C H}_{\mathbf{2}} \mathbf{(O H}\right) \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{(O H}\right)$ - propane-1,3-diol

Ethers

Elemental Formula: R-O-R
Common Nomenclature: (alkyl name \#1) + (alkyl name \#2) + ether Note that the alkyl names must be alphabetical; "ethyl methyl ether" and not "methyl ethyl

dimethylether or methoxvmethane. ether"

IUPAC Nomenclature: (shorter alkyl group - yl + oxy) + (longer alkyl group -yl +ane) As an example, $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ would be "methoxyethane" instead of "ethoxymethane" or "ethyl methyl ether"

Notes: Ethers have two common nomenclature systems, both of which appear often. The IUPAC system is more versatile, allowing for ether linkages which are difficult to name using the older "common" system.

Example: $\mathbf{C H}_{3} \mathbf{O C H}_{3}$ - dimethyl ether or methyoxymethane
Example: $\mathbf{C H}_{3} \mathbf{O C H}_{2} \mathbf{C H}_{2} \mathbf{C H}_{3}$ - 1-methyl propyl ether or 1-methoxypropane
Example: $\mathbf{C H}_{3} \mathbf{C H}\left(\mathbf{O C H}_{3}\right) \mathbf{C H}_{2} \mathbf{C H}_{\mathbf{3}}$ - 2-methoxybutane

Ketones

Elemental Formula: R-CO-R where $C O=$ carbonyl $(C=O)$ group
Nomenclature Guidelines: Count number of carbons; determine alkane name, then (\# of CO position) alkane -e +one

Notes: Aldehydes and ketones are similar in structure, but ketones have two alkyl

propanone or acetone groups connected to the central carbonyl carbon.

Example: $\mathbf{C H}_{3} \mathbf{C O C H}_{3}$ - propanone - this compound is close to propane; the CO is on the second carbon. Propanone is also known as acetone.

Example: $\mathbf{C H}_{3} \mathbf{C O C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{3}}$ - 2-pentanone - five carbons, pentane
Example: $\mathbf{C H}_{3} \mathbf{C H}_{2} \mathbf{C O C H}_{2} \mathbf{C H}_{3}$ - 3-pentanone

Aldehydes

Elemental Formula: R-CO-H where $C O=$ carbonyl $(C=O)$ group
Nomenclature Guidelines: Count number of carbons; determine alkane name, then

alkane -e +al

Notes: Aldehydes and ketones are similar in structure, but aldehydes have at least

ethanal one hydrogen connected to the central carbonyl carbon.

Example: $\mathbf{C H}_{\mathbf{3}} \mathbf{C O H}$ - ethanal - two carbon atoms like ethane
Example: $\mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C O H}$ - butanal - four carbon atoms like butane

[^6]
Alkenes

Elemental Formula: $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{2 \mathrm{n}}$ or $\mathbf{R}-(\mathbf{H}) \mathbf{C}=\mathbf{C}(\mathbf{H})-\mathbf{R} R$ can be H in these examples
Nomenclature Guidelines: Count number of carbons; determine alkane name, then (\# of $\mathrm{C}=\mathrm{C}$ position) alkane -ane +ene or (newer version): alkane -ane (\# of $\mathrm{C}=\mathrm{C}$ position) +ene

Notes: Be sure to watch cis and trans configurations around a double bond where two of the groups off the double bonded carbons are the same.

cis

trans

Example: $\mathbf{H}_{2} \mathbf{C}=\mathbf{C H}_{2}$ - ethene - two carbons like ethane
Example: $\mathbf{H}_{2} \mathbf{C}=\mathbf{C}(\mathbf{H}) \mathbf{C H}_{3}$ - propene - three carbons, propane
Example: $\left(\mathbf{C H}_{3}\right)\left(\mathbf{C H}_{3}\right) \mathbf{C}=\mathbf{C H}_{\mathbf{2}}$ - 2-methylpropene - longest chain has three carbons like propane
Example: $\left(\mathbf{C H}_{3}\right)(\mathbf{H}) \mathbf{C =} \mathbf{C}\left(\mathbf{C H}_{3}\right)(\mathbf{H})$ - this is 2-butene (or but-2-ene), but is it cis or trans? We cannot tell as written; it could be cis-2-butene (cis-but-2-ene) or trans-2-butene (trans-but-2-ene) (see below).

cis-2-butene

trans-2-butene

Aromatics

Elemental Formula: $\mathbf{R}-\mathbf{C}_{6} \mathbf{H}_{5}$ where $C_{6} H_{5}=$ phenyl group and $R=$ alkyl, halo, etc .
Nomenclature Guidelines: alkylbenzene (if \mathbf{R} is alkyl) or halobenzene (if \mathbf{R} is halo)
Notes: $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{H}$ is benzene, an aromatic ringed compound with special stability. Substituents on the benzene ring must be alphabetically named.

Special Note: Multiple alkyl or halo groups on a benzene ring can be named using appropriate numbers. Special cases involve ortho $(1,2)$, meta $(1,3)$ and para $(1,4)$.

ortho $(1,2)$

meta $(1,3)$

para $(1,4)$

Example: $\mathbf{C}_{6} \mathbf{H}_{\mathbf{5}} \mathbf{-} \mathbf{C H}_{\mathbf{3}}$ - methylbenzene - methyl group on a benzene ring Example: $\mathbf{C}_{6} \mathbf{H}_{5}-\mathbf{C l}$ - chlorobenzene - chloro group on a benzene ring

1,2-diethylbenzene or ortho-diethylbenzene

1,3-fluoromethylbenzene or meta-fluoromethylbenzene

1,4-dimethylbenzene or para-dimethylbenzene

Amines

Elemental Formula: $\mathbf{R}_{\mathbf{x}} \mathbf{-} \mathbf{N H}_{\mathbf{y}}$ where $x+y=3$
Nomenclature Guidelines: Count number of carbons; determine alkane
 name, then alkane -ane +yl +amine

Example: $\mathbf{C H}_{3} \mathbf{N H}_{\mathbf{2}}$ - methylamine - a primary amine (2 hydrogens on N)
Example: $\left(\mathbf{C H}_{3}\right)_{2} \mathbf{N H}$ - dimethylamine - a secondary amine (only one hydrogen on N)
Example: $\left(\mathbf{C H}_{3}\right)_{3} \mathbf{N}$ - trimethylamine - a tertiary amine (no hydrogens on N)
Example: $\left(\mathbf{C H}_{3} \mathbf{C H}_{2}\right)\left(\mathbf{C H}_{3}\right) \mathbf{N H}$ - ethylmethylamine
Example: $\mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{N H}_{\mathbf{2}}$ - 1-propylamine (choice of where N atom is connected to alkyl group)

Carboxylic Acids

Elemental Formula: R-C(=O)OH (R can be H)
Nomenclature Guidelines: Count number of carbons; determine alkane name, then alkane -e +"oic acid"

Example: $\mathbf{C H}_{\mathbf{3}} \mathbf{C O O H}$ - ethanoic acid - also known as acetic acid
Example: HCOOH - methanoic acid - also known as formic acid
Example: $\mathbf{C H}_{\mathbf{3}}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{C O O H}$ - pentanoic acid - also known as valeric acid

Esters

Elemental Formula: $\mathbf{R}_{\mathbf{1}}-\mathbf{C}(=\mathbf{O}) \mathbf{O}-\mathbf{R}_{\mathbf{2}}$
Nomenclature Guidelines: Count number of carbons in each R group;
determine alkane name for each R, then \{alkane $\left(\mathbf{R}_{2}\right)$-ane $\left.\mathbf{+ y l}\right\}\left\{\right.$ alkane $\left(\mathbf{R}_{1}\right)$-e +oate\}
 Note: if $\mathrm{R}_{1}=\mathrm{CH}_{3}$, name it "acetate" over "ethanoate"

Example: $\mathbf{C H}_{3}\left(\mathbf{C H}_{2}\right)_{2} \mathbf{C O O}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{C H}_{3}$ - butyl butanoate
Example: $\mathbf{C H}_{3} \mathbf{C O O}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{C H}_{3}$ - butyl acetate

Amides

Elemental Formula: $\mathbf{R}_{\mathbf{1}} \mathbf{-} \mathbf{C}(=\mathbf{O})-\mathbf{N R}_{\mathbf{x}} \mathbf{H}_{(2-\mathrm{x})}$ (an amine on an $\boldsymbol{R} \mathbf{-}(\mathbf{C}=\mathbf{O})$ group) Nomenclature Guidelines: Count number of carbons; determine alkane name, then N - alkane $\left(\mathbf{R}_{\mathbf{x}}\right)$-ane $+\mathbf{y l}+\operatorname{alkane}\left(\mathbf{R}_{1}\right)$-ane +amide Note: if $\mathbf{R}_{1}=\mathrm{CH}_{3}$, name it "acet" over "meth"

Example: $\mathbf{C H}_{3} \mathbf{C O N H C H}_{3}$ - \boldsymbol{N}-methylacetamide
 Example: $\mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C O N}\left(\mathrm{CH}_{3}\right)_{2}$ - N-dimethylbenzamide

Common Organic Compound Names

Many organic compounds have common names that do not follow the guidelines found in this handout． Here are some of the more common examples you might encounter at MHCC．

Structural Formula	＂Official＂Name	＂Common＂Name
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$	diethyl ether	ether
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	propanone	acetone
HCOH	methanal	formaldehyde
$\mathrm{CH}_{3} \mathrm{COH}$	ethanal	acetaldehyde
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	ethene	ethylene
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CH}_{3}$	propene	propylene
$\mathrm{HC} \equiv \mathrm{CH}$	ethyne	acetylene
$\mathrm{CH}_{3} \mathrm{COOH}$	ethanoic acid	acetic acid
$\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{3}$	methylbenzene	toluene

－二－ニ－

Many more classes of organic compounds exist， but you＇ll have to wait until CH 241 to see the rest of them！

CH 222 " $q \& d$ " Guide to Organic Oxygen-Containing Classes

"q\&d" = "Quick 'n' Dirty"
Remember: "Triple As Eat-Cake" or
AAA E-CAKE

A	Aldehyde	$\mathrm{R}-\mathrm{C}(=\mathrm{O})-\mathrm{H}$	
A	Amine	R-NH2	
A	Amide	$\mathrm{R}-\mathrm{C}(=\mathrm{O})-\mathrm{NH}_{2}$	
E	Ether	R-O-R	R- $\ddot{O}_{\text {O }}$-R
C	Carboxylic Acid	$\mathrm{R}-\mathrm{C}(=0)-\mathrm{OH}$	
A	Alcohol	R-O-H	R- $\ddot{0}$ -
K	Ketone	$\mathrm{R}-\mathrm{C}(=0)-\mathrm{R}$	
E	Ester	$\mathrm{R}-\mathrm{C}(=0)-\mathrm{O}-\mathrm{R}$	

CH 222 Chapter Twenty Study Guide

- Be able to identify and name representative examples from the following organic classes:

```
* alkanes
* cycloalkanes
* alkyl halides
* alkenes
* alkynes
* aromatic compounds (especially benzene and toluene)
* alcohols
* ethers
* aldehydes
* ketones
* amines
* carboxylic acids
```

- Know the systematic name for a compound matching one of these functional groups.
- Be able to draw structural formulas for unbranched and branched-chain alkanes as well as cyclohexanes. Be able to name these compounds.
- Understand the bonding behavior of alkenes, alkynes, aromatic compounds, aldehydes and ketones.
- Be able to identify possible isomers given a formula.
- Know the general reaction behavior for addition, elimination and substitution organic reactions.
- Be able to draw and name various cis and trans stereoisomers of alkenes.
- Recognize the importance of the carbonyl group in organic chemistry. Aldehydes, ketones, carboxylic acids, esters, etc. all contain a carbonyl group.
- Be able to name and write the structural formula of common polymers. Know how to write equations for the formation of addition polymers and condensation polymers.
- Be able to solve and understand the assigned problems in problem set \#3.

Principal Assumptions of the Kinetic Molecular Theory

1. Gases consist of tiny (submicroscopic) molecules.
2. The distance between molecules is large compared with the size of the molecules themselves. The volume occupied by a gas consists mostly of empty space.
3. Gas molecules have no attraction for one another.
4. Gas molecules move in straight lines in all directions, colliding frequently with one another and with the walls of the container.
5. No energy is lost by the collision of a gas molecule with another gas molecule or with the walls of the container. All collisions are perfectly elastic.
6. The average kinetic energy for molecules is the same for all gases at the same temperature, and its value is directly proportional to the Kelvin temperature.

Explanation of Physical Properties and Gas Laws Based on the Kinetic Molecular Theory

1 Gases can be compressed easily

2 Gases expand to fill the volume of their container

3 Gases have a low density

4 Gases can diffuse through each other

5 Gases can exert a pressure on container walls

6 Boyle's law:

$$
\mathrm{V} \propto \mathrm{P}^{-1}
$$

7 Charles' law:

$$
V \propto T
$$

8 Dalton's Law of partial pressures:

$$
\mathrm{P}_{\text {Total }}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\mathrm{P}_{4}+\ldots
$$

1 Because gas particles are far apart, they easily can be squeezed closer together by an outside force.

2 Gas particles are constantly moving with no attractive forces between particles, so they will expand until they meet an outside force, namely, the wall of the container.

3 Because g gas is mostly empty space, there are few particles (low mass) per unit volume.

4 Gas particles are constantly moving and are separated by large distances. This leads to freedom for particles of one gas to move through the empty space of another gas.

5 Moving gas particles collide with container walls, thus exerting a force on every square inch.

6 When the volume of gas is decreased, the particles collide with the walls more often, leading to a greater pressure. When volume of gas is increased, particles collide less often, leading to a decreased pressure.

7 Increased temperature causes particles to move faster, leading to more and "harder" collisions with walls. Pressure inside the walls is increased until the volume expands to the point where the pressure inside the walls is again equal to the pressure outside.

8 Since the particles move independently of one another, each gas in a mixture will exert a pressure independent of the pressure of the other gases. The total pressure will be the sum of the individual pressures.

CH 222 Chapter Nine Study Guide

- Be able to describe how pressure measurements are made.
- Be comfortable with the units of pressure, especially $\underline{\text { atm }}, \underline{\mathrm{mm} \mathrm{Hg}}$, torr, barr and $\underline{\mathrm{Pa}}$.
- Know what STP refers to and know its significance.
- Understand the Ideal Gas Law ($\mathrm{PV}=\mathrm{nRT}$); know when it applies and when it does not.
- Realize the importance of pressure, volume, temperature, number of moles, density, etc., especially when they are related to each other. Example: if pressure increases, temperature increases and volume decreases, etc.
- Know how to use the ideal gas law to solve problems similar to those in the problem set for this chapter.
- Be able to calculate the molecular weight (or molar mass) or the density of a gas knowing pressure, temperature, etc.
- MEMORIZE the value for the gas law constant, $\mathrm{R}=0.082057 \mathrm{~L}$ atm $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$. (Note that we will be using a different value for R in the near future - same R but expressed in different units.)
- Be able to use Dalton's Law of Partial Pressures to solve for individual contributions to the pressure of the system. Understand the importance of mole fractions when solving for Dalton's Law contributions.
- Be able to explain the Kinetic Molecular Theory (KMT) and its major assumptions. Know when these assumptions can be limiting.
- Understand the phenomena of diffusion and effusion. Be able to solve Graham's Law to find the relative rates of the gases.
- Realize that gases do not often obey the ideal gas laws due to "realistic" volume and intermolecular forces; instead, they must be described using the van der Waals equation. Know the effect of going from "ideal" gases to "real" gases using the van der Waals equation.
- Be able to solve and understand the assigned problems in problem set \#4.

[^7]
CH 222 Guide to Solubility

I. Like Polarities Dissolve (or "Like Dissolves Like")

- Polar solutes dissolve in polar solvents

NaCl (ionic) dissolves in water (polar) KMnO_{4} (ionic) dissolves in water (polar) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (polar) dissolves in water (but see III, below)

- Non-polar solutes dissolve in non-polar solvents Oil (non-polar) dissolves in gasoline (non-polar) Benzene (non-polar) dissolves in toluene (non-polar)

II. Polar and Non-Polar Species Do Not Dissolve

- Polar solutes are insoluble in non-polar solvents NaCl (ionic) is insoluble in gasoline (non-polar) $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ (ionic) is insoluble in benzene (non-polar)
- Non-polar solutes are insoluble in polar solvents Oil (non-polar) is insoluble in water (polar) Toluene (non-polar) is insoluble in water (polar)

III. Organic Compounds, Water and Solubility

For organic compounds capable of hydrogen bonding (i.e. with a nitrogen or oxygen atom)
1-3 carbon atoms
water soluble
ex: ethanol
4-5 carbon atoms
6 or more carbon atoms borderline water solubility water insoluble
ex: n-butanol
ex: n-hexanol

Note: We will be discussing solubility in more detail during CH 223
"Quick and Dirty" Cubic Unit Cells for Metallic Solids Handout

Type	Atoms per Unit Cell	Edge - Radius Equation	Picture
Simple Cubic	1	Edge $=2 *$ radius	
Body Centered Cubic (BCC)			

Volume $=(\text { edge })^{3}$ for simple cubic unit cells
$1 \mathrm{pm}=10^{-12} \mathrm{~m}$

CH 222 Chapter Ten Study Guide

- Be able to explain the Kinetic Molecular Theory (KMT) when describing the differences between solids, liquids and gases.
- Know the different intermolecular forces (dipole-dipole, induced dipole-induced dipole, etc.) in liquids and solids. Know their relative magnitudes - which one is strongest, which is weakest, etc.
- Be able to describe the major intermolecular forces acting upon a molecule or atom or a group of molecules or atoms.
- Know the requirements for hydrogen bonding - a hydrogen atom bonded to oxygen, nitrogen or fluorine.
- Be able to explain the process of evaporation and condensation of a liquid or its vapor.
- Be able to use the enthalpy of vaporization in calculations.
- Define and use the concept of the equilibrium vapor pressure of a liquid and its relation to the boiling point of a liquid. Know what is meant by normal boiling point.
- Know how to utilize the following concepts: cohesive forces, adhesive forces, surface tension, and viscosity.
- Be able to characterize different types of solids: metallic, ionic, molecular, network and amorphous.
- Be able to describe the three types of cubic units cells: simple cubic (or primitive), body centered cubic and face-centered cubic. Metals can utilize all three, but only the sc and fcc arrangements can occur for ionic compounds.
- Be comfortable with deriving the formula of an ionic compound from its unit cell. Know how many net atoms can exist in a given cubic cell.
- Be able to define the enthalpy of fusion and be able to use this in a calculation.
- Be able to identify the different points and regions of a phase diagram.
- Be able to solve and understand the assigned problems in problem set \#4 \& \#5.
Weight Percent
Mole Fraction (χ)
(w) \mathbb{K}
(N) $\begin{array}{r}\text { Suluplon } \\ \text { วUBN }\end{array}$

CH 222 Chapter Eleven Study Guide

- Define the terms solution, solvent, solute, colligative properties, miscible and immiscible.
- Be able to use molarity, molality, weight percent, mole fraction and parts per million (ppm) interchangeably.
- Understand the difference between saturated, unsaturated and supersaturated solutions.
- Be able to use Henry's Law and Raoult's Law.
- Be able to use colligative properties to find the molar mass (molecular weight) of a solute. Also be able to use colligative properties to find the elevation in boiling point or depression of freezing point. Be able to describe these phenomena using the models discussed in class.
- Know how to use the van't Hoff i factor in regards to colligative properties.
- Give a molecular-level explanation for osmosis.
- Be able to use osmotic pressure to determine concentrations and/or molecular weights of solutes.
- Be aware of the many enthalpy terms: lattice energy, energy of hydration, enthalpy of solution, energy of formation, etc.
- Know the effect of pressure and temperature on solubility. Pay special attention to Le Chatelier's Principle - this is an important concept.
- Recognize the differences between a homogeneous solution, a suspension and a colloid (or colloidal dispersion).
- Be familiar with the concepts of colloid and surfactant. Be able to characterize hydrophilic and hydrophobic substances.
- Be able to solve and understand the assigned problems in problem set \#5.

$\left.{ }^{(0}[\mathrm{V}] \mathrm{y}\right) / \mathrm{L}={ }^{\text {d }}$		$Y Z]^{0}[\mathrm{~V}]={ }^{211}$	
$y=$ edols	y - = odois	y - = adoIS	
$\chi_{\text {sns.ıə }}^{\text {I- }}$ [V]	7 sns.à [V] u\|		әи!т $7 Ч$ ¢!!ens
		${ }^{0}[y]+2 y-=[y]$	әұеу рәұе.вәдиІ
		$y=$ 妆y	

CHzzz

CH 222 " q\&d" Guide to Reaction Mechanisms

"q\&d" = "Quick 'n' Dirty"

- A reaction mechanism is the sequence of steps a reaction goes through at a molecular level in proceeding from reactants to products that control the speed and outcome of a reaction.
- Each step is called an elementary step.
- Each elementary step is called unimolecular, bimolecular or termolecular based upon the number of molecules colliding.
- A reaction intermediate is a species that is produced in one step of a reaction mechanism and completely consumed in a later step.
- The rate law for an elementary step does follow the balanced equation for that step.
- The slowest elementary step in a multi-step reaction mechanism is called the rate-determining step (RDS).
- The sum of the elementary steps in a multi-step reaction must give the balanced overall chemical equation.
- The mechanism must agree with the experimentally determined rate law.

Example: The following reaction has been studied at 500 K :

$$
\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})}->\mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

An experimental rate law at 500 K has been found:

$$
\text { rate }=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}
$$

and the following reaction mechanism proposed:

$$
\begin{align*}
& 2 \mathrm{NO}_{2(\mathrm{~g})}->\mathrm{NO}_{3(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})} \tag{1}\\
& \mathrm{NO}_{3(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})}->\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})} \tag{2}
\end{align*}
$$

How many elementary steps are present? Is this a valid mechanism? Are there any reaction intermediates? Which step is the rate-determining step? What is the molecularity of the rate-determining step?

Solution: There are two elementary steps in this mechanism.
To test validity, add the elementary steps together:

$$
\begin{align*}
& 2 \mathrm{NO}_{2(\mathrm{~g})}->\mathrm{NO}_{3(\mathrm{~g})}+\mathrm{NO}_{(\mathrm{g})} \tag{1}\\
& \mathrm{NO}_{3(\mathrm{~g})}+\mathrm{CO}_{(\mathrm{g})}->\mathrm{NO}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})} \tag{2}\\
& ---------------------------------\mathrm{NO}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})} \tag{3}
\end{align*}
$$

Reaction (3) is the same as the overall equation, so this mechanism is valid. $\mathrm{NO}_{3(\mathrm{~g})}$ and one molecule of $\mathrm{NO}_{2(\mathrm{~g})}$ are reaction intermediates. Since the rate depends on the squared concentration of $\mathrm{NO}_{2(\mathrm{~g})}$, elementary step (1) is the rate-determining step.

The molecularity of the rate-determining step is bimolecular. The molecularity of step (2) is also bimolecular.

CH 222 Chapter Twelve Study Guide

- Be able to explain the concept of reaction rate.
- Be able to derive the average and instantaneous rate from experimental information.
- Know the possible conditions that might affect reaction rate (such as reactant concentrations, temperature, presence of a catalyst, etc.)
- Know how to use a rate equation, and know how to find the rate constant and order of reaction from such an equation. Be able to derive a rate equation from experimental data.
- MEMORIZE the relationships between reactant concentration and time for zero order, first order and second order reactions. Know the integrated rate laws for these relationships.
- Know how to apply graphical techniques for determining the rate or reaction, reaction order and the rate constant.
- Be able to use the idea of half-life in kinetic equations.
- Know the principles behind the collision theory of reaction rates.
- Memorize the Arrhenius equation; be able to calculate the activation energy from experimental data.
- Be able to comprehend the concept of the reaction mechanism. Know how the mechanism relates to the overall stoichiometric equation for a reaction.
- Be able to describe the elementary steps of a mechanism and give their molecularity.
- Know how to find the rate-determining step in a mechanism and describe any reaction intermediates.
- Describe the role of the catalyst in reactions; know how it affects the activation energy and mechanism of a reaction. Understand the difference between a homogeneous and heterogeneous catalyst.
- Be able to solve and understand the assigned problems in problem set \#6.

CH 222 "q\&d" Guide to Nuclear Chemistry

"q\&d" = "Quick 'n' Dirty"
${ }_{Z}^{\mathrm{A}} \mathrm{X}^{\mathrm{n}+/-}$
$\mathrm{X}=$ element symbol
$\mathrm{n}=$ element charge (if any)
$\mathrm{Z}=$ atomic number (number of protons)
$\mathrm{A}=$ mass number (number of protons + neutrons)

Types of Radiative Processes

Alpha Decay:	Lose ${ }_{2}^{4} \mathrm{He}$	Example:	${ }_{92}^{234} \mathrm{U} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{90}^{230} \mathrm{Th}$	Note 1
Beta Decay:	Lose ${ }_{-1}^{0} \mathrm{e}$	Example:	${ }_{92}^{235} \mathrm{U} \rightarrow{ }_{-1}^{0} \mathrm{e}+{ }_{93}^{235} \mathrm{~Np}$	Note 4
Gamma Decay:	Emit Energy	Example:	${ }_{93}^{99 \mathrm{~m}} \mathrm{Tc} \rightarrow \gamma+{ }_{43}^{99} \mathrm{Tc}$	Note 2
Positron Emission:	Lose ${ }_{+1}^{0} \mathrm{e}$	Example:	${ }_{84}^{207} \mathrm{Po} \rightarrow{ }_{+1}^{0} \mathrm{e}+{ }_{83}^{207} \mathrm{Bi}$	Notes 3, 4
Electron Capture:	Gain ${ }_{-1}^{0} \mathrm{e}$	Example:	${ }_{4}^{7} \mathrm{Be}+{ }_{-1}^{0} \mathrm{e} \rightarrow{ }_{3}^{7} \mathrm{Li}$	Note 4
Neutron Capture:	Gain ${ }_{0}^{1} \mathrm{n}$	Example:	${ }_{3}^{6} \mathrm{Li}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{3} \mathrm{H}$	

Note 1:

Note 2:

Note 3:

Note 4:

The alpha particle is actually charged, having a charge of +2 . This makes the other product have a negative -2 charge (conservation of charge), but the charges of the ions are rarely considered in nuclear chemistry.

Gamma emissions have energies in the range of roughly $1 \mathrm{MeV}\left(1.6^{*} 10^{-13} \mathrm{~J}\right)$.
A positron is an antielectron (a particle of antimatter) - when a positron and an electron collide, they annihilate each other $\left({ }_{+1}^{0} \mathrm{e}+{ }_{-1}^{0} \mathrm{e} \rightarrow 2 \gamma\right)$.

The beta decay process produces an antineutrino in addition to the other products, while the positron emission and electron capture processes result in the creation of a neutrino. This is due to the conservation of spin concept, but you need not concern yourself about neutrinos in this CH 222 class!

CH 222 Chapter Twenty-one Study Guide

- Be able to characterize the three major types of radiation observed in radioactive decay (namely alpha, beta and gamma radiation.)
- Be able to write a balanced equation for nuclear reactions or transmutations.
- Know how to predict if a particular radioactive particle will decay by alpha, beta or positron emission or by electron capture.
- Know how to calculate the binding energy for a particular isotope and understand what this energy means in terms of nuclear stability.
- Be able to use the various first order rate equations as utilized in this chapter with respect to radioactivity.
- Be able to calculate the radioactive half-life of a radioactive isotope $\left(\mathrm{t}_{1 / 2}\right)$ from the activity of a sample. Also be able to find the time required for an isotope to decay using the half-life.
- Be able to describe nuclear chain reactions, nuclear fission and nuclear fusion.
- Understand the concept of background radiation. Know some of the sources of background radiation. Know the units used to measure intensity and understand how they pertain to health issues.
- Know some of the uses of radioactivity (carbon dating, medicine, etc.)
- Be able to solve and understand the assigned problems in problem set \#6 from the kinetics chapter in our text - many of the radiation techniques stem from this chapter, so a thorough understanding is critical to success.
- Be able to solve and understand the assigned problems in problem set \#6.

CH 222 Chapter Seven Concept Guide

1. Lewis Structures

Problem

Draw the Lewis Dot Structure for cyanide ion, CN^{-}.

Solution

Step 1. Add valence electrons.

$$
\begin{aligned}
1 \mathrm{C} \text { at } 4 \text { electrons } & =4 \text { electrons } \\
1 \mathrm{~N} \text { at } 5 \text { electrons } & =5 \text { electrons } \\
-1 \text { charge } & =+1 \text { electron } \\
\text { Total } & =10 \text { electrons }
\end{aligned}
$$

Step 2. Place a bond between C and N to represent the sharing of 2 electrons. 8 electrons remain. C-N

Step 3. Place lone pairs of the remaining 8 electrons around the outside atoms.

Step 4. In Step 3, nitrogen has only 4 valence electrons. Multiple bonds are needed to satisfy the octet rule.
Two pairs of electrons are moved from C to form bonds between C and N . : $\mathrm{C} \equiv \mathrm{N}$:

2. Lewis Structures

Problem

Draw the Lewis Dot Structure for acetaldehyde, $\mathrm{CH}_{3} \mathrm{CHO}$. Note: the right-hand H atom is bonded to the righthand C atom.

Solution

Step 1. Add valence electrons.

$$
\begin{aligned}
2 \mathrm{C} \text { at } 4 \text { electrons each } & =8 \text { electrons } \\
4 \mathrm{H} \text { at } 1 \text { electron each } & =4 \text { electrons } \\
1 \mathrm{O} \text { at } 6 \text { electrons } & =6 \text { electrons } \\
\text { Total } & =18 \text { electrons }
\end{aligned}
$$

Step 2. Write the structure of $\mathrm{CH}_{3} \mathrm{CHO}$ and place a bond between atoms to represent the sharing of 2 electrons. This uses 12 electrons. 6 electrons remain.

H $\quad \mathrm{O}$
 $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ H

Step 3. The structure in Step 2 shows one of two carbon atoms and the oxygen atom without octets. Place lone pairs using the remaining 6 electrons around the oxygen atom.

Step 4. Multiple bonds are necessary to give carbon an octet, so a lone pair is moved from the oxygen atom to form a second bond between C and O .

3. Resonance Structures

Problem

Draw all resonance structures for O_{3}.

Solution

Step 1. Add valence electrons.
3 O at 6 electrons each $=18$ electrons
Step 2. Place a bond between atoms. This uses 4 electrons. 14 electrons remain.
O-O-O
Step 3. Place lone pairs of the remaining 14 electrons around the oxygen atoms, starting with the terminal atoms. After each terminal O atom has 8 electrons, 2 electrons remain and are placed on the central atom.

Step 4. Use multiple bonds to obtain octets around each O.

Step 5. Electron delocalization leads to two resonance structures for O_{3}.

$$
\text { ọ̆ = }=0 \text { - }
$$

4. Lewis Structures

Problem

Draw the Lewis Dot Structure for AlCl_{3}.

Solution

Step 1. Add valence electrons.

$$
\begin{aligned}
1 \mathrm{Al} \text { at } 3 \text { electrons } & =3 \text { electrons } \\
3 \mathrm{Cl} \text { at } 7 \text { electrons each } & =21 \text { electrons } \\
\text { Total } & =24 \text { electrons }
\end{aligned}
$$

Step 2. Place a bond between the atoms to represent the sharing of 2 electrons. 18 electrons remain.

Step 3. Place lone pairs of the remaining 18 electrons around the outside, terminal atoms. Each chlorine atom should have an octet of electrons. Neither Al nor Cl can form multiple bonds, so even though Al has only 6 electrons, this is the final Lewis structure.

5. Lewis Structures

Problem

Draw the Lewis Dot Structure for BrF_{5}.

Solution:

Step 1. Add valence electrons.

$$
\begin{aligned}
1 \mathrm{Br} \text { at } 7 \text { electrons } & =7 \text { electrons } \\
5 \mathrm{~F} \text { at } 7 \text { electrons each } & =35 \text { electrons } \\
\text { Total } & =42 \text { electrons }
\end{aligned}
$$

Step 2. Place a bond between Br and F atoms to represent the sharing of 2 electrons. 32 electrons remain.

$$
\begin{gathered}
F, \quad \mathrm{~F} \\
\mathrm{~F}-\underset{\mathrm{Br}}{\mathrm{~F}} \mathrm{~F} \\
\dot{\mathrm{~F}}
\end{gathered}
$$

Step 3. Place lone pairs of the remaining 32 electrons around the 5 fluorine atoms. Each F atom has an octet of electrons. The remaining electrons are placed on the central atom.

6. Oxidation Numbers and Formal Charge

Problem

Determine the oxidation number and formal charge for N in the nitrate ion, NO_{3}^{-}.

Element Electronegativity Values

$\mathrm{H} \quad 2.1$
B 2.0
C 2.5
$\mathrm{N} \quad 3.0$
$\begin{array}{ll}\mathrm{O} & 3.5\end{array}$
F 4.0
$\begin{array}{ll}\mathrm{Cl} & 3.0\end{array}$

Solution

Step 1. According to oxidation number rules, all valence electrons are considered to be held by the more electronegative atom. Therefore, each O atom has an oxidation number of -2 . There are three oxygens for a total of -6 . The charge on the ion is -1 . Solving for x , where x is the oxidation number for nitrogen:

$$
\begin{aligned}
& x+(3)(-2)=-1 \\
& x=+5
\end{aligned}
$$

Nitrogen has an oxidation number of +5 .
Step 2. The formal charge is based on the assumption that electrons are shared equally between covalently bonded atoms.

Formal charge $=($ group number in periodic table $)-($ number of lone electrons $)$

$$
-1 / 2 \text { (number of bonding electrons) }
$$

For nitrogen, formal charge $=5-0-4=+1$. In this case, N has a formal charge of +1 .

7. Resonance Structures

Question

Which is the better resonance structure for thiocyanate ion, SCN^{-}?

Solution
Step 1. Determine the formal charges on each element in both resonance structures.
Formal charge $=($ group number in periodic table $)-($ number of lone electrons $)$
$-1 / 2$ (number of bonding electrons)

Formal Charge
Structure (a) Structure (b)

Sulfur	+1	0
Carbon	0	0
Nitrogen	-2	-1

Step 2. The structure that has the fewest number of atoms with a formal charge is the better structure. Consequently, structure (b) is the correct one.

8. Using VSEPR: Predicting Geometries

Question

Using the VSEPR theory, what is the geometry of $\mathrm{SO}_{4}{ }^{2-}$?

Solution

Step 1. Draw the Lewis Dot Structure. There is more than one.

Step 2. Both structures have 4 bonded atoms and no lone pairs on the central S atom. Therefore, both the electron pair geometry and the molecular geometry are tetrahedral.
(Note: the VSEPR theory applies to both ions and molecules.) If the central S had one or more lone pairs, the electron pair and molecular geometries would differ.

9. Using VSEPR: Predicting Geometries

Question

Using the VSEPR theory, what is the geometry of BeCl_{2} ?

Solution

Step 1. Draw the Lewis Dot Structure.

Step 2. Neither Be nor Cl is able to form multiple bonds, so the central atom Be remains electron deficient. There are no lone pairs on the central atom, Be. The electron pair geometry is linear. This molecule is linear.

10. Using VSEPR: Geometry and Bond Angles

Problem

Based on the VSEPR theory, predict the electron-pair geometry for BrF_{5} and $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ bond angles.

Solution

Step 1. Draw the Lewis structure of the molecule.

Step 2. Determine the number of bonded pairs and lone pairs of electrons around the central atom. In this molecule, there are 5 bonded atoms and 1 lone pair around Br . There are 6 structurally significant electron pairs.

Step 3. The electron pair geometry is octahedral. The ideal molecular geometry is square pyramidal.
Step 4. The ideal bond angles in an octahedral structure are 90 degrees. The angles in BrF_{5} should be compressed slightly from the ideal 90 degrees angle due to the lone pair of electrons on Br .

11. Bond Properties and Resonance

Problem

NO_{3}^{-}has three resonance structures and a bond order of 1.3. Predict the bond length for $\mathrm{N}-\mathrm{O}$.

$\mathrm{N}-\mathrm{O}$ single bond length $=136 \mathrm{pm}$
$\mathrm{N}-\mathrm{O}$ double bond length $=115 \mathrm{pm}$
$\mathrm{N}-\mathrm{O}$ triple bond length $=108 \mathrm{pm}$

Solution

Bond length depends partly on bond order. An N-O bond order of 1.3 suggests that the $\mathrm{N}-\mathrm{O}$ bond length is a value between that for a single and double N-O bond. The bond length is 122 pm , which is in fact the length of a single $\mathrm{N}-\mathrm{O}$ bond added to one third the difference between single and double $\mathrm{N}-\mathrm{O}$ bond lengths.
Note: in order to use the $\Delta \mathrm{H}_{\text {formation }}$ data, all reactants must be in the gas phase.

12. Calculating $\Delta \mathbf{H}$

Problem

Calculate $\Delta \mathrm{H}$ for

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{~g}) .
$$

using the bond energy data below.
$\mathrm{H}-\mathrm{H}=436 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{F}-\mathrm{F}=159 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}-\mathrm{F}=569 \mathrm{~kJ} / \mathrm{mol}$

Solution

In this reaction, we need to break the bonds between H-H and F-F and will form $2 \mathrm{H}-\mathrm{F}$ bonds. Because all the reactants and products are in the gas phase, we can relate $\Delta \mathrm{H}$ for the reaction to the strengths of bonds broken and formed.
$\Delta \mathrm{H}=$ (energy of bonds broken) $-($ energy of bonds formed $)$
$\Delta \mathrm{H}=[(1 \mathrm{~mol})(436 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(159 \mathrm{~kJ} / \mathrm{mol})]-(2 \mathrm{~mol})(569 \mathrm{~kJ} / \mathrm{mol})$
$\Delta \mathrm{H}=-543 \mathrm{~kJ}$

13. Calculating ΔH

Problem

Calculate $\Delta \mathrm{H}$ for
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$.
using the bond energy data given below.
$\mathrm{H}-\mathrm{H}=436 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Br}-\mathrm{Br}=192 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}-\mathrm{Br}=368 \mathrm{~kJ} / \mathrm{mol}$

Solution

In this reaction, we need to break the bonds between $\mathrm{H}-\mathrm{H}$ and $\mathrm{Br}-\mathrm{Br}$ and will form $2 \mathrm{H}-\mathrm{Br}$ bonds.

$$
\begin{aligned}
& \Delta \mathrm{H}=(\text { energy of bonds broken })-(\text { energy of bonds formed }) \\
& \Delta \mathrm{H}=[(1 \mathrm{~mol})(436 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(192 \mathrm{~kJ} / \mathrm{mol})]-(2 \mathrm{~mol})(368 \mathrm{~kJ} / \mathrm{mol})] \\
& \Delta \mathrm{H}=-108 \mathrm{~kJ}
\end{aligned}
$$

14. Calculating ΔH

Problem

Calculate $\Delta \mathrm{H}$ for
$\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
using the bond energy data given below.
$\mathrm{C}-\mathrm{C}=331 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}-\mathrm{H}=414 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{O}=\mathrm{O}=498 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}=\mathrm{O}=803 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{O}-\mathrm{H}=464 \mathrm{~kJ} / \mathrm{mol}$

Solution

In this reaction, find that $3 \mathrm{C}-\mathrm{C}, 10 \mathrm{C}-\mathrm{H}$, and ${ }^{13} /{ }_{2} \mathrm{O}=\mathrm{O}$ bonds are being broken, and $8 \mathrm{C}=\mathrm{O}$ and $10 \mathrm{O}-\mathrm{H}$ bonds are being formed. Thus
$\Delta \mathrm{H}=$ (energy of bonds broken) - (energy of bonds formed)
$\Delta \mathrm{H}=[(3 \mathrm{~mol})(331 \mathrm{~kJ} / \mathrm{mol})+(10 \mathrm{~mol})(414 \mathrm{~kJ} / \mathrm{mol})+(13 / 2 \mathrm{~mol})(498 \mathrm{~kJ} / \mathrm{mol})]-[(8 \mathrm{~mol})(803 \mathrm{~kJ} / \mathrm{mol})+(10$ $\mathrm{mol})(464 \mathrm{~kJ} / \mathrm{mol})$]
$\Delta \mathrm{H}=-2694 \mathrm{~kJ}$

15. Bond Polarity

Problem

Arrange the following covalent bonds in order of increasing polarity:
$\mathrm{O}-\mathrm{H} \quad \mathrm{I}-\mathrm{Br} \quad \mathrm{C}-\mathrm{F} \quad \mathrm{P}-\mathrm{H} \quad \mathrm{S}-\mathrm{Cl}$.

Electronegativity Values

\mathbf{H}	2.1
\mathbf{B}	2.0
\mathbf{P}	2.1
\mathbf{I}	2.5
\mathbf{C}	2.5
\mathbf{S}	2.5
$\mathbf{B r}$	2.8
\mathbf{N}	3.0
\mathbf{O}	3.5
\mathbf{F}	4.0
$\mathbf{C l}$	3.0

Approach

Consider the differences in electronegativity values for each bonded pair of atoms.

Solution

The polarity of a bond increases with increasing difference in electronegativity of the bonded atoms. The covalent bonds, therefore, have the following order of increasing polarity with the electronegativity differences shown in parentheses:

$$
\begin{gathered}
\rightarrow \text { Increasing electronegativity } \rightarrow \\
\mathrm{P}-\mathrm{H}(0.0)<\mathrm{I}-\mathrm{Br}(0.3)<\mathrm{S}-\mathrm{Cl}(0.5)<\mathrm{O}-\mathrm{H}(1.4)<\mathrm{C}-\mathrm{F}(1.5)
\end{gathered}
$$

16. Molecular Polarity

Question
Is NF_{3} polar or nonpolar?

Solution

NF_{3} has the same pyramidal structure as NH_{3}. Fluorine is more electronegative than N , thus each bond is polar. The NF_{3} molecule is asymmetrical and polar.

17. Molecular Polarity

Question

Is $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ polar or nonpolar?

Solution:

In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, chlorine atoms are the most electronegative, followed by carbon atoms, then hydrogen atoms.

There is a net movement of electron density away from H atoms and toward Cl atoms. The asymmetric arrangement of the atoms, and the negative end of the bond, is toward the two Cl atoms. The positive end toward the 2 H atoms makes $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ a polar molecule.

18. Molecular Polarity

Problem

There are two different molecules with the formula $\mathrm{N}_{2} \mathrm{~F}_{2}$. Is either molecule polar?
(a) $\mathrm{F}, ~ \mathrm{~N}=\mathrm{N}, \mathrm{F}$
(b) $F^{\prime}, N=N, F$

Solution

Fluorine atoms are more electronegative than nitrogen atoms. The negative ends of the bonds are toward the two fluorine atoms and the positive ends are toward the two nitrogen atoms. In molecule (a), the two dipoles do not cancel each other, thus this molecule is polar. In molecule (b), however, the two dipoles are opposite in direction and do cancel each other, making this molecule nonpolar.

CH 222 Chapter Eight Concept Guide

According to valence bond theory, the s and p orbitals of any atom give a maximum of four hybrid orbitals. Atoms of second-period elements, which have only s and p orbitals, may form up to four hybrid orbitals and no more than four covalent bonds around the central atom. Atoms of the elements in the third and higher periods can form a larger number of covalent bonds by involving d orbitals in hybridization. For $\mathrm{sp}^{3} \mathrm{~d}$ hybridization, the number of hybrid orbitals is 5 and the electronic geometry is trigonal bipyramidal. For $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization, there are 6 hybrid orbitals and the electronic geometry is octahedral.

1. Valence Bond Theory

Problem

Describe the bonding in BrF_{3} in terms of valence bond theory.

Solution

The Lewis structure shows that 3 single bonds and two lone pairs surround the bromine atom:

Five equivalent hybridized orbitals on the bromine atom are necessary. The outer electron configuration for the bromine atom is: $4 \mathrm{~s}^{2} 4 \mathrm{p}^{5}$. By using the 4 s orbital, 34 p orbitals, and one of the empty 4 d orbitals in $\mathrm{sp}^{3} \mathrm{~d}$ hybridization, five hybrid orbitals can be formed. Two of the hybrid orbitals contain lone pairs of electrons. The other hybrid orbitals contain single electrons, which will form single bonds with the fluorine atoms.

The five hybridized orbitals will be arranged in the shape of a trigonal bipyramid.

2. Valence Bond Theory

Problem

Describe the bonding in $\mathrm{C}_{2} \mathrm{H}_{6}$ in terms of valence bond theory.

Solution

Each carbon atom must have four equivalent hybridized orbitals that are formed by sp^{3} hybridization. Three of these orbitals on each carbon atom contain a single electron that will form a single bond with a hydrogen atom. The fourth orbital contains a single electron that will form a single bond with the other carbon atom.

3. Valence Bond Theory

Problem

Describe the bonding in $\mathrm{H}_{2} \mathrm{O}_{2}$ in terms of valence bond theory.

Solution

Each oxygen has four equivalent hybrid orbitals formed by sp^{3} hybridization. Two of these orbitals contain lone pairs of electrons, one contains a single electron that forms a single bond with a hydrogen atom, and one contains a single electron that will form a single bond with the other oxygen atom.

$$
H-\ddot{O}-\ddot{O}-H
$$

4. Multiple Bonds

Problem

Describe the bonding in carbon monoxide, CO, using hybrid orbital theory.

Solution

The Lewis structure depicts C and O being bonded by a triple bond and each having a single lone pair.
: $\mathrm{C} \equiv \mathrm{O}$.
Each atom has a half-filled sp hybrid orbital it uses for sigma bond formation. Each atom also has a sp hybrid orbital that contains a lone electron pair. In addition, two pairs of electrons occur in unhybridized p orbitals and are used to form two π bonds.

5. Multiple Bonds

Problem

Describe the bonding in a nitrogen molecule, N_{2}, using hybrid orbital theory.

Solution

The bonding in a nitrogen molecule is identical to that in CO, except that both atoms are nitrogen: there is one sigma bond, two π bonds, and one lone pair on each atom. Each N has linear electron-pair geometry and is, therefore, sp-hybridized. The assignments of the five valence electrons on each N and their roles in bonding are:

6. Multiple Bonds

Problem

Describe the hybridization of both carbon atoms and of the nitrogen atom in acetonitrile:
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{N}$:

Solution

The CH_{3} carbon has tetrahedral electron-pair geometry, and is, therefore, sp^{3} hybridized. The CN carbon has linear electron-pair geometry and is, therefore, sp-hybridized. Last, the N atom has linear electron-pair geometry and is sp-hybridized. Two unhybridized orbitals on the central carbon and two on the nitrogen are used to form two π bonds.

7. Molecular Orbitals and Bond Order

Question

Write the electron configuration of the H_{2}^{-}ion in molecular orbital terms. What is the bond order of this ion?

Solution

This molecular ion has three electrons: one from each H atom and one due to the negative charge. Its configuration, therefore, is $\left(\sigma_{15}\right)^{2}\left(\sigma_{1 s}^{*}\right)^{1}$.
$\mathrm{H}_{2}{ }^{-}$has a net bond order of $1 / 2$ and the ion is predicted to exist under special circumstances:
$1 / 2(2$ bonding electrons -1 antibonding electron $)=1 / 2$

8. Molecular Orbitals and Bond Order

Question

Write the configuration of the $\mathrm{H}_{2}{ }^{+}$ion in molecular orbital terms. Compare the bond order of this ion to $\mathrm{He}_{2}{ }^{+}$and $\mathrm{H}_{2}{ }^{-}$. Do you expect $\mathrm{H}_{2}{ }^{+}$to exist?

Solution

The molecular orbital configuration for $\mathrm{H}_{2}{ }^{+}$is $\left(\sigma_{15}\right)^{1}$. This ion has a bond order of ${ }^{1}{ }_{2}$, as do $\mathrm{He}_{2}{ }^{+}$and $\mathrm{H}_{2}{ }^{-}$:
$1 / 2(2$ bonding electrons - 1 antibonding electron $)=1 / 2$
$\mathrm{H}_{2}{ }^{+}$, therefore, is expected to exist.

9. Molecular Orbitals in Diatomic Molecules

Question

Knowing that Be_{2} does not exist, describe the electron configuration in molecular orbital terms for $\mathrm{Be}_{2}{ }^{+}$and give its net bond order. Do you expect $\mathrm{Be}_{2}{ }^{+}$to exist?

Solution

The $\mathrm{Be}_{2}{ }^{+}$molecular ion has seven electrons. Four of the seven electrons are core electrons, and are assigned to $\sigma_{1 \mathrm{~s}}$ and $\sigma_{1 \mathrm{~s}}{ }^{*}$ molecular orbitals. The remaining three electrons are assigned to the $\sigma_{2 \mathrm{~s}}$ and $\sigma_{2 \mathrm{~s}}{ }^{*}$ orbitals. The molecular orbital configuration is:
[core electrons] $\left(\sigma_{2 s}\right)^{2}\left(\sigma_{2 s}{ }^{*}\right)^{1}$

The net bond order is: $1 / 2(2$ bonding electrons -1 antibonding electron $)=1 / 2$
$\mathrm{Be}_{2}{ }^{+}$has a net bond order of $\frac{1}{2}$, thus it is expected to exist.

10. Metallic bonding

Problem

Magnesium has its highest energy band filled by two 3 s electrons contributed by each atom, thus it is expected to be an insulator. Explain why magnesium is not an insulator, but a conductor of electricity.

Solution:

The empty 3 p orbitals form an energy band that overlaps the 3 s band, creating a larger, partially filled band. Electrons may, therefore, move up and out of 3s orbitals to occupy vacant 3p orbitals.

11. Metals and Semiconductors

Question

As the temperature increases, more electrons in a semiconductor gain energy needed to jump out of the valence band into the conduction band. How does this affect the resistivity of the semiconductor?

Solution

With an increase in temperature, as a greater number of electrons can jump out of the valence band into the conduction band, the resistivity of the semiconductor decreases. The amount of decrease is different for each semiconductor and depends on the band gap. At low temperatures, the conductivity of semiconductors is similar to that of insulators; at high temperatures, it is like that of metals.

12. P-type and N-type Semiconductors

Question

Recall that a p-type semiconductor has been defined in this lesson as a semiconductor that conducts a positive charge. What would you expect from an n-type semiconductor? What is meant by a p-n junction?

Solution

An n-type semiconductor conducts a negative charge. It is formed by doping Si with a group 5 A element. This is so the solid has orbitals with extra electrons that can jump to the conduction band. A p-n junction is the boundary between p-type and n-type semiconductors. Doping adjacent areas in the same crystal with Group 3A and Group 5A elements creates a p-n junction.

CH 222 Chapter Twenty Concept Guide

1. Organic Nomenclature

Question

Is the following compound an alkane, alkene, or alkyne; saturated or unsaturated; branched or straight chain?

Solution:

It is a branched-chain, saturated alkane. All organic compounds with all C-C single bonds are saturated. Compounds with only C-C single bonds are alkanes.

2. Organic Nomenclature

Question

Is the following compound an alkane, alkene, or alkyne; saturated or unsaturated; branched or straight chain? $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$

Solution:

This is 2-butyne. It is a straight chain, unsaturated alkyne. All organic compounds with double or triple C-C bonds are unsaturated. Compounds with C-C triple bonds are alkynes.

3. Reactions of Organic Compounds

Problem

Predict the product of the hydrogenation reaction of 1-butene and $\mathrm{H}_{2}(\mathrm{~g})$: $\quad \mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}+\mathrm{H}_{2}$

Approach

This is a hydrogenation reaction, thus H atoms will add across the $\mathrm{C}-\mathrm{C}$ double bond forming an alkane.

Solution:

The product is butane: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

4. Classification of Organic Compounds

Problem

Classify the following compounds according to the types of compounds listed below.
(a)

(b)

O

(c) $\mathrm{CH}_{2}=\mathrm{CHCOCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Types of Organic Compounds
Alcohol Aldehyde Amine Carboxylic Acid
Ester Ketone Phenol

Approach

Identify the functional groups and the hydrocarbon portions in each molecule.

Solution

(a). An amine (secondary). The hydrocarbon is $\mathrm{C}_{6} \mathrm{H}_{5}$ and $\mathrm{C}_{2} \mathrm{CH}_{3}$.
(b). An alcohol. The hydrocarbon is $\mathrm{C}_{4} \mathrm{H}_{9}$.
(c). An ester. The hydrocarbon is $\mathrm{CH}_{2}=\mathrm{CH}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$.

5. Synthesizing Carboxylic Acids

Problem

The reaction of methanol and carbon monoxide yields a carboxylic acid that is produced in bread when leavened by a particular yeast, Saccharomyces exigus. Predict this product.

Approach

Write out the reaction of methanol and carbon monoxide. Balance the equation.

Solution

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{l})
$$

The product is acetic acid.

CH 222 Chapter Nine Concept Guide

1. Boyle's Law

Question

A sample of gaseous nitrogen in an automobile airbag has a pressure of 745.0 mm Hg in a $35.00-\mathrm{L}$ bag. If this sample is transferred to a $15.00-\mathrm{L}$ bag at the same temperature, what is the pressure (in mm Hg and atm) of the gas in the new bag?

Approach

Boyle's Law says that pressure is indirectly proportional to volume: $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$.
We know $\mathrm{P}_{1}, \mathrm{~V}_{1}$, and V_{2} and need to solve for P_{2}.

Solution

$\mathrm{P}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{V}_{2}=(745.0 \mathrm{~mm} \mathrm{Hg} \times 35.00 \mathrm{~L}) / 15.00 \mathrm{~L}=1738 \mathrm{~mm} \mathrm{Hg}$
$1738 \mathrm{~mm} \mathrm{Hg} x(1 \mathrm{~atm} / 760 \mathrm{~mm} \mathrm{Hg})=2.29 \mathrm{~atm}$
As expected, the pressure of a gas increases as volume decreases.

2. Charles's Law

Question

The gas volume of CO_{2} in a syringe is 25.0 L at $20^{\circ} \mathrm{C}$. What is the final volume of the gas if you hold the syringe in your hand until the temperature reaches $39^{\circ} \mathrm{C}$?

Approach

Charles's Law says that the volume of a gas is directly proportional to the absolute temperature:
$V_{1} / T_{1}=V_{2} / T_{2}$. We know T_{1}, V_{1}, and T_{2}. Solve for V_{2}. Note: Don't forget to convert temperature to Kelvins.
Solution

$$
\mathrm{V}_{2}=\mathrm{T}_{2}\left(\mathrm{~V}_{1} / \mathrm{T}_{1}\right)=(312 \mathrm{~K})(25.0 \mathrm{~mL} / 293 \mathrm{~K})=26.6 \mathrm{~mL}
$$

As expected, the volume of a gas increases with an increase in temperature.

3. Ideal Gas Law

Question

If you wanted to use the Ideal Gas Law to solve for volume, how would the equation look?

Approach

Isolate volume from the other variables in the Ideal Gas Law.

Solution

$\mathrm{V}=\mathrm{nRT} / \mathrm{P}$

4. Gas Density and Molar Mass

Question

The density of an unknown gas is $1.50 \mathrm{~g} / \mathrm{L}$ at STP. What is its molar mass?

Approach

Use the Ideal Gas Law, substituting density for n and molar mass ($\mathrm{M} ; \mathrm{g} / \mathrm{mol}$) for V. Solve for M.

Solution

Density is mass per unit volume and can be used to convert volume into mass: $\mathrm{d}=\mathrm{m} / \mathrm{V}$. Therefore,

$$
\begin{aligned}
& \mathrm{PM}=\mathrm{dRT} \\
& \mathrm{M}=\mathrm{dRT} / \mathrm{P} \\
& \mathrm{M}=[(1.50 \mathrm{~g} / \mathrm{L})(0.082057 \mathrm{~L} \mathrm{~atm} / \mathrm{K} \mathrm{~mol})(273.15 \mathrm{~K})] / 1.000 \mathrm{~atm}=33.6 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

5. Root-mean-square Speed

A relationship exists among molecular mass, average speed, and temperature. Two gases with different molecular masses must have the same kinetic energy at the same temperature because the average kinetic energy is fixed by temperature. The heavier gas molecules, therefore, must have a lower average speed. Sometimes called the "Maxwell Equation," the root-mean-square (rms) speed expresses this idea in quantitative form:
$\sqrt{\overline{\mathrm{u}^{2}}}=\sqrt{3 \mathrm{RTM}}$
where $\sqrt{\overline{\mathrm{U}^{2}}}$ is called the rms speed, temperature (T) is in Kelvins, M is molar mass, and R is expressed in units related to energy, $8.314 \mathrm{~J} / \mathrm{K} \mathrm{mol}$.

6. Graham's Law

Gases have the ability to diffuse and effuse. Diffusion is the mixing of two or more substances by random molecular motion; effusion is the movement of gas through a tiny opening in a container into another container.

Thomas Graham (1805-1869) studied effusion and found that the rates of effusion of two gases were inversely proportional to the square roots of the molar masses at the same temperature and pressure.

$$
\frac{\text { Rate of effusion of gas } 1}{\text { Rate of effusion of gas } 2}=\sqrt{\frac{\text { molar mass of gas } 2}{\text { molar mass of gas } 1}}
$$

Therefore, the rate at which a gas will escape through an opening depends on how fast the gas molecules move. This equation is derived from Maxwell's equation.

$$
\frac{\text { Rate of effusion of gas } 1}{\text { Rate of effusion of gas } 2}=\frac{\sqrt{\overline{u^{2}}} \text { of gas } 1}{\sqrt{\overline{u^{2}}} \text { of gas } 2}=\sqrt{\frac{3 R T /(M \text { of gas } 1)}{3 R T /(M \text { of gas } 2)}}
$$

Canceling out like terms leaves us with the simple equation developed by Graham.

7. Molecular Speeds

Problem

Place the following gases in order of decreasing average molecular speed at $25^{\circ} \mathrm{C}$:

$$
\begin{array}{lllll}
\mathrm{Ar} & \mathrm{CH}_{4} & \mathrm{~N}_{2} & \mathrm{CH}_{2} \mathrm{~F}_{2}
\end{array}
$$

Approach

Remember that the average kinetic energy of gas molecules is determined by temperature, thus all these gases have the same average kinetic energy and heavier molecules must move with a slower average speed than lighter molecules at the same temperature.

Solution:

Compound Molecular Weights

CH_{4}	$16.04 \mathrm{~g} / \mathrm{mol}$
N_{2}	$28.01 \mathrm{~g} / \mathrm{mol}$
Ar	$39.90 \mathrm{~g} / \mathrm{mol}$
$\mathrm{CH}_{2} \mathrm{~F}_{2}$	$52.02 \mathrm{~g} / \mathrm{mol}$

8. Molecular Speeds

Problem

Molecular speed is important in the atmospheric diffusion of gases. Rank $\mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{NO}_{2}$, and NO in the order of increasing average molecular speed.

Approach

Remember that the average kinetic energy of gas molecules is determined by temperature, thus all these gases have the same average kinetic energy and heavier molecules must move with a slower average speed than lighter molecules at the same temperature.

Solution:

Compound Molecular Weights

$\mathbf{O}_{3} \quad 48.00 \mathrm{~g} / \mathrm{mol}$
$\mathrm{NO}_{2} \quad 46.01 \mathrm{~g} / \mathrm{mol}$
O_{2}
$32.00 \mathrm{~g} / \mathrm{mol}$
NO
$30.01 \mathrm{~g} / \mathrm{mol}$
$\mathrm{O}_{3}<\mathrm{NO}_{2}<\mathrm{O}_{2}<\mathrm{NO}$

9. Dalton's Law of Partial Pressures

Question

A 5.00 L sample of N_{2} at 738 Torr is mixed at constant temperature with $15.5 \mathrm{~L}^{\text {of }} \mathrm{O}_{2}$ at 325 Torr. The gaseous mixture is placed in a 10.0 L container. What is the pressure of the mixture?

Approach

We need to apply Boyle's Law to each gas, then use Dalton's Law of partial pressures to find the pressure of the mixture.

Solution

For $\mathrm{N}_{2}: \mathrm{P}_{1}=738$ Torr, $\mathrm{P}_{2}=$?, $\mathrm{V}_{1}=5.00 \mathrm{~L}$, and $\mathrm{V}_{2}=10.0 \mathrm{~L}$. When we solve for the unknown, $\mathrm{P}_{2}=369$ Torr.
For $\mathrm{O}_{2}: \mathrm{P}_{1}=325$ Torr, $\mathrm{P}_{2}=?, \mathrm{~V}_{1}=15.5 \mathrm{~L}$, and $\mathrm{V}_{2}=10.0 \mathrm{~L}$. When we solve for the unknown, $\mathrm{P}_{2}=504$ Torr.
According to Dalton's Law of partial pressure, the total pressure of the mixture is:
$\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{O} 2}+\mathrm{P}_{\mathrm{N} 2}=369$ Torr +504 Torr $=873$ Torr

10. Using Partial Pressures to Measure a Gas Collected over Water

Problem

A volume of 550 mL of gas was collected over water at $21^{\circ} \mathrm{C}$. The atmospheric pressure was 0.980 atm . The vapor pressure of water at this temperature is 0.025 atm . Calculate the partial pressure in atmospheres of the gas collected over water.

Approach

Use the following equation to find the partial pressure of the gas:

$$
\mathrm{P}_{\mathrm{atm}}=\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}+\mathrm{P}_{\mathrm{gas}}
$$

Solution

$$
\begin{aligned}
& \mathrm{P}_{\text {gas }}=\mathrm{P}_{\text {atm }}-\mathrm{P}_{\mathrm{H} 2 \mathrm{O}} \\
& \mathrm{P}_{\mathrm{gas}}=0.980 \mathrm{~atm}-0.025 \mathrm{~atm}=0.955 \mathrm{~atm}
\end{aligned}
$$

11. Root-mean-square Speed

Problem

Calculate the rms speed of oxygen molecules at $27^{\circ} \mathrm{C}$.

Approach

We need Maxwell's equation to calculate the rms speed. Before plugging in numbers, however, we need to convert M to units of kilograms per mole because R is in units of J / K mol. The necessary conversion factor is: $1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}{ }^{2} / \mathrm{s}^{2}$.

Solution

$$
\begin{aligned}
& \sqrt{\mathrm{u}^{2}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}} \\
& =\sqrt{\frac{3(8.314 \mathrm{~J} / \mathrm{K} \mathrm{~mol})(300 \mathrm{~K})}{3.20 \times 10^{2} \mathrm{~kg} / \mathrm{mol}}}=\sqrt{2.34 \times 10^{\mathrm{S} / \mathrm{Jg}}}
\end{aligned}
$$

To obtain the answer in meters per second, we use the relation $I J=1 \mathrm{~kg} \mathrm{~m} / \mathrm{s}^{2}$, which means we have

$$
\begin{aligned}
& \sqrt{\mathrm{u}^{2}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}} \\
& =\sqrt{2.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}}=\sqrt{2.34 \times 10^{5} \mathrm{~kg} \mathrm{~m}} \mathrm{~m}^{2} / \mathrm{kg} \mathrm{~s}^{2}
\end{aligned}=483 \mathrm{~m} / \mathrm{s}
$$

12. Graham's Law

Question
How fast do helium molecules effuse through a barrier relative to oxygen molecules?

Approach

We need Graham's Law to determine the rate differential between helium and oxygen molecules.

Solution

$$
\begin{aligned}
& \frac{\text { Rate of effision of } \mathrm{He}}{\text { Rate of effision of } \mathrm{O}_{2}}=\sqrt{\frac{\text { molar mass of } \mathrm{O}_{2}}{\text { molar mass of He }}} \\
& =\sqrt{\frac{32.00 \mathrm{~g} / \mathrm{mol}}{4.00 \mathrm{~g} / \mathrm{mol}}}=2.83
\end{aligned}
$$

Helium molecules effuse through a barrier 2.83 times faster than oxygen molecules.

CH 222 Chapter Ten Concept Guide

1. Types of Intermolecular Forces

Question

What type if intermolecular force is involved in each case below? Place the following cases in order of decreasing strength of interaction.
(a) Liquid methane, CH_{4}
(b) Mixture of water and methanol, $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{OH}$
(c) Solution of LiCl in water

Solution

(a) No ions are involved with CH_{4}. It is a simple molecule with covalent bonds. It is also nonpolar, thus the only way methane molecules can interact is through induced dipole forces.
(b) Similarly to CH_{4}, there are no ions involved with these covalently bonded molecules. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{OH}$ are, however, polar and both have an O-H bond. They interact, therefore, through special dipole-dipole forces: hydrogen bonding.
(c) LiCl is an ionic compound composed of Li^{+}and Cl^{-}ions and water is a polar molecule. In this case, the salt dissociates in water and the ions interact with water molecules through ion-dipole forces.

In order of decreasing strength, the interactions are:

$$
\mathrm{LiCl} \text { in } \mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{O} \text { in } \mathrm{CH}_{3} \mathrm{OH} \quad \text { liquid } \mathrm{CH}_{4} .
$$

2. Types of Intermolecular Forces

Question

What type of intermolecular forces is involved in each case below? Place the following cases in order of decreasing strength of interaction.
(a) liquid O_{2}
(b) MgSO_{4} dissolved in water
(c) O_{2} dissolved in $\mathrm{H}_{2} \mathrm{O}$

Solution

(a) O_{2} interactions occur by induced dipole-induced dipole forces. These are the weakest of all forces.
(b) MgSO_{4} dissociates into Mg^{2+} and $\mathrm{SO}_{4}{ }^{2-}$ ions when dissolved in water. The ions interact with water through ion-dipole forces.
(c) Water is a polar molecular compound. O_{2} is composed of nonpolar molecules. Dipole-induced dipole forces exist between $\mathrm{H}_{2} \mathrm{O}$ and O_{2}.

In order of decreasing strength, the interactions are:
MgSO_{4} dissolved in $\mathrm{H}_{2} \mathrm{O} \quad \mathrm{O}_{2}$ dissolved in $\mathrm{H}_{2} \mathrm{O}$ liquid O_{2}.

3. Explaining Differences in Boiling Points

Problem

Explain why the boiling point of $\mathrm{H}_{2} \mathrm{~S}$ is lower than that of $\mathrm{H}_{2} \mathrm{O}$.

Solution

There is significant hydrogen bonding between the molecules in $\mathrm{H}_{2} \mathrm{O}$, but not in $\mathrm{H}_{2} \mathrm{~S}$. This difference arises because oxygen's electronegativity is much greater than sulfur's electronegativity. Hydrogen bonding increases a substance's boiling point, thus $\mathrm{H}_{2} \mathrm{O}$ has a higher boiling point than $\mathrm{H}_{2} \mathrm{~S}$. Recall from this lesson that the difference between the boiling points of ethanol and dimethyl ether is also due to differences in the strength of forces, and more specifically, the lack of hydrogen bonding in dimethyl ether.

4. Characteristics of Liquids

Question

Why do gases completely fill their containers and liquids spread to take the shape of their containers?

Answer

Gases and liquids flow simply due to the movement of molecules. In comparison, a solid has too rigid a structure to allow for flow. Its molecules cannot move past one another.

5. Characteristics of Liquids

Question

What factors determine the viscosity of a liquid? How does viscosity change with a decrease in temperature?

Abstract

Answer The size, shape, and chemical nature of molecules, as well as a sample's temperature, determine the viscosity of a liquid. As temperature decreases, viscosity increases due to less rapid movement of the molecules and a lessened ability to overcome intermolecular forces in order to move past one another.

6. Normal Boiling Point

Question

The normal boiling point of $\mathrm{CH}_{3} \mathrm{Cl}$, chloromethane, is $-24^{\circ} \mathrm{C}$ and the normal boiling point for $\mathrm{CH}_{3} \mathrm{I}$ is $42.4^{\circ} \mathrm{C}$. Which compound has the stronger intermolecular forces in the liquid phase? What types of intermolecular forces are involved?

Answer

The forces involved are dipole-dipole attractions and dispersion (induced dipole) forces. $\mathrm{CH}_{3} \mathrm{Cl}$ has a larger dipole (1.892 D) than $\mathrm{CH}_{3} \mathrm{I}$, therefore one might expect $\mathrm{CH}_{3} \mathrm{Cl}$ to have stronger intermolecular forces as a liquid. However, the larger iodine atom in $\mathrm{CH}_{3} \mathrm{I}$ is more polarizable, yielding greater induced dipole attractive forces than the chlorine atom in $\mathrm{CH}_{3} \mathrm{Cl}$, giving $\mathrm{CH}_{3} \mathrm{I}$ a higher normal boiling point.

7. Vapor Pressure: Water

Question

Why does water boil at a lower temperature at the top of a mountain than it does at sea level?

Abstract

Answer External atmospheric pressure decreases with increasing altitude. When water is heated on a mountaintop, its vapor pressure reaches this lower atmospheric pressure at a lower temperature. The water boils sooner, yet it will take longer to cook food in this water because the boiling point is lower.

8. Lattice Energy

Question

Lattice energy is defined as the net force of attraction between ions in an extended solid. It is the energy released if one mole of gas phase ions would come together to form the solid lattice. Write a chemical equation illustrating the reaction between M^{2+} and X^{2-} that fits this definition. How does the value of the lattice energy change as ionic charge decreases and as ionic radius decreases?

Answer

The energy liberated as gaseous ions combine to give a crystalline ionic structure may be illustrated as:

$$
\mathrm{M}^{2+}(\mathrm{g})+\mathrm{X}^{2-}(\mathrm{g}) \rightarrow \mathrm{MX}(\mathrm{~s})
$$

The lattice energy depends on Coulomb's Law. Therefore, lattice energy decreases with decreasing ionic charge and increases with decreasing ionic radius.

9. Lattice Energy

Question

Which compound should have the higher lattice energy: CaCl_{2} or BaCl_{2} ?

Abstract

Answer Lattice energy depends inversely on the size of the ions involved: the smaller the ions, the stronger the electrostatic attraction between them, and the larger the lattice energy. Here, Ca^{2+} is smaller than Ba^{2+}, thus CaCl_{2} is anticipated to have the higher lattice energy.

10. Summary of Cubic Unit Cells

Question

How many net atoms or ions does a (a) simple cubic unit cell, (b) body-centered cubic unit cell, and (c) facecentered cubic unit cell have?

Answer

(a) A simple cubic unit cell has 8 atoms in corner positions, and one eighth of each is contained in each unit cell. So, a simple cubic unit cell of atoms or ions always contains 1 net atom or ion.
(b) A body-centered cubic unit cell is similar to a simple cubic unit cell, but also contains an atom or ion at its center. Therefore, a body-centered cubic unit cell of atoms always contains 2 net atoms within the cell.
(c) A face-centered cubic unit cell of X atoms or ions always contains 4 net atoms or ions within the cell.

11. Unit Cell - Volume and Density

Question

The unit cell length of diamond was measured as 0.3567 nm .
(a) What is the volume of this cubic unit cell in cubic centimeters?
(b) If the mass of unit cell of a diamond is $1.60 \times 10^{-22} \mathrm{~g}$, what is the theoretical density of diamond?

Approach

The volume of the cubic unit is found by cubing the length of the side. Density can be calculated by dividing the mass of diamond by the volume.

Solution

(a) Conversion factors are needed to express the unit cell length in centimeters. Cubing this number gives the volume of the cubic unit.

$$
(0.3567 \mathrm{~nm})\left(\frac{1 \mathrm{~m}}{10^{9} \mathrm{~nm}}\right)\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)=3.567 \times 10^{-8} \mathrm{~cm}
$$

Volume $=\left(3.567 \times 10^{-8}\right)^{3}=4.538 \times 10^{-23} \mathrm{~cm}^{3}$
(b) To calculate the theoretical density of diamond having a mass of $1.60 \times 10^{-22} \mathrm{~g}$, divide the mass of the unit cell by its volume.
$\frac{1.60 \times 10^{-22} \mathrm{~g}}{4.538 \times 10^{-23} \mathrm{~cm}^{3}}=3.50 \mathrm{~g} / \mathrm{cm}^{3}$

12. Structures and Formulas of Ionic Solids

Question

Can calcium chloride have a unit cell like that of sodium chloride?

Solution

A unit cell of NaCl can only have a $1: 1$ cation to anion ration. CaCl_{2} has a 1:2 cation to anion ratio, therefore it cannot have a unit cell like NaCl .

13. Determination of an Atomic Radius from Measurements of a Crystal Lattice: Aluminum

Problem

Aluminum has a density of $2.70 \mathrm{~g} / \mathrm{cm}^{3}$ and the atoms are packed into a face-centered cubic unit cell. Calculate the radius of an aluminum atom.

Approach

First, calculate the mass of a unit cell with the knowledge that it is face-centered cubic, and thus has 4 atoms per unit cell. Second, combine the density of aluminum with the mass of the unit cell to calculate the volume of the unit cell. The volume may then be used to find the length of an edge of the unit cell. Last, calculate the radius of an aluminum atom from the edge dimension.

Solution

Step 1. The mass of the unit cell is

$$
(26.98 \mathrm{~g} / \mathrm{mol} \mathrm{Al})\left(\frac{1 \mathrm{~mol}}{6.022 \times 10^{+23} \text { atoms }}\right)(4 \text { atoms } / \text { unit cell })=1.792 \times 10^{-22} \mathrm{~g} / \text { unit cell }
$$

Step 2. Calculate the volume of the unit cell by dividing the mass of the unit cell by the density of aluminum.

$$
\left(1.792 \times 10^{-22} \mathrm{~g} / \text { unit cell }\right)\left(\frac{1 \mathrm{~cm}^{3}}{2.70 \mathrm{~g}}\right)=6.64 \times 10^{-23} \mathrm{~cm}^{3} / \text { unit cell }
$$

Step 3. To find the length of a unit cell edge, calculate the cube root of the cube volume.

$$
\sqrt[3]{6.64 \times 10^{-23}} \mathrm{~cm}^{3} / \text { unit cell }=4.05 \times 10^{-8} \mathrm{~cm}
$$

Step 4. The diagonal distance across a face-centered cubic unit cell is
Diagonal distance ${ }^{2}=(\text { edge })^{2}+(\text { edge })^{2}=2(\text { edge })^{2}$
Taking the square root of both sides yields:

$$
\text { diagonal distance }=(\sqrt{2}) \text { (cell edge })
$$

Plugging in the cell edge:

$$
\text { diagonal distance }=(\sqrt{2})\left(4.05 \times 10^{-8} \mathrm{~cm}\right)=5.73 \times 10^{-8} \mathrm{~cm}
$$

To find the atomic radius of aluminum, divide the diagonal distance by 4 .

$$
\frac{5.73 \times 10^{-8} \mathrm{~cm}}{4}=1.43 \times 10^{-8} \mathrm{~cm}
$$

The atomic radius for aluminum is $1.43 \times 10^{-8} \mathrm{~cm}$ or 143 pm .

14. Critical Points

Question

What is the critical point? Will a substance always be a liquid below the critical point?

Answer

The critical point is the temperature above which no amount of pressure will cause condensation (movement of molecules from the gas phase to the liquid phase). No, a substance will not always be a liquid below the critical point. All solids, for example, are below the critical point and many gases exist below their critical point.

15. Triple Points

Question

How many phases can co-exist at equilibrium at a triple point? Refer to the phase diagram for water in this lesson.

Answer

There are three phases at a triple point: solid, liquid, and gas.

16. Phase Changes: CO_{2}

Question

Refer to a phase diagram for CO_{2}. If a sample of CO_{2} is at its triple point, what phase is present after the pressure has been increased at constant temperature?

Answer

After increasing pressure, CO_{2} will be in its solid form. The solid form is favored over the liquid at high pressure because $\mathrm{CO}_{2}(\mathrm{~s})$ is more dense than $\mathrm{CO}_{2}(\ell)$.

CH 222 Chapter Eleven Concept Guide

1. Molality

Question

A 4.5 M nitric acid solution contains 65.0 g of HNO_{3} in 288 g of solution. What is the molality of this solution?

Approach

Molality is calculated by dividing the moles of solute by the kilograms of solvent.

Solution

Step 1. Calculate the number of moles of HNO_{3}.

$$
\left(65.0 \mathrm{~g} \mathrm{HNO}_{3}\right)\left(\frac{1 \mathrm{~mol} \mathrm{HNO}_{3}}{63.01 \mathrm{~g} \mathrm{HNO}_{3}}\right)=1.03 \mathrm{~mol} \mathrm{HNO}_{3}
$$

Step 2. Calculate the molality of the solution.
There are 223 g of solvent: 288 g solution -65.0 g solute $=223 \mathrm{~g}$ solvent.
Molality $=$ moles of solute/kilograms of solvent

$$
\text { Molality }=\frac{1.03 \mathrm{~mol} \mathrm{HNO}_{3}}{0.223 \mathrm{~kg}^{2}}=4.62 \mathrm{~mol} / \mathrm{kg}
$$

2. Weight percent

Question

What is the weight percent of methanol in a solution of 1.0 L of methanol in 2.5 L of diethyl ether? The density of methanol is $0.79 \mathrm{~g} / \mathrm{mL}$ and the density of diethyl ether is $0.71 \mathrm{~g} / \mathrm{mL}$.

Approach

To find the weight percent of methanol, we must know the masses of each component in the solution. Then, we can calculate the weight percent by dividing the mass of methanol by the mass of solution, and then multiplying by 100 .

Solution

Step 1. Calculate the mass of methanol and the mass of diethyl ether.
$(1.0 \mathrm{~L}$ methanoi $)\left(\frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}\right)(0.79 \mathrm{~g} / \mathrm{mL})=790 \mathrm{~g}$ methanol
$\left(2.5 \mathrm{~L}\right.$ diethyl ether) $\left(\frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}\right)(0.71 \mathrm{~g} / \mathrm{mL})=1800 \mathrm{~g}$ diethyl ether

Step 2. Calculate the mass of the solution.
790 g methanol +1800 g diethyl ether $=2600 \mathrm{~g}$ solution
Step 3. The weight percent of methanol in the solution is calculated by dividing the mass of methanol by the mass of the solution, then multiplying by 100 .
$\left(\frac{790 \mathrm{~g} \text { methanol }}{2600 \mathrm{~g} \text { solution }}\right)(100)=30 . \%$ methanol

3. Solution Concentration

Problem

Commercial vinegar is an aqueous solution that must contain at least 4 weight percent acetic acid. The density of this solution is $1.0058 \mathrm{~g} / \mathrm{mL}$ and the volume of the sample is 100.00 g . Calculate the concentration of acetic acid, if this vinegar is exactly 4.000% acetic acid, in terms of (a) mole fraction, (b) molality, and (c) molarity. Acetic acid is $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ and has a molar mass of 60.05 g .

Approach

To find the mole fraction, we need to calculate the numbers of moles of solute and solvent in 100.00 g of solution. Then, divide the number of moles of acetic acid by the total number of moles of solution. To find the molality, we will need to use a ratio of moles of acetic acid to kilograms of solvent. Last, to find the molarity of the solution, simply divide the moles of acetic acid by the number of liters of solution.

Solution

(a) Mole Fraction

Step 1. Calculate the mass and moles of both acetic acid and water.

$$
\text { Mass } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=0.04 \times 100.00=4.00 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}
$$

$$
\text { Moles of } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=\left(4.00 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)\left(\frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{60.05 \mathrm{gCH}_{3} \mathrm{CO}_{2} \mathrm{H}}\right)=0.0666 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}
$$

$$
\text { Mass of } \mathrm{H}_{2} \mathrm{O}=\text { mass of solution - mass of } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}
$$

$$
=100.00 \mathrm{~g} \text { solution }-4.00 \mathrm{~g} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=96.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

$$
=\left(96.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}\right)=5.329 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Step 2. Calculate the mole fraction of acetic acid.

Mole fraction $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}=\frac{\text { moles } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{\text { moles solution }}$

$$
=\frac{0.0666 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{0.0666 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}+5.329 \mathrm{~mol} \mathrm{H}} \mathrm{H}_{2} \mathrm{O}=0.0123
$$

(b) Molality

$$
\begin{aligned}
& \text { Molality }=\frac{\text { moles } \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{\text { kg solution }} \\
&=\frac{0.0666 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}}{2} \mathrm{H} \\
& 0.09600 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O} \\
&=0.694 \mathrm{~mol} / \mathrm{kg} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(c) Molarity

Step 1. Calculate the volume of the solution.

$$
(100 \mathrm{~g} \text { solution })\left(\frac{1 \mathrm{~mL}}{1.0058 \mathrm{~g}}\right)=99.42 \mathrm{~mL} \text { solution }
$$

Step 2. Calculate the molarity by dividing the moles of solute by the liters of solution.

$$
=\frac{0.0666 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}}{0.09942 \mathrm{~L} \text { solution }}=0.670 \mathrm{~mol} / \mathrm{L}
$$

4. Parts Per Million

Problem

You have a solution consisting of 2.665 g of solute and 151.78 g of solution. Convert this to units of ppm .

Approach

To calculate ppm, convert grams of solute to milligrams, and grams of solution to kilograms.

Solution

$\frac{2665 \mathrm{mg} \text { solute }}{0.15178 \mathrm{~kg} \text { solution }}=17,560 \mathrm{ppm}$

5. Solubility and Henry's Law

Question

A soft drink has an aqueous CO_{2} concentration of 0.0511 M at $25^{\circ} \mathrm{C}$. What is the pressure of CO_{2} gas in the
drink? Henry's law constant for CO_{2} is $4.48 \times 10^{-5} \mathrm{M} / \mathrm{mm} \mathrm{Hg}$ at $25^{\circ} \mathrm{C}$.

Approach

We need to use Henry's law
$\mathrm{S}_{\mathrm{g}}=\mathrm{k}_{\mathrm{H}} \mathrm{P}_{\mathrm{g}}$
where S_{g} is gas solubility, k_{H} is Henry's law constant, and P_{g} is the partial pressure of CO_{2}. Substituting the gas solubility and Henry's law constant for CO_{2} into the equation will yield the pressure of CO_{2}.

Solution

$\mathrm{P}_{\mathrm{g}}=\frac{\mathrm{S}_{\mathrm{g}}}{\mathrm{k}_{\mathrm{H}}}$
$\mathrm{P}_{\mathrm{g}}=\frac{0.0511 \mathrm{M}}{4.48 \times 10^{-5} \mathrm{M} / \mathrm{mmHg}}=1.14 \times 10^{3} \mathrm{mmHg}$

6. Solubility and Henry's Law

Question

The partial pressure of O_{2} in a person's lungs varies from 22 mm Hg to 40 mm Hg . How much O_{2} can dissolve in water at $25^{\circ} \mathrm{C}$ if the partial pressure of O_{2} is 35 mm Hg ? Henry's law constant for O_{2} is $1.66 \times 10^{-6} \mathrm{M} / \mathrm{mm}$ Hg at $25^{\circ} \mathrm{C}$.

Solution

We need to use Henry's law
$\mathrm{S}_{\mathrm{g}}=\mathrm{k}_{\mathrm{H}} \mathrm{P}_{\mathrm{g}}$
where S_{g} is gas solubility, k_{H} is Henry's law constant, and P_{g} is the partial pressure of O_{2}. Substituting Henry's law constant for O_{2} and the partial pressure into the equation will yield the solubility of O_{2} in water.
$\mathrm{S}_{\mathrm{g}}=\left(\frac{1.66 \times 10^{-6} \mathrm{M}}{\mathrm{mm} \mathrm{Hg}}\right)(35 \mathrm{~mm} \mathrm{Hg})=5.8 \times 10^{-5} \mathrm{M}$

7. Solubility and Henry's Law

Question

What is the concentration of O_{2} (in grams of O_{2} per liter of water) in a freshwater stream in equilibrium with air at $25^{\circ} \mathrm{C}$? The atmospheric pressure is 1.0 atm and Henry's law constant for O_{2} is $1.66 \times 10^{-6} \mathrm{M} / \mathrm{mm} \mathrm{Hg}$ at 25 ${ }^{\circ} \mathrm{C}$. Assume air contains 21% oxygen.

Approach

Henry's Law can be used to calculate the solubility of oxygen. First, calculate the partial pressure of oxygen in air (21% of air is oxygen and the mole fraction of O_{2} is 0.21). Then, calculate the solubility of oxygen using Henry's law.

Solution

Step 1. Calculate the partial pressure of oxygen.

$$
\mathrm{P}\left(\mathrm{O}_{2}\right)=(1.0 \mathrm{~atm})\left(\frac{760 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~atm}}\right)(0.21)=160 \mathrm{~mm} \mathrm{Hg}
$$

Step 2. Calculate the solubility of oxygen in units of grams of oxygen per liter of water.

$$
\begin{aligned}
& \left(\frac{1.66 \times 10^{-6} \mathrm{~mol} / \mathrm{L}}{1 \mathrm{~mm} \mathrm{Hg}}\right)(160 \mathrm{~mm} \mathrm{Hg})=2.7 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \\
& \left(2.7 \times 10^{-4} \mathrm{~mol} / \mathrm{L}\right)(32 . \mathrm{g} / \mathrm{mol})=0.0085 \mathrm{~g} / \mathrm{L}
\end{aligned}
$$

8. Vapor Pressure and Raoult's Law

Question

What is the vapor pressure at $25^{\circ} \mathrm{C}$ of a benzene-toluene solution of composition $X_{\text {benz }}=0.40$ and $X_{\text {tol }}=0.60$? The vapor pressures of the pure substances are 73 Torr for benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, and 27 Torr for toluene, $\mathrm{C}_{7} \mathrm{H}_{8}$, at $25^{\circ} \mathrm{C}$. Assume that the benzene and toluene form an ideal solution.

Approach

According to Raoult's law, the partial pressure of each component in the vapor phase is directly proportional to its mole fraction in the solution:

$$
\mathrm{P}_{\mathrm{A}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{\circ}
$$

The total vapor pressure of the solution is the sum of the partial pressures.

Solution

Step 1. Calculate the partial pressures of benzene and toluene.

$$
\begin{aligned}
& \mathrm{P}_{\text {benz }}=\mathrm{X}_{\text {benz }} \mathrm{P}_{\text {benz }}^{\circ}=(0.40)(73 \text { Torr })=29 \text { Torr } \\
& \mathrm{P}_{\text {tol }}=\mathrm{X}_{\text {tol }} \mathrm{P}_{\text {tol }}^{\circ}=(0.60)(27 \text { Torr })=16 \text { Torr }
\end{aligned}
$$

Step 2. Calculate the total vapor pressure of the solution.

$$
P_{\text {soln }}=P_{\text {benz }}+P_{\text {tol }}=29 \text { Torr }+16 \text { Torr }=45 \text { Torr }
$$

9. Colligative Properties: Boiling Point Elevation and Freezing Point Depression

Question

A solution contains a mixture of 5 sugars: 0.50 mol fructose, 0.60 mol glucose, 0.50 mol lactose, 0.60 mol maltose, and 0.60 mol sucrose dissolved in 1.00 kg of water. What are the boiling point and the freezing point of this solution? The boiling point elevation constant for water is $0.512^{\circ} \mathrm{C} / \mathrm{m}$, and the freezing point depression constant for water is $-1.86^{\circ} \mathrm{C} / \mathrm{m}$.

Approach

We need to first calculate the total number of moles of solute in the solution. Then, we will need to use the following relationship to calculate the boiling point elevation:

$$
\Delta \mathrm{T}_{\mathrm{bp}}=\mathrm{K}_{\mathrm{bp}} * \mathrm{~m}_{\text {solute }} .
$$

Similarly, for freezing point depression, we will need to use the relationship:

$$
\Delta \mathrm{T}_{\mathrm{fp}}=\mathrm{K}_{\mathrm{fp}} * \mathrm{~m}_{\text {solute }} .
$$

The solution's boiling point can be calculated by adding the change in temperature found to the boiling point of water. The solution's freezing point can be calculated by subtracting the change in temperature found from the freezing point of water.

Solution

Step 1. Calculate the total number of moles of solute in the solution and the total concentration of solute.
0.50 mol fructose +0.60 mol glucose +0.50 mol lactose +0.60 mol maltose +0.60 mol sucrose $=2.80 \mathrm{~mol}$ solute

$$
\text { Molality }=\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{2.80 \mathrm{~mol}}{1.00 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}}=2.80 \mathrm{~mol} / \mathrm{kg}
$$

Step 2. Calculate the boiling point elevation of the solution and the boiling point of the solution.

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{bp}}=\mathrm{K}_{\mathrm{bp}} * \mathrm{~m}_{\text {solute }}=\left(0.512{ }^{\circ} \mathrm{C} * \mathrm{~kg} / \mathrm{mol}\right)(2.80 \mathrm{~mol} / \mathrm{kg})=1.43^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{bp}, \text { solution }}=\mathrm{T}_{\mathrm{bp}, \text { solvent }}+\Delta \mathrm{T}_{\mathrm{bp}}=100.00^{\circ} \mathrm{C}+1.43{ }^{\circ} \mathrm{C}=101.43{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Step 3. Calculate the freezing point depression of the solution and the freezing point of the solution.

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{fp}}=\mathrm{K}_{\mathrm{fp}} * \mathrm{~m}_{\text {solute }}=\left(1.86{ }^{\circ} \mathrm{C} * \mathrm{~kg} / \mathrm{mol}\right)(2.80 \mathrm{~mol} / \mathrm{kg})=-5.21^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{fp}, \text { solution }}=\mathrm{T}_{\mathrm{fp}, \text { solvent }}-\Delta \mathrm{T}_{\mathrm{fp}}=0.00^{\circ} \mathrm{C}-5.2{ }^{\circ} \mathrm{C}=-5.21^{\circ} \mathrm{C}
\end{aligned}
$$

10. Osmotic Pressure

Problem

An aqueous solution contains 77.1 g of insulin $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{\mathrm{x}}$, a high molecular mass sugar, per liter of solution. The osmotic pressure at $20^{\circ} \mathrm{C}$ of this solution is 0.58 atm . Calculate the molar mass of insulin.

Approach

The molarity of the solution can be calculated from the osmotic pressure, using the following relationship: $\pi=c R T$, where π is the osmotic pressure, c is concentration (in moles per liter), R is the gas constant, and T is the absolute temperature. Then, the molar mass can be found from the mass and molarity.

Solution

Step 1. Calculate the solution concentration.

$$
\begin{aligned}
& \pi=c R T \\
& c=\frac{0.58 \mathrm{~atm}}{(0.0821 \mathrm{Latm} / \mathrm{Kmol})(293 \mathrm{~K})}=0.024 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Step 2. Calculate the molar mass of insulin.

$$
\left(\frac{77.1 \mathrm{~g}}{1 \mathrm{~L}}\right)\left(\frac{1 \mathrm{~L}}{0.024 \mathrm{~mol}}\right)=3200 \mathrm{~g} / \mathrm{mol}
$$

CH 222 Chapter Twelve Concept Guide

1. Reaction Rate

Problem

Express the rate of reaction for the following reaction:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

Approach

The rate of reaction is defined as the change in either reactant or product concentration divided by the change in time.

Solution

In terms of reactants, the rate of reaction could be:

$$
\text { Rate }=-\frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta \mathrm{t}}=-\frac{\Delta\left[\mathrm{I}_{2}\right]}{\Delta \mathrm{t}}
$$

One molecule of H_{2} and one molecule of I_{2} react with each other, thus the concentration of these two reactants changes at the same rate.

In terms of product, the rate of reaction could be:

$$
\text { Rate }=\frac{1}{2} \frac{\Delta[\mathrm{HI}]}{\Delta \mathrm{t}}
$$

Two molecules of HI are produced for every one molecule of H_{2} and one molecule of I_{2} that react. Thus, the change in concentration of HI will be twice as large as the rate of reaction defined in terms of H_{2} or I_{2}.

2. Reaction Rate

Problem

Define the rate of reaction for the following equation:

$$
2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})
$$

Approach

The rate of reaction is defined as the difference in either reactant or product concentration divided by the change in time.

Solution

In terms of the reactant, the rate of reaction could be:

$$
\text { Rate }=-\frac{1}{2} \frac{\Delta\left[\mathrm{O}_{3}\right]}{\Delta \mathrm{t}}
$$

In terms of product, the rate of reaction could be:

$$
\text { Rate }=+\frac{1}{3} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}
$$

The relationship between the rate of O_{3} consumption and O_{2} production is:

$$
\frac{\Delta\left[\mathrm{O}_{3}\right]}{\Delta \mathrm{t}}=-\frac{2}{3} \frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}
$$

3. Reaction Order

Question

The rate equation for the following reaction in the presence of platinum is as follows:

$$
\begin{aligned}
& 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \\
& \text { Rate }=k\left[\mathrm{SO}_{2}\right]\left[\mathrm{SO}_{3}\right]^{-1 / 2}
\end{aligned}
$$

What is the order of the reaction with respect to each species in the rate equation? What is the reaction order?

Approach

The order of the reaction for each substance is given by the exponent on the concentration term in the rate equation.

Solution

The reaction is first order with respect to SO_{2} and one-half order with respect to SO_{3}. The overall reaction order is $-1 / 2$.

4. Reaction Order

Question

The iodide-catalyzed decomposition of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, is known to be first order with respect to $\mathrm{H}_{2} \mathrm{O}_{2}$ and first order with respect to I^{-}.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \xrightarrow{\mathrm{I}^{-}} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{O}_{2}(g)
$$

Write the rate equation for this reaction. What is the overall order of this reaction?

Solution

The rate equation is: Rate $=\mathrm{k}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[{ }^{-}\right]$. The overall order of this reaction is the sum of the exponents of the concentration terms in the rate equation. This reaction is second order overall.

5. Method of Initial Rates

Problem

The rate equation for the reaction of iodide ion with hypochlorite ion in an alkaline solution

was thought to be in the form of the following rate equation:

$$
\text { Rate }=\mathrm{k}\left[\mathrm{I}^{-}\right]^{\mathrm{x}}\left[\mathrm{OCl}^{-}\right]^{\mathrm{y}}\left[\mathrm{OH}^{-}\right]^{\mathrm{z}}
$$

Using the method of initial rates, the following data were collected at $25^{\circ} \mathrm{C}$:

Experiment	$\left[\mathrm{ClO}^{-}\right]_{0}$	$\left[\mathbf{I}^{-}\right]_{0}$	$\left[\mathrm{OH}^{-}\right]_{0}$	Initial Rate (mol/L s)
(a)	2.00×10^{-3}	2.00×10^{-3}	1.00	2.42×10^{-4}
(b)	4.00×10^{-3}	2.00×10^{-3}	1.00	4.82×10^{-4}
(c)	2.00×10^{-3}	4.00×10^{-3}	1.00	5.02×10^{-4}
(d)	2.00×10^{-3}	2.00×10^{-3}	0.500	4.64×10^{-4}

Determine the order of the reaction with respect to $\mathrm{OCl}^{-}, \mathrm{I}^{-}$, and OH^{-}, then calculate the rate constant k .

Solution

Step 1. Find two experiments where different concentrations of I^{-}are used but $\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{ClO}^{-}\right]$are the same.
The data for experiments (a) and (c) show that the reaction rate doubles as the concentration of I doubles. Thus, the reaction is first order with respect to $\left[I^{-}\right]$and $x=1$. Mathematically, this may be shown as:

$$
\begin{aligned}
& \text { Rate }=\frac{5.02 \times 10^{-4}}{2.42 \times 10^{-4}}=\frac{\mathrm{k}\left(2.00 \times 10^{-3}\right)^{x}\left(4.00 \times 10^{-3}\right)^{y}(1.00)^{z}}{\mathrm{k}\left(2.00 \times 10^{-3}\right)^{x}\left(2.00 \times 10^{-3}\right)^{y}(1.00)^{z}} \\
& \text { Rate }=2.07 \approx 2.00
\end{aligned}
$$

Thus, by inspection, y is 1 . This may also be shown mathematically: $\ln 2=\mathrm{y} \ln 2$, thus $\mathrm{y}=1$.
Step 2. Find two experiments where different ClO^{-}concentrations are used but $\left[\mathrm{I}^{-}\right]$and $\left[\mathrm{OH}^{-}\right]$are the same.
The data for experiments (a) and (b) show that the reaction rate doubles as the concentration of ClO^{-}doubles. Thus, the reaction is first order with respect to $\left[\mathrm{OCl}^{-}\right]$and $\mathrm{y}=1$.

Step 3. Find two experiments where different OH^{-}concentrations are used but $\left[\mathrm{OCl}^{-}\right]$and $\left[\mathrm{I}^{-}\right]$are the same.

The data for experiments (a) and (d) show that the reaction rate doubles as the concentration of OH^{-}is halved. Thus, the reaction is negative first order with respect to $\left[\mathrm{OH}^{-}\right]$and $\mathrm{z}=-1$. The reaction rate decreases with increasing $\left[\mathrm{OH}^{-}\right]$.

The complete rate of reaction is:

$$
\text { Rate }=\mathrm{k}\left[\mathrm{I}^{-}\right]\left[\mathrm{OCl}^{-}\right]\left[\mathrm{OH}^{-}\right]^{-1}
$$

Step 4. The rate constant can be calculated by rearranging the rate equation and choosing data from one experiment.

Using the data from experiment (a):

$$
\begin{aligned}
\mathrm{k} & =\frac{\mathrm{rate}\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{I}^{-}\right]\left[\mathrm{OCl}^{-}\right]} \\
& =\frac{\left(2.42 \times 10^{-4} \mathrm{~mol} / \mathrm{Ls}\right)(1.00 \mathrm{~mol} / \mathrm{L})}{\left(2.00 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right)\left(2.00 \times 10^{-3} \mathrm{~mol} / \mathrm{L}\right)} \\
& =60.5 \mathrm{~s}^{-1}
\end{aligned}
$$

Using data from experiment (b), $\mathrm{k}=60.3 \mathrm{~s}^{-1}$; from (c), $\mathrm{k}=62.8 \mathrm{~s}^{-1}$; and from (d), $\mathrm{k}=58.0 \mathrm{~s}^{-1}$. The average value of $k=60.4 \mathrm{~s}^{-1}$.

6. Half-life

Question

Compound A decomposes to form B and C in a reaction that is first order with respect to A and first order overall. At $25^{\circ} \mathrm{C}, \mathrm{k}=0.0470 \mathrm{~s}^{-1}$. What is the half-life for A at $25^{\circ} \mathrm{C}$?

Approach

We will need to use the equation for $\mathrm{t}_{1 / 2}$:

$$
\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}
$$

Solution

$$
{ }^{\mathrm{t}} 1 / 2=\frac{0.693}{\mathrm{k}}=\frac{0.693}{0.0470 \mathrm{~s}^{-1}}=14.7 \mathrm{~s}
$$

Half of the original reactant remains after 14.7 s of reaction.

7. Reaction Mechanisms

Question

The proposed mechanism for a reaction is:

$$
\begin{aligned}
& \text { Step 1: A }+\mathrm{B} \underset{\mathrm{k} 2}{\stackrel{\mathrm{k} 1}{\rightleftarrows} C}+\mathrm{D} \\
& \text { Step 2:C+A } \underset{\mathrm{k} 2}{\stackrel{\mathrm{k} 1}{\rightleftarrows} \mathrm{E}} \\
& \text { Step 3: } \mathrm{E}+\mathrm{B} \underset{\mathrm{k} 2}{\stackrel{\mathrm{k} 1}{\rightleftarrows} \mathrm{~F}}
\end{aligned}
$$

What is the overall reaction?

Approach

We need to add the reactants on the left side of each arrow and add the products on the right side of each arrow, canceling out like terms to determine the overall reaction.

Solution

The overall reaction is: $2 \mathrm{~A}+2 \mathrm{~B}=\mathrm{D}+\mathrm{F}$.

8. Determining Rate Laws

Question

Refer to question 7. What is the experimental rate law if the first step is the slow step?

Solution

The experimental rate law, contingent upon the first step being the slow step, is: $R=k[A][B]$.

9. Catalysts

Question

One pathway for the destruction of ozone in the upper atmosphere is:

$$
\begin{aligned}
& \mathrm{O}_{3}(g)+\mathrm{NO}(g) \rightarrow \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \text { slow } \\
& \mathrm{NO}_{2}(g)+\mathrm{O}(g) \rightarrow \mathrm{NO}(g)+\mathrm{O}_{2}(g) \text { fast } \\
& \mathrm{O}_{3}(g)+\mathrm{O}(g) \rightarrow 2 \mathrm{O}_{2}(g)
\end{aligned}
$$

Which species is the catalyst and which species is the intermediate?

Solution

The catalyst is a species that increases the rate of a chemical reaction without itself undergoing any permanent change. It is involved in one step of the mechanism and regenerated at a later step. It is not a reactant or product in the overall reaction. In this example, the catalyst is NO. The intermediate is a species that is produced during the course of a reaction but always reacts further and is not among the final products. Here, the intermediate is NO_{2}.

10. Determining Activation Energy

Question

$\ln \mathrm{k}$ vs. $\frac{1}{\mathrm{~T}}$
A plot of gives a slope of $-1.50 \times 10^{4} \mathrm{~K}$. What is the activation energy for this particular reaction?

Approach

We will need to use the following equation:

$$
\ln \mathrm{k}=\ln A-\left(\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}}\right)
$$

When plotting $\ln \mathrm{k}$ vs. $(1 / \mathrm{T})$, the slope of the line is equal to

$$
-\frac{E_{a}}{R}
$$

Solution

$$
\begin{aligned}
& \ln \mathrm{k}=\ln A-\left(\frac{E_{\mathrm{a}}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}}\right) \\
& \mathrm{E}_{\mathrm{a}}=-\left(-1.50 \times 10^{4} \mathrm{~K}\right)(8.314 \mathrm{~J} / \mathrm{K})=125000 \mathrm{~J}=125 \mathrm{~kJ}
\end{aligned}
$$

11. Activation Energy

Question

Do reactions with larger activation energies have smaller or larger values of k, and as a result, are these reactions slow or fast?

Solution

Large values of activation energy lead to small values of k. These reactions are slower, as we would expect from our understanding of effective collisions and energy relationships. With a large activation energy, only a small fraction of the collisions between molecules lead to products.

12. Activation Energy and Temperature

Question

The rate constant for the following reaction

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$

was measured at two different temperatures: at $\mathrm{T}_{1}=25.0^{\circ} \mathrm{C}, \mathrm{k}_{1}=5.60 \times 10^{-5} \mathrm{~s}^{-1}$, and at $\mathrm{T}_{2}=67.0^{\circ} \mathrm{C}, \mathrm{k}_{2}=9.32 \mathrm{x}$ $10^{-3} \mathrm{~s}^{-1}$. What is the activation energy for this reaction?

Approach

The solution to this problem requires solving for E_{a} using the following equation and substituting in $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{~T}_{1}$, and T_{2} :

$$
\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=-\left(\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\right)\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)
$$

Solution

$$
\begin{aligned}
& \left(\frac{-\mathrm{E}_{\mathrm{a}}}{8.314 \mathrm{~J} / \mathrm{K} \cdot \mathrm{~mol}}\right)\left(\frac{1}{340.0}-\frac{1}{298.0}\right)=\ln \frac{9.32 \times 10^{-3}}{5.60 \times 10^{-5}} \\
& \mathrm{E}_{\mathrm{a}}=1.0 \times 10^{5} \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

CH 222 Chapter Twenty-one Concept Guide

1. Terminology

Alpha Radiation (α):	Alpha particles are positively charged particles ejected at high speed from certain radioactive substances; a helium nucleus
Beta Radiation (β):	Beta particles are electrons that are ejected at high speed from certain radioactive substances
Gamma Radiation (γ):	High-energy electromagnetic radiation
Nuclear Reaction:	A reaction involving one or more atomic nuclei, resulting in a change in the identities of the isotopes
Nucleons:	A nuclear particle, either a neutron or a proton
Radioactive Decay Series:	A series of nuclear reactions by which a radioactive isotopes decays to form a stable isotope
Positrons:	A nuclear particle having the same mass as an electron but a positive charge
Nuclear Binding Energy:	The energy required to separate a nucleus into its individual nucleons
Fission:	The highly exothermic process by which very heavy nuclei split to form lighter nuclei
Fusion:	the state change from solid to liquid
Half-life:	The time required for the concentration of one of the reactants to reach half of its initial value
Activity (A):	A measure of the rate of nuclear decay, the number of disintegrations observed in a sample per unit cell
Nuclear Reactor:	A container in which a controlled nuclear reaction occurs
Nuclear Fusion:	The highly exothermic process by which comparatively light nuclei combine to form heavier nuclei
Plasma:	A gas like phase of matter that consists of charged particles

Röntgen

Rad:

Rem:

Curie (Ci):

A unit of radiation dosage proportional to the amount of ionization produced in air

A unit of radiation dosage which measures the radiation dose to living tissue

A unit of radiation dosage which takes into account the differing intensities of different radiation (alpha, beta and gamma) upon human tissue

A unit of radioactivity which measures activity. One curie represents any radioactive isotope which undergoes 3.7 x 10^{10} disintegrations per second (dps).

2. α Radioactive Decay Series

Problem

1. A radioactive decay series begins with ${ }_{92}^{235} \mathrm{U}$ and ends with ${ }^{207}{ }_{82} \mathrm{~Pb}$. What is the total number of α and β particles emitted in this series?
2. The first three steps of this series involve (in order) α, β, and α emissions. Write the nuclear equations for each of these steps.

Solution

1. Mass declines by 28 mass units (235-207) in this series. Because a decrease in mass can only occur with α emission, we conclude that seven α particles must be emitted. For each α emission, the atomic number must decrease by 2 , so emission of seven α particles causes the atomic number to decrease by 14 . The actual decrease in atomic number is 10 , however ($92-82$). Four β particles cause the atomic number to increase by 4 . This radioactive decay sequence involves loss of seven α and four β particles.
2. \quad Step 1. $\quad{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{90}^{231} \mathrm{Th}+{ }_{2}^{4} \alpha$

Step 2. $\quad{ }_{90}^{231}{ }^{\mathrm{Th}} \rightarrow{ }^{231}{ }_{91} \mathrm{~Pa}+-{ }^{0}{ }_{1} \beta$
Step $3 \quad{ }_{231}{ }_{91} \mathrm{~Pa} \rightarrow{ }^{227}{ }_{89} \mathrm{Ac}+{ }_{2}{ }_{2} \mathrm{\alpha}$

3. Balancing Nuclear Reaction

Problem

Complete the following equations. Give the symbol, mass number, and atomic number of the species indicated by the question mark.

1. ${ }^{37}{ }_{18} \mathrm{Ar}+{ }^{0}{ }_{1} \mathrm{e} \rightarrow$?
2. ${ }^{11} \mathrm{C} \rightarrow{ }_{5}^{11} \mathrm{~B}+$?
3. ${ }_{16}^{35} \mathrm{~S} \rightarrow{ }_{17}^{35} \mathrm{Cl}+$?
4. ${ }^{30}{ }_{15} \mathrm{P} \rightarrow+{ }_{1}{ }_{1} \beta+$?

Solution

1. This is an electron capture reaction. The product has a mass number of $37+0=37$ and an atomic number of $18-1=17$. The symbol for the product is ${ }^{37}{ }_{17} \mathbf{C l}$.
2. This reaction is recognized as positron $\left({ }^{0}{ }_{+1} \boldsymbol{\beta}\right)$ emission. By choosing this particle, the sum of the atomic numbers $(6=5+1)$ and the mass numbers (11) on either side of the reaction are equal.
3. Beta $\left({ }^{0}{ }_{-1} \beta\right)$ emission is required to balance the mass numbers (35) and atomic numbers $(16=17-1)$ on both sides of the equation.
4. The product nucleus is ${ }^{30}{ }_{14}$ Si. This balances the mass numbers (30) and atomic numbers $(15=1+14)$ on both sides of the equation.

4. Binding Energy

Approach

Einstein's equation from the theory of special relativity states that the energy of a body is equivalent to the mass times the speed of light squared

$$
\Delta \mathrm{E}=(\Delta \mathrm{m}) \mathrm{c}^{2}
$$

When comparing nuclear stabilities, scientists generally calculate the binding energy $\left(\mathrm{E}_{\mathrm{b}}\right)$ per nucleon:

where the number of nucleons equals the number of protons plus the number of neutrons in an atom. The binding energy is related to the change in energy by

$$
\Delta \mathrm{E}=-\mathrm{E}_{\mathrm{b}}
$$

Problem

Calculate the binding energy (in $\mathrm{kJ} /$ mole) and the binding energy per nucleon (in $\mathrm{kJ} /$ mole nucleons) for carbon12.

Solution

The following reaction results in formation of carbon-12:

$$
6{ }_{1}^{1} \mathrm{H}+6{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{6}^{12} \mathrm{C}
$$

The mass of ${ }_{1}{ }_{1} \mathrm{H}$ is $1.00783 \mathrm{~g} / \mathrm{mol}$ and the mass of ${ }_{0} \mathrm{n}$ is $1.00867 \mathrm{~g} / \mathrm{mole}$. Carbon- $12,{ }_{6}^{12} \mathrm{C}$, is the standard for the atomic masses in the periodic table, and its mass is defined as exactly $12.000 \mathrm{~g} / \mathrm{mol}$.

To determine binding energy we must first determine the difference in mass of the products and reactants in this reaction:

$$
\begin{aligned}
\Delta \mathrm{m}= & 12.0000000-[(6 \times 1.00783)+(6 \times 1.00867)] \\
& =-9.9000 \times 10^{-2} \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

The binding energy is calculated using $\Delta \mathrm{E}=(\Delta \mathrm{m}) \mathrm{c}^{2}$.
Using the mass in kilograms and the speed of light in meters per second gives an answer for the binding energy in joules:

$$
\begin{aligned}
\mathrm{E}_{\mathrm{b}} & =-(\Delta \mathrm{m}) \mathrm{c}^{2}=-\left(9.9 \times 10^{-5} \mathrm{~kg} / \mathrm{mol}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2} \\
& =8.91 \times 10^{12} \mathrm{~J} / \mathrm{mol}=8.91 \times 10^{9} \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

The binding energy per nucleon is determined by dividing the binding energy by the number of nucleons, which in this instance is 12 .

$=7.43 \times 10^{8} \mathrm{~kJ} / \mathrm{mol}$ nucleons

5. Rate of Radioactive Decay and Half-Life

Approach

Radioactive decay processes always follow first order kinetics. The activity (A) of a nuclear decay process is proportional to the number of radioactive atoms present (N), or

$$
\mathrm{A} / \mathrm{A}_{0}=\mathrm{k}\left(\mathrm{~N} / \mathrm{N}_{0}\right)
$$

where k equals the decay or rate constant. The first order integrated rate law equation relates the period over which a sample is observed (t) to the fraction of radioactive atoms present after that amount of time has passed

$$
\ln \mathrm{N} / \mathrm{N}_{0}=-\mathrm{kt}
$$

Another convenient method to find the decay constant is through the half-life, $\mathrm{t}_{1 / 2}$. Half-life is defined as the time required for the concentration of a reactant to reach half of its initial value (i.e. $\mathrm{N} / \mathrm{N}_{0}=0.5$). An equation to determine the half-life from the rate constant can be derived from the first order integrated rate law; the results can be expressed as follow:

$$
\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}
$$

Example

Some high-level radioactive waste with a half-life $\mathrm{t}_{1 / 2}$ of 200.0 years is stored in underground tanks. What time is required to reduce an activity of 6.50×10^{12} disintegrations per minute (dpm) to a fairly harmless activity of $3.00 \times 10^{-3} \mathrm{dpm}$?

Solution

The data provides the initial activity $\left(\mathrm{A}_{\mathrm{o}}=6.50 \times 10^{12} \mathrm{dpm}\right)$ and the activity after some elapsed time $(\mathrm{A}=3.00 \mathrm{x}$ $10^{-3} \mathrm{dpm}$). To find the elapsed time t , first find k from the half-life:

$$
\mathrm{k}=\underline{0.693} \mathrm{t}_{1 / 2}=\frac{0.693}{200 . \text { years }}=0.00347 \text { year }^{-1}
$$

With k known, the time t can be calculated:

$$
\begin{gathered}
\ln \left[\frac{3.00 \times 10^{-3}}{6.50 \times 10^{12}}=-\left[0.00347 \text { year }^{-1}\right] \mathrm{t}\right. \\
-35.312=\left[0.00347 \text { year }^{-1}\right] \mathrm{t} \\
\mathrm{t}=\frac{-35.312}{-\left[0.00347 \text { year }^{-1}\right]} \\
=1.02 \times 10^{4} \text { years }
\end{gathered}
$$

Note that the time unit t and rate constant k must share common units (i.e. years and years ${ }^{-1}$) for this equation to work properly.

CH 222 Practice Problem Set \#1

This is a practice problem set and not the actual graded problem set that you will turn in for credit.
Answers to each problem can be found at the end of this assignment.

Covering: Chapter Seven and Chapter Guide One

Important Tables and/or Constants: "Bond Enthalpies and Electronegativities" Handout (after problem set \#1) and "Geometry and Polarity Guide" (summary of molecular geometries and polarities Handout in Companion)

1. Give the periodic group number and number of valence electrons for each of the following atoms.
a. O b. B
c. Na
d. Mg
e.F f.S
2. Which of the following elements are capable of forming compounds in which the indicated atom has more than four valence electron pairs?
a. N
b. As
c. C
d. O e. Br f. Be
g. S h. Se
3. Which compound in each of the following pairs should require the higher temperature to melt?
a. KBr or CsBr
b. SrS or CaS
c. LiF or BeO
4. Draw a Lewis structure for each of the following molecules.
a. NF_{3} b. CHClF_{2} c. HOBr d. $\mathrm{CH}_{3} \mathrm{CN}$
5. Draw a Lewis structure for each of the following molecules or ions.
a. BrF_{3}
b. $\mathrm{I}_{3}{ }^{1-}$
c. $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
d. $\mathrm{XeFF}_{3}{ }^{1+}$
6. Draw a Lewis structure for each of the following molecules or ions. Describe the electronpair geometry and the molecular geometry around the central atom.
a. $\mathrm{NH}_{2} \mathrm{Cl} \quad$ b. $\mathrm{Cl}_{2} \mathrm{O}\left(\mathrm{O}\right.$ is the central atom) c. $\mathrm{SCN}^{1-}(\mathrm{C}$ is the central atom) d. HOF
7. Draw a Lewis structure for each of the following molecules or ions. Describe the electronpair geometry and the molecular geometry around the central atom.
a. $\mathrm{ClF}_{2}{ }^{1-}$
b. ClF_{3}
c. $\mathrm{ClF}_{4}{ }^{1-}$
d. ClF_{5}
8. Give approximate values for the indicated bond angles.
a. $\mathrm{O}-\mathrm{S}-\mathrm{O}$ in SO_{2}
b. F-B-F angle in BF_{3}
c. $\mathrm{Cl}-\mathrm{C}-\mathrm{Cl}$ angle in $\mathrm{Cl}_{2} \mathrm{CO}$
9. Determine the formal charge on each atom in the following molecules and ions.
a. $\mathrm{NO}_{2}{ }^{+1} \quad$ b. $\mathrm{NO}_{2}{ }^{1-}$ c. $\mathrm{NF}_{3} \quad$ d. HNO_{3}
10. For each of the bonds below, Tell which atom is the more negatively charged using values of electronegativity in your textbook to support your answer..
a. C-O
b. $\mathrm{P}-\mathrm{Cl}$
c. B-O
d. B-F
11. In the following list of compounds, which bond is the most polar? Which compound(s) are nonpolar? Which atom in CIF is more negatively charged?
a. $\mathrm{H}_{2} \mathrm{O}$
b. NH_{3}
c. CO_{2}
d. CIF
e. CCl_{4}
12. Three resonance structures are possible for dinitrogen monoxide, $\mathrm{N}_{2} \mathrm{O}$.
a. Draw the three resonance structures.
b. Calculate the formal charge on each atom in each resonance structure.
c. Based on formal charges and electronegativity, predict which resonance structure is the most reasonable.
13. Give the bond order for each bond in the following molecules or ions.
a. $\mathrm{CH}_{2} \mathrm{O} \quad$ b. $\mathrm{CO}_{2} \quad$ c. $\mathrm{NO}_{2}{ }^{1+} \quad$ d. CH_{4}
14. The compound oxygen difluoride is quite reactive, giving oxygen and HF when treated with water:

$$
\mathrm{OF}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{HF}(\mathrm{~g}) \quad \Delta H_{\mathrm{rxn}}^{\circ}=-318 \mathrm{~kJ}
$$

Using bond energies, calculate the bond dissociation energy of the $\mathrm{O}-\mathrm{F}$ bond in OF_{2}.
15. Nitric acid, HNO_{3}, has three resonance structures. One of them, however, contributes much less to the resonance hybrid than the other two. Sketch the three resonance structures and assign a formal charge to each atom. Which one of your structures is the least important?
16. Draw the Lewis structure of ammonium nitrate.

Answers to the Practice Problem Set:

1. Answers:
a. O Group 6A 6 valence electrons
b. B Group 3A 3 valence electrons
c. $\mathrm{Na} \quad$ Group 1A $\quad 1$ valence electron
d. $\mathrm{Mg} \quad$ Group 2A 2 valence electrons
e. F Group 7A $\quad 7$ valence electrons
f. S Group 6A 6 valence electrons
2. b. As e. Br g. S h. Se (all third period or lower)
3. a. KBr
b. CaS c. BeO
4. Answers:
a.

c. $\quad \mathrm{H}-\underset{\mathrm{O}}{\ddot{\mathrm{O}}} \underset{-\mathrm{Br}}{\underset{\mathrm{Br}}{ }}$:
b.

d.

5. Answers:
a.

c.
b. $\left[\begin{array}{ccc}\because \mathrm{O} & \cdots & \ddot{\mathrm{I}} \\ \hdashline \cdot & \cdot & \cdot\end{array}\right]$
d.

6. Answers:
a.

electron pair geometry, tetrahedral
molecular geometry, trigonal pyramidal
b. $\quad: \quad \ddot{\mathrm{Cl}}-\ddot{\mathrm{O}}-\ddot{\mathrm{Cl}}$:
electron pair geometry, tetrahedral molecular geometry, bent
c. $[\ddot{\mathrm{S}}=\mathrm{C}=\ddot{\mathrm{N}}]^{-}$
electron pair geometry, linear molecular geometry, linear
d. $\mathrm{H}-\ddot{\mathrm{O}}-\ddot{\mathrm{F}}$:
electron pair geometry, tetrahedral molecular geometry, bent

7. Answers:

a.

c.
molecular geometry, square pyramidal

electron-pair geometry, octahedral
molecular geometry, square planar

electron-pair geometry, octahedral

electron-pair geometry, octahedral
8. a. 120°
b. 120° c. 120°
b. 120° c. 120°
9. Answers:
molecular geometry, linear
b.

electron-pair geometry = trigonal bipyramid
molecular geometry, T-shaped
electron-pair geometry, trigonal bipyramid

d.
c.

a.

$$
\mathrm{O}=6-4-1 / 2(4)=0
$$

$$
N=5-0-1 / 2(8)=1
$$

b.

$\mathrm{O}=6-4-1 / 2(4)=0$
$\mathrm{N}=5-2-1 / 2(6)=0$
$\mathrm{O}=6-6-1 / 2(2)=-1$
10. Answers:
a. $\mathrm{C}-\mathrm{O}$
O
b. $\mathrm{P}-\mathrm{Cl}$
Cl
c. $\mathrm{B}-\mathrm{O}$
O
d. $B-F$
F
$\mathrm{F}=7-6-1 / 2(2)=0$
$\mathrm{N}=5-2-1 / 2(6)=0$
d.

$$
\begin{aligned}
& \mathrm{H}=1-0-1 / 2(2)=0 \\
& \mathrm{O}=6-4-1 / 2(4)=0 \\
& \mathrm{~N}=5-0-1 / 2(8)=1 \\
& \mathrm{O}=6-4-1 / 2(4)=0 \\
& \mathrm{O}=6-6-1 / 2(2)=-1
\end{aligned}
$$

11. Answers:

Molecule
$\Delta \chi$ for bond
$\mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{O}-\mathrm{H}=3.5-2.1=1.4
$$

$\mathrm{NH}_{3} \quad \mathrm{~N}-\mathrm{H}=3.0-2.1=0.9$
$\mathrm{CO}_{2} \quad \mathrm{O}-\mathrm{C}=3.5-2.5=1.0$
$\mathrm{ClF} \quad \mathrm{F}-\mathrm{Cl}=4.0-3.0=1.0$
CCl_{4}

$$
\mathrm{Cl}-\mathrm{C}=3.0-2.5=0.5
$$

(i) The bonds are most polar in $\mathrm{H}_{2} \mathrm{O}$ (biggest $\Delta \chi$)
(ii) CO_{2} and CCl_{4} are nonpolar molecules.
(iii) The F atom in ClF is more negatively charged.

12. Answers:

a.

c. The first resonance structure is most reasonable (the most electronegative element, oxygen, has a negative formal charge).

13.Answers:

a. $\mathrm{H}_{2} \mathrm{CO}$ two carbon-hydrogen single bonds bond order $=1$ one carbon-oxygen double bond bond order $=2$
b. CO_{2} two carbon-oxygen double bonds bond order $=2$
c. $\mathrm{NO}_{2}{ }^{+}$two nitrogen-oxygen double bonds bond order $=2$
d. CH_{4} four carbon-hydrogen single bonds bond order $=1$

$14.195 \mathrm{~kJ} / \mathrm{mol}$

15.Answers:

The third resonance structure is the least important since it has a positive formal charge on one of the oxygen atoms.
16.

CH 222 Practice Problem Set \#2

This is a practice problem set and not the actual graded problem set that you will turn in for credit.
Answers to each problem can be found at the end of this assignment.

Covering: Chapter Eight and Chapter Guide Two

Important Tables and/or Constants: "MO Diagram for $\mathbf{B}_{2}, \mathbf{C}_{2}$, and \mathbf{N}_{2} " (Handout), "MO Diagram for $\mathbf{O}_{2}, \mathbf{F}_{2}$, and $\mathbf{N e}_{2}$ " (Handout), "Geometry and Polarity Guide" (Handout)

1. Draw the Lewis structure for chloroform, CHCl_{3}. What are its electron-pair and molecular geometries? What orbitals on C, H, and Cl overlap to form bonds involving these elements?
2. Specify the electron-pair and molecular geometry for each of the following. Describe the hybrid orbital set used by the central atom in each molecule or ion.
a. $\mathrm{BBr}_{3} \quad$ b. $\mathrm{CO}_{2} \quad$ c. $\mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ d. $\mathrm{CO}_{3}{ }^{2-}$
3. Draw the Lewis structure and then specify the electron- pair and molecular geometries for each of the following molecules or ions. Identify the hybridization of the central atom.
a. $\mathrm{SiF}_{6}{ }^{2-}$
b. $\mathrm{SeF}_{4} \quad$ c. $\mathrm{ClF}_{2}{ }^{1-}$
d. XeF_{4}
4. The hydrogen molecular ion, $\mathrm{H}_{2}{ }^{+}$, can be detected spectroscopically. Write the electron configuration of the ion in molecular orbital terms. What is the bond order of the ion? Is the hydrogen-hydrogen bond stronger or weaker in $\mathrm{H}_{2}{ }^{+}$than in H_{2} ?
5. Calcium carbide, CaC_{2}, contains the acetylide ion, $\mathrm{C}_{2}{ }^{2-}$. Sketch the molecular orbital energy level diagram for the ion. How many net σ and π bonds does the ion have? What is the carbon-carbon bond order? How has the bond order changed on adding electrons to C_{2} to obtain $\mathrm{C}_{2}{ }^{2-}$? Is the $\mathrm{C}_{2}{ }^{2-}$ ion paramagnetic?
6. The simple valence bond picture of O_{2} does not agree with the molecular orbital view. Compare these two theories with regard to the peroxide ion, $\mathrm{O}_{2}{ }^{2-}$.
(a) Draw an electron dot structure for $\mathrm{O}_{2}{ }^{2-}$. What is the bond order of the ion?
(b) Write the molecular orbital electron configuration for $\mathrm{O}_{2}{ }^{2-}$. What is the bond order based on this approach?
(c) Do the two theories of bonding lead to the same magnetic character and bond order for $\mathrm{O}_{2}{ }^{2-}$?
7. Which of the homonuclear, diatomic molecules of the second-period elements (from Li_{2} to Ne_{2}) are paramagnetic? Which have a bond order of 1 ? Which have a bond order of 2 ? Which diatomic molecule has the highest bond order?
8. Consider the three fluorides $\mathrm{BF}_{4}^{-1}, \mathrm{SiF}_{4}$, and SF_{4}.
a. Identify a molecule that is isoelectronic with $\mathrm{BF}_{4}{ }^{1-}$.
b. Are SiF_{4} and SF_{4} isoelectronic?
c. What is the hybridization of the central atom in each of these species?
9. When is it desirable to use MO theory rather than valence bond theory?
10. Antimony pentafluoride reacts with HF according to the equation:

$$
2 \mathrm{HF}+\mathrm{SbF}_{5} \rightarrow\left[\mathrm{H}_{2} \mathrm{~F}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}
$$

a. What is the hybridization of the Sb atom in the reactant and product?
b. Draw a Lewis structure for $\mathrm{H}_{2} \mathrm{~F}$. What is the geometry of $\mathrm{H}_{2} \mathrm{~F}+$? What is the hybridization of F in $\mathrm{H}_{2} \mathrm{~F}+$?
11. The CN molecule has been found in interstellar space. Using the appropriate molecular orbital energy level diagram, answer the following questions.
a. What is the highest energy occupied molecular orbital (HOMO) to which an electron (or electrons) is (are) assigned?
b. What is the bond order of the molecule?
c. How many net σ bonds are there? How many net π bonds?
d. Is the molecule paramagnetic or diamagnetic?
12. Draw the Lewis structure for ClF_{3}. What are its electron- pair and molecular geometries? What is the hybridization of the chlorine atom? What orbitals on Cl and F overlap to form bonds between these elements?

Answers to the Practice Problem Set:

1. The electron-pair and molecular geometries are tetrahedral. The C atom is $s p^{3}$ hybridized. Three of these hybrid orbitals each overlap with a chlorine $3 p$ orbital to form three $\mathrm{C}-\mathrm{Cl}$ sigma bonds. One hybrid orbital overlaps with a hydrogen $1 s$ orbital to from a $\mathrm{C}-\mathrm{H}$ sigma bond.
2. Answers:
(a) BBr_{3} trigonal planar trigonal planar $s p^{2}$
(b) CO_{2} linear linear $s p$
(c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ tetrahedral tetrahedral $s p^{3}$
(d) $\mathrm{CO}_{3}{ }^{2-}$ trigonal planar trigonal planar $s p^{2}$
3. a) octahedral, octahedral, $s p^{3} d^{2} \quad$ b) trigonal bipyramid, see-saw, $s p^{3} d \quad$ c) trigonal bipyramid, linear, $s p^{3} d \quad$ d) octahedral, square planar, $s p^{3} d^{2}$
4. $\mathrm{H}_{2}{ }^{+}:\left(\sigma_{1 s}\right)^{1}$ Bond order $=1 / 2(1-0)=1 / 2$, weaker $\mathrm{H}-\mathrm{H}$ bond $\mathrm{H}_{2}:\left(\sigma_{1 s}\right)^{2}$ Bond order $=1 / 2(2$ $-0)=1$, stronger $\mathrm{H}-\mathrm{H}$ bond
5. $\mathrm{C}_{2}{ }^{2-}:\left(\sigma_{1 s}\right)^{2}\left(\sigma_{1 s}^{*}\right)^{2}\left(\sigma_{2 s}\right)^{2}\left(\sigma^{*}{ }_{2 s}\right)^{2}\left(\pi_{2 p}\right)^{4}\left(\sigma_{2 p}\right)^{2} \quad \mathrm{C}_{2}{ }^{2-}$ ion has a bond order of $1 / 2(8-2)=3$ (one σ bond and two π bonds). The C_{2} molecule has two fewer electrons and a bond order of $1 / 2(6-$ $2)=2$. The $\mathrm{C}_{2}{ }^{2-}$ ion is diamagnetic.
6. (a) bond order $=1$ (b) [core electrons] $\left(\sigma_{2 s}\right)^{2}\left(\sigma^{*}{ }_{2 s}\right)^{2}\left(\sigma_{2 p}\right)^{2}\left(\pi_{2 p}\right)^{4}\left(\pi^{*}{ }_{2 p}\right)^{4}$ bond order $=1 / 2(8-6)$ $=1$ (c) The theories agree here.
7. B_{2} and O_{2} are paramagnetic, $\mathrm{Li}_{2}, \mathrm{~B}_{2}$, and F_{2} have a bond order of $1, \mathrm{C}_{2}$ and O_{2} have a bond order of 2, and N_{2} has the highest bond order, 3 .
8. (a) CF_{4} is isoelectronic with $\mathrm{BF}_{4}{ }^{-}$(32 valence electrons)
(b) $\quad \mathrm{SiF}_{4}$ (32 valence electrons) and SF_{4} (34 valence electrons) are not isoelectronic
(c) $\quad \mathrm{BF}_{4}$: $: s p^{3} \quad \mathrm{SiF}_{4}: s p^{3} \quad \mathrm{SF}_{4}: s p^{3} d$
9. Molecular orbital theory correctly predicts the electronic structures for odd-electron molecules and other molecules such as O_{2} that do not follow the electron-pairing assumptions of the Lewis dot structure approach.
10. (a) $s p^{3} d$ in $\mathrm{SbF}_{5}, s p^{3} d^{2}$ in $\mathrm{SbF}_{6}{ }^{-}$
(b) $[\mathrm{H}-\stackrel{-}{\mathrm{F}}-\mathrm{H}]^{+} \quad$ The geometry of $\mathrm{H}_{2} \mathrm{~F}^{+}$is bent, and the F atom is $s p^{3}$ hybridized.
11. CN [core electrons] $\left(\sigma_{2 s}\right)^{2}\left(\sigma^{*}{ }_{2 s}\right)^{2}\left(\pi_{2 p}\right)^{4}\left(\sigma_{2 p}\right)^{1}$
(a) The HOMO is $\sigma_{2 p}$
(b) Bond order $=1 / 2(7-2)=21 / 2$
(c) One-half net σ bond and two net π bonds
(d) paramagnetic

The electron-pair geometry is trigonal bipyramidal, and the molecular geometry is T-shaped. The Cl atom is $s p^{3} d$ hybridized. Three of these hybrid orbitals each overlap a fluorine $2 p$ orbital to form three $\mathrm{Cl}-\mathrm{F}$ sigma bonds.

CH 222 Practice Problem Set \#3

This is a practice problem set and not the actual graded problem set that you will turn in for credit. Answers to each problem can be found at the end of this assignment.

Covering: Chapter Twenty and Chapter Guide Three

Important Tables and/or Constants: "Organic Chemistry Nomenclature Guide" (Handout), "Organic Chemistry Lab" (Handout in Lab Packet)

1. What is the name of the straight (unbranched) chain alkane with the formula $\mathrm{C}_{7} \mathrm{H}_{16}$? What is the molecular formula for an alkane with 9 carbon atoms?
2. Which of the following is an alkane? Which could be a cycloalkane?
a. $\mathrm{C}_{2} \mathrm{H}_{4}$
b. $\mathrm{C}_{5} \mathrm{H}_{10}$
c. $\mathrm{C}_{14} \mathrm{H}_{30}$
d. $\mathrm{C}_{7} \mathrm{H}_{8}$
3. Draw the structure of each of the following compounds: a. 2,3-dimethylhexane b. 3-ethylheptane
4. Draw structures for the cis and trans isomers of 4-methyl- 2-hexene.
5. Give the systematic name or structure for the following alcohols, amines and ethers.
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
c. ethylamine
d. dipropylamine
e. dibutyl ether
f. 1-methoxypropane
6. Draw structural formulas for a. 2-pentanone, b. hexanal, and c. pentanoic acid.
7. Draw structural formulas for the following compounds: a. 1,3-dichlorobenzene
b. 1-bromo-4-methylbenzene
8. Draw structural formulas for the following acids and esters:
a. 2-methylhexanoic acid
b. pentyl butanoate (which has the odor of apricots)
c. octyl acetate (which has the odor of oranges)
9. Aldehydes and carboxylic acids are formed by oxidation of primary alcohols, and ketones are formed when secondary alcohols are oxidized. Typical oxidizing agents include $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ or KMnO_{4}. Give the name and formula for the alcohol that, when oxidized, gives the following products:
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$
b. 2-hexanone
10. Ketones can be reduced with LiAlH_{4} or NaBH_{4} to create alcohols. Describe how to prepare 2-pentanol beginning with the appropriate ketone.
11. Draw the structure and give the systematic name for the products of the following reactions:
a. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{Br}_{2} \rightarrow$
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{H}_{2} \rightarrow$
12. The compound 2-bromobutane is a product of addition of HBr to an alkene. Identify the alkene and give its name.
13. Draw structural formulas for all the alcohols with the formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$. Give the systematic name of each.
14. Draw structural formulas for all the primary amines with the formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$. Name them.
15. Give structural formulas and systematic names for the three structural isomers of trimethylbenzene, $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{3}$.

Answers to the Practice Problem Set:

1. n-heptane; $\mathrm{C}_{9} \mathrm{H}_{20}$
2. c. $\mathrm{C}_{14} \mathrm{H}_{30}$ is an alkane b. $\mathrm{C}_{5} \mathrm{H}_{10}$ could be a cycloalkane
3. Answers:
(a)

(b)

4. Answers:

trans-4-methyl-2-hexene
cis-4-methyl-2-hexene
5. Answers:
a. 1-propanol
b. 1-butanol
c. $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$

d. $\quad\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2} \mathrm{NH}$

e. $\quad \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OC}_{4} \mathrm{H}_{9}$
f. $\quad \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
6. Answers:
a. $\mathrm{CH}_{3} \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
b.

c.

7. Answers:
a.

b.

8. Answers:
a.

b.

c. $\stackrel{\stackrel{\mathrm{O}}{\mathrm{I}} \mathrm{I}}{\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}}$
9. Answers:
a. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$

1-butanol
b. $\stackrel{\stackrel{\mathrm{OH}}{\mathrm{I}}}{\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}}$ 2-hexanol
10. Reduction of 2-pentanone with LiAlH_{4} or NaBH_{4}
11. Answers:
a. $\stackrel{\stackrel{\mathrm{Br}}{\mathrm{Br}}}{\mathrm{H}} \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{Br} \quad$ 1,2-dibromopropane
b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ pentane
12. Using 1-butene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}+\mathrm{HBr} \rightarrow \mathrm{CH}_{3} \mathrm{CHBrCH}_{2} \mathrm{CH}_{3}$
13. Answers:

14. Answers:

15. Answers:

1,2,3-trimethylbenzene

1,2,4-trimethylbenzene

1,3,5-trimethylbenzene

CH 222 Practice Problem Set \#4

This is a practice problem set and not the actual graded problem set that you will turn in for credit. Answers to each problem can be found at the end of this assignment.

Covering: Chapter Nine, Chapter Ten and Chapter Guide Four

Important Tables and/or Constants: $\mathbf{R}=\mathbf{0 . 0 8 2 0 5 7} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}, \mathbf{7 6 0} \mathbf{~ m m ~ H g}=\mathbf{1} \mathbf{~ a t m}=\mathbf{1 0 1 3} \mathbf{~ m b a r , ~} \mathbf{1} \mathbf{~ m b a r}=\mathbf{1}$ $\mathbf{h P a}, 1$ torr $=1 \mathbf{~ m m ~ H g}$

1. A sample of nitrogen gas has a pressure of 67.5 mm Hg in a $500 . \mathrm{mL}$ flask. What is the pressure of this gas sample when it is transferred to a 125 mL flask at the same temperature?
2. You have 3.5 L of NO at a temperature of $22.0^{\circ} \mathrm{C}$. What volume would the NO occupy at 37 ${ }^{\circ} \mathrm{C}$? (Assume the pressure is constant.)
3. One of the cylinders of an automobile engine has a volume of $400 . \mathrm{cm}^{3}$. The engine takes in air at a pressure of 1.00 atm and a temperature of $15^{\circ} \mathrm{C}$ and compresses the air to a volume of $50.0 \mathrm{~cm}^{3}$ at $77{ }^{\circ} \mathrm{C}$. What is the final pressure of the gas in the cylinder?
4. A 1.25 g sample of CO_{2} is contained in a $750 . \mathrm{mL}$ flask at $22.5^{\circ} \mathrm{C}$. What is the pressure of the gas?
5. A gaseous organofluorine compound has a density of $0.355 \mathrm{~g} / \mathrm{L}$ at $17{ }^{\circ} \mathrm{C}$ and 189 mm Hg . What is the molar mass of the compound?
6. Acetaldehyde is a common liquid compound that vaporizes readily. Determine the molar mass of acetaldehyde from the following data:
Sample mass $=0.107 \mathrm{~g} \quad$ Volume of gas $=125 \mathrm{~mL}$
Temperature $=0.0^{\circ} \mathrm{C} \quad$ Pressure $=331 \mathrm{~mm} \mathrm{Hg}$
7. Iron reacts with hydrochloric acid to produce iron(II) chloride and hydrogen gas:

$$
\mathrm{Fe}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

The H_{2} gas from the reaction of 2.2 g of iron with excess acid is collected in a 10.0-L flask at $25^{\circ} \mathrm{C}$. What is the pressure of the H_{2} gas in this flask?
8. Sodium azide, the explosive compound in automobile air bags, decomposes according to the following equation:

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

What mass of sodium azide is required to provide the nitrogen needed to inflate a 75.0 L bag to a pressure of 1.3 atm at $25^{\circ} \mathrm{C}$?
9. What is the total pressure in atmospheres of a gas mixture that contains 1.0 g of H_{2} and 8.0 g of Ar in a 3.0 L container at $27^{\circ} \mathrm{C}$? What are the partial pressures of the two gases?
10. You have two flasks of equal volume. Flask A contains H_{2} at $0{ }^{\circ} \mathrm{C}$ and 1 atm pressure. Flask B contains CO_{2} gas at $25^{\circ} \mathrm{C}$ and 2 atm pressure. Compare these two gases with respect to each of the following:
a. average kinetic energy per molecule
b. average molecular velocity
c. number of molecules
d. mass of gas
11. Place the following gases in order of increasing average molecular speed at $25^{\circ} \mathrm{C}$: $\mathrm{Ar}, \mathrm{CH}_{4}$, $\mathrm{N}_{2}, \mathrm{CH}_{2} \mathrm{~F}_{2}$.
12. There are five compounds in the family of sulfur-fluorine compounds with the general formula $S_{x} F_{y}$. One of these compounds is $25.23 \% \mathrm{~S}$. If you place 0.0955 g of the compound in a 89 mL flask at $45^{\circ} \mathrm{C}$, the pressure of the gas is 83.8 mm Hg . What is the molecular formula of $\mathrm{S}_{\mathrm{x}} \mathrm{F}_{\mathrm{y}}$?
13. A miniature volcano can be made in the laboratory with ammonium dichromate. When ignited, it decomposes in a fiery display.
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(\mathrm{~s}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$
If 0.95 g of ammonium dichromate is used, and if the gases from this reaction are trapped in a 15.0 L flask at $23^{\circ} \mathrm{C}$, what is the total pressure of the gas in the flask? What are the partial pressures of N_{2} and $\mathrm{H}_{2} \mathrm{O}$?
14. What type of intermolecular force must be overcome in converting each of the following from a liquid to a gas?
a. liquid $\mathrm{O}_{2} \quad$ b. $\mathrm{H}_{2} \mathrm{O} \quad$ c. $\mathrm{CH}_{3} \mathrm{I} \quad$ d. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
15. Rank the following atoms or molecules in order of increasing strength of intermolecular forces in the pure substance. Which exist as gases at $25^{\circ} \mathrm{C}$ and 1 atm ? a. $\mathrm{Ne} \quad$ b. $\mathrm{CH}_{4} \quad$ c. $\mathrm{CO} \quad$ d. CCl_{4}
16. In each pair of ionic compounds, which is more likely to have the greater heat of hydration? Briefly explain your reasoning in each case.
a. LiCl or CsCl
b. NaNO_{3} or $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
c. RbCl or NiCl_{2}
17. Ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, has a vapor pressure of 59 mm Hg at $25^{\circ} \mathrm{C}$. What quantity of heat energy is required to evaporate 125 mL of the alcohol at $25^{\circ} \mathrm{C}$? The enthalpy of vaporization of the alcohol at $25^{\circ} \mathrm{C}$ is $42.32 \mathrm{~kJ} / \mathrm{mol}$. The density of the liquid is $0.7849 \mathrm{~g} / \mathrm{mL}$.

Answers to the Practice Problem Set:

1. $270 . \mathrm{mm} \mathrm{Hg}$
2. 3.7 L
3. 9.72 atm
4. 0.919 atm
5. $34.0 \mathrm{~g} / \mathrm{mol}$
6. $44.1 \mathrm{~g} / \mathrm{mol}$
7. 0.096 atm
8. 170 g
9. $5.7 \mathrm{~atm} ; 4.1 \mathrm{~atm}\left(\mathrm{H}_{2}\right), 1.6 \mathrm{~atm}(\mathrm{Ar})$
10. $\mathrm{a} . \mathrm{B}>\mathrm{A} \quad$ b. $\mathrm{A}>\mathrm{B} \quad$ c. $\mathrm{B}>\mathrm{A} \quad$ d. $\mathrm{B}>\mathrm{A}$
11. $\mathrm{CH}_{2} \mathrm{~F}_{2}<\mathrm{Ar}<\mathrm{N}_{2}<\mathrm{CH}_{4}$
12. $\mathrm{S}_{2} \mathrm{~F}_{10}$
$13.0 .031 \mathrm{~atm} ; 0.0061 \mathrm{~atm}\left(\mathrm{~N}_{2}\right), 0.024 \mathrm{~atm}\left(\mathrm{H}_{2} \mathrm{O}\right)$

CH 222 Practice Problem Set \#5

This is a practice problem set and not the actual graded problem set that you will turn in for credit. Answers to each problem can be found at the end of this assignment.

Covering: Chapter Ten, Chapter Eleven and Chapter Guide Five

Important Tables and/or Constants: $\mathbf{R}=\mathbf{8 . 3 1 4 5} \mathbf{~ J ~ m o l}^{\mathbf{- 1}} \mathbf{K}^{\mathbf{- 1}}$, "Cubic Unit Cells Guide" (Handout), "Solids" (Lab)

1. Vapor pressure curves for CS_{2} (carbon disulfide) and $\mathrm{CH}_{3} \mathrm{NO}_{2}$ (nitromethane) are drawn here.
a. What are the approximate vapor pressures of CS_{2} and $\mathrm{CH}_{3} \mathrm{NO}_{2}$ at $40^{\circ} \mathrm{C}$?
b. What types of intermolecular forces exist in the liquid phase of each compound?
c. What is the normal boiling point of CS_{2} ? Of $\mathrm{CH}_{3} \mathrm{NO}_{2}$?
d. At what temperature does CS_{2} have a vapor pressure of 600 mm Hg ?
e. At what temperature does $\mathrm{CH}_{3} \mathrm{NO}_{2}$ have a vapor pressure of 60 mm Hg ?

2. Benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, is an organic liquid that freezes at $5.5^{\circ} \mathrm{C}$ to form beautiful, feather-like crystals. How much heat is evolved when 15.5 g of benzene freezes at $5.5^{\circ} \mathrm{C}$? (The heat of fusion of benzene is $9.95 \mathrm{~kJ} / \mathrm{mol}$.) If the 15.5 g sample is remelted, again at $5.5^{\circ} \mathrm{C}$, what quantity of heat is required to convert it to a liquid?
3. Liquid ammonia, $\mathrm{NH}_{3}(1)$, was once used in home refrigerators as the heat transfer fluid. The specific heat of the liquid is $4.7 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$ and that of the vapor is $2.2 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$. The enthalpy of vaporization is $23.33 \mathrm{~kJ} / \mathrm{mol}$ at the boiling point. If you heat 12 kg of liquid ammonia from $-50.0^{\circ} \mathrm{C}$ to its boiling point of $-33.3^{\circ} \mathrm{C}$, allow it to evaporate, and then continue warming to $0.0^{\circ} \mathrm{C}$, how much heat energy must you supply?

Pressure-Temperature phase diagram for CO_{2}.
4. Use the phase diagram for carbon dioxide given above to answer the following questions:
a. In what phase is CO_{2} found at room temperature and 1.0 atm pressure?
b. If the pressure exerted on a sample is 0.75 atm and the temperature is $-114{ }^{\circ} \mathrm{C}$, in what phase does the substance exist?
c. If you measure the vapor pressure of a liquid sample and find it to be about 10 atm , what is the temperature of the liquid phase?
d. What is the vapor pressure of the solid at $-120^{\circ} \mathrm{C}$?
e. Which is the denser phase, solid or liquid? Explain.
5. The very dense metal iridium has a face-centered cubic unit cell and a density of $22.56 \mathrm{~g} /$ cm^{3}. Use this information to calculate the radius of an atom of the element.
6. Use the vapor pressure data (below) for octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, and the Clausius-Clapeyron equation to calculate the molar enthalpy of vaporization of octane and its normal boiling point.

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Vapor Pressure $(\mathbf{m m ~ H g})$
25	13.6
50	45.3
75	127.2
100	310.8

7. Liquid methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is placed in a glass tube. Predict whether the meniscus of the liquid is concave or convex.
8. Rationalize the observation that $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, 1-propanol, has a boiling point of $97.2^{\circ} \mathrm{C}$, whereas a compound with the same empirical formula, methyl ethyl ether $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}\right)$ boils at $7.4^{\circ} \mathrm{C}$.
9. Fill in the blanks in the table. All solutions are aqueous.

Compound	Molality	Weight Percent	Mole Fraction
NaI	0.15	-	-
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	-	5	-
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	-	-	0.0027

10. Hydrochloric acid is sold as a concentrated aqueous solution. If the molarity of commercial HCl is 12.0 and its density is $1.18 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the following:
a. the molality of the solution
b. the weight percent of HCl in the solution
11. The average lithium ion concentration in sea water is 0.18 ppm . What is the molality of Li^{+}in sea water?
12. An unopened soda can has an aqueous CO_{2} concentration of 0.0506 M at $25^{\circ} \mathrm{C}$. What is the pressure of CO_{2} gas in the can? $\left(\mathrm{k}_{\mathrm{H}}=4.48 \times 10^{-5} \mathrm{M} / \mathrm{mm} \mathrm{Hg}\right)$
13. Pure iodine (105 g) is dissolved in 325 g of CCl_{4} at $65^{\circ} \mathrm{C}$. Given that the vapor pressure of CCl_{4} at this temperature is 531 mm Hg , what is the vapor pressure of the $\mathrm{CCl}_{4}-\mathrm{I}_{2}$ solution at $65^{\circ} \mathrm{C}$? (Assume that I_{2} does not contribute to the vapor pressure.)
14. What is the boiling point of a solution composed of $15.0 \mathrm{~g} \mathrm{of} \mathrm{CHCl}_{3}$ (which boils at 61.70 ${ }^{\circ} \mathrm{C}$) and 0.515 g of the nonvolatile solute acenaphthene, $\mathrm{C}_{12} \mathrm{H}_{10}$, a component of coal tar? ($K_{\mathrm{bp}}=3.63^{\circ} \mathrm{C} / \mathrm{m}$)
15. Assume a bottle of wine consists of an 11 weight percent solution of ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ in water. If the bottle of wine is chilled to $-20^{\circ} \mathrm{C}$, will the solution begin to freeze? ($K_{\mathrm{fp}}=1.86$ ${ }^{\circ} \mathrm{C} / \mathrm{m}$)
16. Anthracene, a hydrocarbon obtained from coal, has an empirical formula of $\mathrm{C}_{7} \mathrm{H}_{5}$. To find its molecular formula you dissolve 0.500 g in 30.0 g of benzene ($K_{\mathrm{bp}}=2.53^{\circ} \mathrm{C} / \mathrm{m}$). The boiling point of the pure benzene is $80.10^{\circ} \mathrm{C}$, whereas the solution has a boiling point of $80.34^{\circ} \mathrm{C}$. What is the molecular formula of anthracene?
17. Phenylcarbinol is used in nasal sprays as a preservative. A solution of 0.52 g of the compound in 25.0 g of water $\left(K_{\mathrm{fp}}=-1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$ has a melting point of $-0.36^{\circ} \mathrm{C}$. What is the molar mass of phenylcarbinol?
18. An aqueous solution containing 1.00 g of bovine insulin (a protein, not ionized) per liter has an osmotic pressure of 3.1 mm Hg at $25^{\circ} \mathrm{C}$. Calculate the molar mass of bovine insulin.

Answers to the Practice Problem Set:

1. Answers:
a. $\mathrm{CS}_{2}: 620 \mathrm{~mm} \mathrm{Hg} \quad \mathrm{CH}_{3} \mathrm{NO}_{2}: 80 \mathrm{~mm} \mathrm{Hg}$
b. induced dipole/induced dipole; dipole-dipole
c. $46^{\circ} \mathrm{C} ; 100^{\circ} \mathrm{C}$
d. $39^{\circ} \mathrm{C}$
e. $34^{\circ} \mathrm{C}$
2. -1.97 kJ evolved. +1.97 kJ absorbed for solid $->$ liquid.
3. $q_{\text {total }}=9.4 \times 10^{2} \mathrm{~kJ}+1.6 \times 10^{4} \mathrm{~kJ}+8.8 \times 10^{2} \mathrm{~kJ}=\mathbf{1 . 8} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{~ k J}$
4. a. gas b. solid c. between -40 and -10 d. 0.01 atm e. solid denser than liquid
5. 135.7 pm
6. $\Delta H_{\text {vap }}=38.6 \mathrm{~kJ} / \mathrm{mol}$, and $\mathrm{T}=128^{\circ} \mathrm{C}$
7. The meniscus is concave since there are adhesive forces between the methanol and the silicate of the glass.
8. 1-propanol has stronger intermolecular forces (hydrogen bonding) than methyl ethyl ether (dipole-dipole) zinc
9. Answers:

Compound	Molality	Weight percent	Mole fraction
NaI	0.15	2.2	0.0027
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	1.1	5.0	0.020
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	0.15	4.9	0.0027

10.a. 16.2 m b. 37.1%
$11.2 .6 \times 10^{-5} \mathrm{~m}$
12. 1130 mm Hg
13. 444 mm Hg
14. $62.51^{\circ} \mathrm{C}$
15. Solution will freeze beginning at $-5.0^{\circ} \mathrm{C}$
16. $\mathrm{C}_{14} \mathrm{H}_{10}$
17. $110 \mathrm{~g} / \mathrm{mol}$
$18.6 .0 \times 10^{3} \mathrm{~g} / \mathrm{mol}$

CH 222 Practice Problem Set \#6

This is a practice problem set and not the actual graded problem set that you will turn in for credit.
Answers to each problem can be found at the end of this assignment.

Covering: Chapter Twelve, Chapter Twenty-one and Chapter Guide Six

Important Tables and/or Constants: $\mathbf{R}=\mathbf{8 . 3 1 4 5} \mathbf{~ J ~ m o l}^{-\mathbf{1}} \mathbf{K}^{-1}$, "Reaction Mechanisms Guide" (Handout)

1. Give the relative rates of disappearance of reactants and formation of products for each of the following reactions.
a. $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$
b. $2 \mathrm{HOF}(\mathrm{g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
2. In the reaction $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$, the rate of formation of O_{2} is $1.5 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$. What is the rate of decomposition of O_{3} ?
3. The reaction between ozone and nitrogen dioxide at 231 K is first order in both NO_{2} and O_{3} :

$$
2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

a. Write the rate equation for the reaction.
b. If the concentration of NO_{2} is tripled, what is the change in the reaction rate?
c. What is the effect on reaction rate if the concentration of O_{3} is halved?
4. The data in the table are for the reaction of NO and O_{2} at 660 K .
$\mathbf{2} \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{2} \mathrm{NO}_{2}(\mathrm{~g})$
Reactant Concentration (M)

$\mathbf{N O}]$	$\left[\mathbf{O}_{\mathbf{2}}\right]$	Rate of Disappearance of $\mathbf{N O}\left(\mathbf{M ~ s}^{\mathbf{- 1}}\right)$
0.01	0.01	2.5×10^{-5}
0.02	0.01	1.0×10^{-4}
0.01	0.02	5.0×10^{-5}

a. Determine the order of the reaction for each reactant.
b. Write the rate equation for the reaction.
c. Calculate the rate constant.
d. Calculate the rate (in $\mathrm{mol} / \mathrm{L} \cdot \mathrm{s}$) at the instant when $[\mathrm{NO}]=0.015 \mathrm{M}$ and $\left[\mathrm{O}_{2}\right]=0.0050 \mathrm{M}$ e. At the instant when NO is reacting at the rate $1.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$, what is the rate at which O_{2} is reacting and NO_{2} is forming?
5. The rate equation for the hydrolysis of sucrose to fructose and glucose:

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})
$$

is " $-\Delta$ [sucrose $] / \Delta t=\mathrm{k}\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right]$." After 2.57 h at $27^{\circ} \mathrm{C}$, the sucrose concentration decreased from 0.0146 M to 0.0132 M . Find the rate constant, k.
6. Ammonium cyanate, $\mathrm{NH}_{4} \mathrm{NCO}$, rearranges in water to give urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$:

$$
\mathrm{NH}_{4} \mathrm{NCO}(\mathrm{aq}) \rightarrow\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}(\mathrm{aq})
$$

The rate equation for this process is "Rate $=k\left[\mathrm{NH}_{4} \mathrm{NCO}\right]^{2}$ " where $k=0.0113 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{min}$. If the original concentration of $\mathrm{NH}_{4} \mathrm{NCO}$ in solution is $0.229 \mathrm{~mol} / \mathrm{L}$, how long will it take for the concentration to decrease to $0.180 \mathrm{~mol} / \mathrm{L}$?
7. Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$, decomposes to $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $\mathrm{O}_{2}(\mathrm{~g})$ in a reaction that is first order in $\mathrm{H}_{2} \mathrm{O}_{2}$ and has a rate constant $k=1.06 \times 10^{-3} \mathrm{~min}^{-1}$.
a. How long will it take for 15% of a sample of $\mathrm{H}_{2} \mathrm{O}_{2}$ to decompose?
b. How long will it take for 85% of the sample to decompose?
8. The compound $\mathrm{Xe}(\mathrm{CF} 3)_{2}$ decomposes in a first-order reaction to elemental Xe with a halflife of 30 . min. If you place 7.50 mg of $\mathrm{Xe}\left(\mathrm{CF}_{3}\right)_{2}$ in a flask, how long must you wait until only 0.25 mg of $\mathrm{Xe}\left(\mathrm{CF}_{3}\right)_{2}$ remains?
9. Gaseous NO_{2} decomposes at 573 K :

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

The concentration of NO_{2} was measured as a function of time. A graph of $1 /\left[\mathrm{NO}_{2}\right]$ versus time gives a straight line with a slope of $1.1 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}$. What is the rate law for this reaction? What is the rate constant k ?
10. Common sugar, sucrose, breaks down in dilute acid solution to form glucose and fructose. Both products have the same formula, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})
$$

The rate of this reaction has been studied in acid solution, and the data in the table were obtained.

Time (min)	$\left[\mathbf{C}_{12} \mathbf{H}_{\mathbf{2 2}} \mathbf{O}_{\mathbf{1 1}}\right](\mathbf{M})$
0	0.316
39	0.274
80	0.238
140	0.19
210	0.146

a. Plot \ln [sucrose] versus time and $1 /[$ sucrose] versus time. What is the order of the reaction?
b. Write the rate equation for the reaction, and calculate the rate constant, k.
c. Estimate the concentration of sucrose after 175 min .
11. Answer the following questions based on the reaction coordinate diagram shown to the right.
a. Is the reaction exothermic or endothermic?
b. Does this reaction occur in more than one step? If so, how many?
12. What is the rate law for each of the following elementary reactions?

a. $\mathrm{NO}(\mathrm{g})+\mathrm{NO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
b. $\mathrm{Cl}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{g})+\mathrm{H}(\mathrm{g})$
c. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}(\mathrm{aq}) \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}(\mathrm{aq})+\mathrm{Br}-(\mathrm{aq})$
13. Iodide ion is oxidized in acid solution by hydrogen peroxide:

$$
\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}-(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A proposed mechanism is:
Step 1 (slow) $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{I}-(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{OI}-(\mathrm{aq})$
Step 2 (fast) $\quad \mathrm{H}+(\mathrm{aq})+\mathrm{OI}-(\mathrm{aq}) \rightarrow \mathrm{HOI}(\mathrm{aq})$
Step 3 (fast) $\quad \mathrm{HOI}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
a. Show that the three elementary steps add up to give the overall, stoichiometric equation.
b. What is the molecularity of each step?
c. For this mechanism to be consistent with kinetic data, what must be the experimental rate equation?
d. Identify any intermediates in the elementary steps in this reaction.
14. At temperatures below 500 K , the reaction between carbon monoxide and nitrogen dioxide

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g})
$$

has the following rate equation: Rate $=\boldsymbol{k}\left[\mathbf{N O}_{2}\right]^{2}$ Which of the three mechanisms suggested below best agrees with the experimentally observed rate equation?
Mechanism 1 Single, elementary step
$\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}$
Mechanism 2 Two steps
Slow $\quad \mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}+\mathrm{NO}$
Fast $\quad \mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}$
Mechanism 3 Two steps
Slow $\quad \mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{O}$
Fast $\quad \mathrm{CO}+\mathrm{O} \rightarrow \mathrm{CO}_{2}$

$\mathbf{T}(\mathbf{K})$	$\boldsymbol{k}\left(\mathbf{s}^{\mathbf{- 1}}\right)$
298	0.0409
308	0.0818
318	0.157

15. Data for the reaction $\left[\mathbf{M n}(\mathbf{C O})_{5}\left(\mathbf{C H}_{3} \mathbf{C N}\right)\right]^{+}+\mathrm{NC}_{5} \mathbf{H}_{5} \rightarrow\left[\mathbf{M n}(\mathbf{C O})_{5}\left(\mathrm{NC}_{5} \mathbf{H}_{5}\right)\right]+\mathbf{C H}_{3} \mathbf{C N}$ are given in the table below. Calculate E_{a} from a plot of $\ln k$ versus $1 / \mathrm{T}$.
16. Complete the following nuclear equations. Write the mass number and atomic number for the remaining particle, as well as its symbol.
a. $\quad{ }_{26}^{54} \mathrm{Fe}+{ }_{2}^{4} \mathrm{He} \rightarrow 2{ }_{0}^{1} \mathrm{n}+$?
b. ${ }_{13}^{27} \mathrm{Al}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{15}^{30} \mathrm{P}+$?
c. ${ }_{16}^{32} \mathrm{~S}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{1}^{1} \mathrm{H}+$?
d. ${ }_{42}^{96} \mathrm{Mo}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{0}^{1} \mathrm{n}+$?
e. ${ }_{42}^{98} \mathrm{Mo}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{43}^{99} \mathrm{Tc}+$?
f. ${ }_{9}^{18} \mathrm{~F} \rightarrow{ }_{8}^{18} \mathrm{O}+$?
17. What particle is emitted in the following nuclear reactions? Write an equation for each reaction.
a. Gold-198 decays to mercury-198.
b. Radon-222 decays to polonium-218.
c. Cesium-137 decays to barium-137.
d. Indium-110 decays to cadmium-110.
18. Predict the probable mode of decay for each of the following radioactive isotopes, and write an equation to show the products of decay.
a. Bromine-80m
b. Californium-240
c. Cobalt-61
d. Carbon-11
19. Boron has two stable isotopes, ${ }^{10} \mathrm{~B}$ and ${ }^{11} \mathrm{~B}$. Calculate the binding energies per nucleon of these two nuclei. The required masses (in grams per mole) are ${ }_{1}^{1} \mathrm{H}=1.00783,{ }_{0}^{1} \mathrm{n}=1.00867$, ${ }^{10} \mathrm{~B}=10.01294$, and ${ }^{11} \mathrm{~B}=11.00931$.
20. A three step mechanism for the reaction of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ and $\mathrm{H}_{2} \mathrm{O}$ is proposed:

Step 1 (slow) $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+1}+\mathrm{Br}^{-1}$
Step 2 (fast) $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+1}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}_{2}{ }^{+1}$
Step 3 (fast) $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}_{2}{ }^{+1}+\mathrm{Br}^{-1} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HBr}$
a. Write an equation for the overall reaction.
b. Which step is rate determining?
c. What rate law is expected for this reaction?
d. What is the molecularity of each step?

Answers to the Practice Problem Set:

1. Answers:
a. $-\frac{1}{2}\left(\frac{\Delta\left[\mathrm{O}_{3}\right]}{\Delta t}\right)=\frac{1}{3}\left(\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}\right)$
b. $-\frac{1}{2}\left(\frac{\Delta[\mathrm{HOF}]}{\Delta t}\right)=\frac{1}{2}\left(\frac{\Delta[\mathrm{HF}]}{\Delta t}\right)=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta t}$
2. $-1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$
3. a. rate $=k\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{3}\right]$
b. rate triples
c. rate halved
4. a. $\mathrm{NO}=2$ nd order, $\mathrm{O}_{2}=$ first order
b. Rate $=k[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right] \quad$ c. $k=13 \mathrm{~L}^{2} / \mathrm{mol}^{2} \cdot \mathrm{~s} \quad$ d. $1.4 \times$ $10^{-5} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s} \quad$ e. $5.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}\left(\mathrm{O}_{2}\right), 1.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}\left(\mathrm{NO}_{2}\right)$
5. $0.0392 \mathrm{~h}^{-1}$
6. 105 min (note: 2 nd order kinetics!)
7. a. 153 min b. 1790 min
8. 150 min
9. rate $=k\left[\mathrm{NO}_{2}\right]^{2}$ and $k=1.1 \mathrm{~L} / \mathrm{mol} \cdot \mathrm{s}$
10. a. first order b. $k=0.0037 \mathrm{~min}^{-1} \quad$ c. 0.167 M
11. a. exothermic b. two steps
12. a) Rate $=k[\mathrm{NO}]\left[\mathrm{NO}_{3}\right]$
b) Rate $=k[\mathrm{Cl}]\left[\mathrm{H}_{2}\right]$
c) Rate $=k\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$
13.a. (add equations together) b. bimolecular (steps 1 and 2) and termolecular (step 3) c. rate $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-1}\right] \quad$ d. OI^{-}and HOI
13. Mechanism 2
$15 . \mathrm{y}=-6373.3 \mathrm{x}+18.19, \mathrm{r}=-1 \quad \mathrm{E}_{\mathrm{a}}=53.0 \mathrm{~kJ} / \mathrm{mol}$
16.Answers:
a. $\quad{ }_{28}^{56} \mathrm{Ni}$
(d) ${ }_{43}^{97} \mathrm{Tc}$
b. $\quad{ }_{0}^{1} \mathrm{n}$ (e) $\quad{ }_{-1}^{0} \beta$
c. ${ }_{15}^{32} \mathrm{P}$
(f) $\quad{ }_{+1}^{0} \beta$
17.Answers:
a. $\quad{ }_{79}^{198} \mathrm{Au} \rightarrow{ }_{80}^{198} \mathrm{Hg}+{ }_{-1}^{0} \beta$
b. ${ }_{86}^{222} \mathrm{Rn} \rightarrow{ }_{84}^{218} \mathrm{Po}+{ }_{2}^{4} \alpha$
c. ${ }_{55}^{137} \mathrm{Cs} \rightarrow{ }_{56}^{137} \mathrm{Ba}+{ }_{-1}^{0} \beta$
d. ${ }_{49}^{110} \mathrm{In} \rightarrow{ }_{48}^{110} \mathrm{Cd}+{ }_{+1}^{0} \beta$
18.a. gamma decay b. alpha decay c. beta decay d. positron decay
14. For ${ }^{10} \mathrm{~B}: 6.26 \times 10^{8} \mathrm{~kJ} / \mathrm{mol}$ nucleons; for ${ }^{11} \mathrm{~B}: 6.70 \times 10^{8} \mathrm{~kJ} / \mathrm{mol}$ nucleons
15. a. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HBr}$ b. Step 1 c. Rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$ d. uni, bi, bi
\qquad Lab Section: \qquad
This is a sample quiz for CH 222 providing examples of naming and nomenclature. Answers are provided on page 2. Good luck!
Provide names or structures for the following organic molecules:

n-pentane	2-hexanone	cyclohexane
formaldehyde	acetylene	dimethyl ether
2-butyne	benzene	acetone
hexanal	CH_{4}	$\mathrm{CH}_{3} \mathrm{OH}$
trimethylamine	ammonia	acetic acid
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	2,3-dibromopentane	1,2-dichlorobenzene
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	methylbenzene	ethoxy ethane
trans-2-pentene	iodoethane	cyclopropyl iodide

n-pentane $\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$		
formaldehyde $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}$	acetylene $\mathrm{HC} \equiv \mathrm{CH}$	dimethyl ether $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$
$\begin{gathered} \text { 2-butyne } \\ \mathbf{H}_{\mathbf{3}} \mathbf{C}-\mathbf{C} \equiv \mathbf{C}-\mathbf{C H}_{\mathbf{3}} \end{gathered}$		
	$\begin{gathered} \mathrm{CH}_{4} \\ \text { methane } \end{gathered}$	$\begin{gathered} \hline \mathrm{CH}_{3} \mathrm{OH} \\ \text { methanol } \end{gathered}$
	ammonia $\mathbf{N H}_{3}$	
$\begin{gathered} \hline \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \\ \text { 1-butanol } \end{gathered}$		
$\begin{gathered} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \\ \text { 2-butanol } \end{gathered}$		ethoxy ethane
trans-2-pentene	iodoethane $\mathbf{C H}_{3} \mathbf{C H}_{2} \mathbf{I}$	cyclopropyl iodide

\qquad
\qquad
Answers found at end.
Fill in the name or formula for the following open-chain hydrocarbons (no cycloalkanes):

1. $\mathrm{C}_{3} \mathrm{H}_{8}$
2. $\mathrm{C}_{5} \mathrm{H}_{8}$
3. $\mathrm{C}_{2} \mathrm{H}_{4}$
4. $\mathrm{C}_{7} \mathrm{H}_{16}$
5. $\mathrm{C}_{4} \mathrm{H}_{10}$
6. $\mathrm{C}_{8} \mathrm{H}_{16}$
7. $\mathrm{C}_{9} \mathrm{H}_{16}$
8. $\mathrm{C}_{10} \mathrm{H}_{22}$
9. \qquad
10. \qquad
11. \qquad

12. \qquad pentane
nonene
13. \qquad
ethyne
14. \qquad hexyne
butene
octyne
propene
\qquad
15. Name the following molecule:

\qquad
\qquad
\qquad
\qquad

-

23. Draw the molecule:

3-ethyl-2,2,5,5-tetramethyloctane

Sample Organic Quiz Name: \qquad
\qquad
Answer key; sample quiz appears on the Chemistry 222 website. Answers appear in bold.
Fill in the name or formula for the following open-chain hydrocarbons (no cycloalkanes):
$\begin{array}{lll}\text { 1. } \mathrm{C}_{3} \mathrm{H}_{8} & \text { _propane___ } & \text { 22. Name the following molecule: } \\ \text { 2. } \mathrm{C}_{5} \mathrm{H}_{8} & \text { _pentyne__ } & \end{array}$
\qquad
_octene
_nonyne \qquad
_decane
butene
23. Draw the molecule:

3-ethyl-2,2,5,5-tetramethyloctane

13. $_\mathrm{C}_{9} \underline{\mathrm{H}}_{18}$ \qquad nonene
ethyne
hexyne
16.-21. Draw and name the three isomers of pentane:

n-pentane

2-methylbutane

2,2-dimethylpropane

Organic Nomenclature Problems - answers at end

11

13

14

15

17

18

Answer Key

1. Propane
2. 2,3-dimethylhexane
3. 5-ethyl-3,4,9-trimethyldecane
4. methylcyclopentane
5. cis-5-ethyl-2-octene
6. cis, cis-4,6-dichloro-8-methyl-2,6-decadiene
7. methanal (formaldehyde)
8. cyclohexanone
9. 2,5-hexadione
10. pentanoic acid
11. 2-bromopropanoic acid
12. ethyl butanoate
13. cyclopentyl propanoate
14. ethyl propyl ether (1-ethoxypropane)
15. cyclopropyl propyl ether (1-cyclopropoxy propane)
16. 3-methylaniline
17. phenol
18. 5-chloro-2-nitrobenzoic acid

Organic Chemistry Practice Problems - Answers at end

Note: $\mathbf{A r}=$ benzene (so is $\mathrm{C}_{6} \mathrm{H}_{5}$), $\mathbf{R}=$ any carbon chain and $\mathbf{R}^{\prime}=$ carbons different from \mathbf{R}.

1. Which of the following is the general formula for an alcohol?
(a) $\mathrm{Ar}-\mathrm{OH}$
(b) $\mathrm{R}-\mathrm{NH}_{2}$
(c) $\mathrm{R}-\mathrm{OH}$
(d) $\mathrm{R}-\mathrm{O}-\mathrm{R}^{\prime}$
(e) $\mathrm{R}-\mathrm{X}$
2. Which of the following is the general formula for a phenol (alcohol on a benzene ring)?
(a) $\mathrm{Ar}-\mathrm{OH}$
(b) $\mathrm{R}-\mathrm{NH}_{2}$
(c) $\mathrm{R}-\mathrm{OH}$
(d) $\mathrm{R}-\mathrm{O}-\mathrm{R}^{\prime}$
(e) $R-X$
3. Which of the following is a general formula for ether?
(a) $\mathrm{Ar}-\mathrm{OH}$
(b) $\mathrm{R}-\mathrm{NH}_{2}$
(c) $\mathrm{R}-\mathrm{OH}$
(d) $\mathrm{R}-\mathrm{O}-\mathrm{R}^{\prime}$
(e) $R-X$
4. Which of the following is a general formula for an amine?
(a) $\mathrm{Ar}-\mathrm{OH}$
(b) $\mathrm{R}-\mathrm{NH}_{2}$
(c) $\mathrm{R}-\mathrm{OH}$
(d) $\mathrm{R}-\mathrm{O}-\mathrm{R}^{\prime}$
(e) $R-X$
5. What class of compound has the following general formula: $\mathrm{Ar}-\mathrm{C}-\mathrm{H}$?
(a) aldehyde
(b) carboxylic acid
(c) ester
(d) ketone
(e) phenol

O
11
6. What class of compound has the following general formula: $\mathrm{R}-\mathrm{C}-\mathrm{R}^{\prime}$?
(a) aldehyde
(b) alkene
(c) carboxylic acid
(d) ester
(e) ketone

O
7. What class of compound has the following general formula: $\mathrm{R}-\mathrm{C}-\mathrm{OH}$?
(a) aldehyde
(b) carboxylic acid
(c) ester
(d) ketone
(e) phenol

O
II
8. What class of compound has the following general formula: $\mathrm{R}-\mathrm{C}-\mathrm{O}-\mathrm{R}^{\prime}$?
(a) aldehyde
(b) carboxylic acid
(c) ester
(d) ketone
(e) phenol

O
11
9. What class of compound has the following general formula: $\mathrm{R}-\mathrm{C}-\mathrm{NH}_{2}$?
(a) aldehyde
(b) amide
(c) amine
(d) carboxylic acid
(e) ketone
10. What class of compound is the following: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$?
(a) organic halide
(b) alcohol
(c) phenol
(d) ether
(e) amine
11. What class of compound is the following: $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{OH}$?
(a) organic halide
(b) alcohol
(c) phenol
(d) ether
(e) amine
12. What class of compound is the following: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$?
(a) organic halide
(b) alcohol
(c) phenol
(d) ether
(e) amine
13. What class of compound is the following: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$?
(a) organic halide
(b) alcohol
(c) phenol
(d) ether
(e) amine
14. What class of compound is the following: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{H}$?
(a) aldehyde
(b) ketone
(c) carboxylic acid
(d) ester
(e) amide
15. What class of compound is the following: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$?
(a) aldehyde
(b) ketone
(c) carboxylic acid
(d) ester
(e) amide

$$
\begin{aligned}
& \mathrm{O} \\
& \text { I। }
\end{aligned}
$$

16. What class of compound is the following: $\mathrm{H}-\mathrm{C}-\mathrm{OH}$?
(a) aldehyde
(b) ketone
(c) carboxylic acid
(d) ester
(e) amide
17. What class of compound is the following: $\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$?
(a) aldehyde
(b) ketone
(c) carboxylic acid
(d) ester
(e) amide
18. What class of compound is the following: $\mathrm{H}-\mathrm{C}-\mathrm{NH}_{2}$?
(a) aldehyde
(b) ketone
(c) carboxylic acid
(d) ester
(e) amide
19. What class of compound is methanol?
(a) aldehyde
(b) ketone
(c) carboxylic acid
(d) ester
(e) alcohol
20. What class of compound is butanal?
(a) aldehyde
(b) ketone
(c) carboxylic acid
(d) ester
(e) alcohol
21. What class of compound is methyl propanoate?
(a) aldehyde
(b) ketone
(c) carboxylic acid
(d) ester
(e) alcohol
22. What class of compound is butanone?
(a) aldehyde
(b) ketone
(c) carboxylic acid
(d) ester
(e) alcohol
23. What class of compound is ethanamide?
(a) aldehyde
(b) ketone
(c) amide
(d) ester
(e) alcohol
24. What class of compound is dopamine?
(a) aldehyde
(b) ketone
(c) carboxylic acid
(d) amine
(e) alcohol

Answer Key

1C, 2A, 3D, 4B, 5A, 6E, 7B, 8C, 9B, 10B, 11C, 12D, 13E, 14A, 15B, 16C, 17D, 18E, 19E, 20A, 21D, 22B, 23C, 24D

CH 222 Solution Calculations
Self Quiz Name: \qquad Lab Section: \qquad
This is a sample quiz for CH 222 providing examples of solution calculations. Answers are provided on the next pages. Good luck!

Problem \#1: Fill in the blanks in the table. All solutions are aqueous.

Solute	$\begin{gathered} \text { solution } \\ \text { density, } \mathrm{g} / \mathrm{cm}^{3} \end{gathered}$	molality (m)	weight percent solute	mole fraction solute (X)	Molarity (M)
NiCl_{2}	0.99777			0.00331	
acetone	0.9163				4.00 M
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	1.112	3.54 m			
HCl	1.47		90.0\%		

Problem \#2: Fill in the blanks in the table. All solutions are aqueous.

Solute	$\begin{gathered} \text { solution } \\ \text { density, } \mathrm{g} / \mathrm{cm}^{3} \\ \hline \end{gathered}$	molality (m)	weight percent solute	mole fraction solute (X)	Molarity (M)
KBr	0.9977			0.120	
ethanol	0.9163				0.801 M
MgI_{2}	1.112	1.17 m			
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.84		95.0\%		

Answers appear on the next pages

Problem \#1 Answers: (answers in bold)

Solute	$\begin{gathered} \text { solution } \\ \text { density, } \mathrm{g} / \mathrm{cm}^{3} \\ \hline \end{gathered}$	molality (m)	weight percent solute	mole fraction solute (X)	Molarity (M)
NiCl_{2}	0.99777	0.184 m	2.33\%	0.00331	0.180 M
acetone	0.9163	5.85 m	25.3\%	0.0943	4.00 M
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	1.112	3.54 m	22.1\%	0.0599	3.07 M
HCl	1.47	247 m	90.0\%	0.817	36.3 M

For $\mathrm{NiCl}_{2}:$ molar mass $=129.59 \mathrm{~g} / \mathrm{mol}$. Assume $\mathbf{1 . 0 0 0 0 0} \mathbf{~ m o l}$ total
Solute: $\mathbf{0 . 0 0 3 3 1 ~ m o l ~ N i C l} \mathbf{2}_{2} * 129.59 \mathrm{~g} / \mathrm{mol}=\mathbf{0 . 4 2 9} \mathbf{g ~ N i C l}_{2}$ Solvent: $1-0.00331=\mathbf{0 . 9 9 6 6 9} \mathbf{~ m o l ~ H} \mathbf{2} \mathbf{O} * 18.016 \mathrm{~g} / \mathrm{mol}=\mathbf{1 7 . 9 5 6} \mathbf{g ~ H} \mathbf{2} \mathbf{O}$
molality $=0.00331 \mathrm{~mol} \mathrm{NiCl}_{2} / 0.017956 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}=\mathbf{0 . 1 8 4} \mathbf{~ m}$
$w t \%=\left(0.429 \mathrm{~g} \mathrm{NiCl}_{2}\right) /\left(0.429 \mathrm{~g} \mathrm{NiCl}_{2}+17.956 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right) * 100 \%=\mathbf{2 . 3 3 \%}$
mass solution $=\left(0.429 \mathrm{~g} \mathrm{NiCl}_{2}+17.956 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)=\mathbf{1 8 . 3 8 5} \mathbf{g}$ solution volume solution $=18.385 \mathrm{~g}$ solution $*(\mathrm{~mL} / 0.99777 \mathrm{~g})=\mathbf{1 8 . 4 2 6} \mathbf{~ m L}$ solution molarity $=0.00331 \mathrm{~mol} \mathrm{NiCl}_{2} / 0.018426 \mathrm{~L}=\mathbf{0 . 1 8 0} \mathbf{M}$

For acetone $\left(\mathrm{CH}_{3} \mathrm{COCH}_{3}\right):$ molar mass $=58.078 \mathrm{~g} / \mathrm{mol}$. Assume 1.00 L of solution.
Solute: $\mathbf{4 . 0 0} \mathbf{~ m o l}$ acetone $* 58.078 \mathrm{~g} / \mathrm{mol}=\mathbf{2 3 2} \mathbf{g}$ acetone
mass solution $=1.00 \mathrm{~L} *\left(10^{3} \mathrm{~mL} / \mathrm{L}\right) *(0.9163 \mathrm{~g} / \mathrm{mL})=916 \mathrm{~g}$ solution mass solvent $=916 \mathrm{~g}$ solution -232 g solute $=\mathbf{6 8 4} \mathrm{g}$ solvent $\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)$
moles solvent $=684 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} *(\mathrm{~mol} / 18.016 \mathrm{~g})=\mathbf{3 8 . 0} \mathbf{~ m o l ~ H} \mathbf{2} \mathbf{O}$
molality $=4.00 \mathrm{~mol}$ acetone $/ 0.684 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}=\mathbf{5 . 8 5} \mathbf{~ m}$
$w t \%=(232 \mathrm{~g}$ acetone $) /\left(232 \mathrm{~g}\right.$ acetone $\left.+684 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right) * 100 \%=\mathbf{2 5 . 3} \%$
$X=(4.00 \mathrm{~mol}$ acetone $) /\left(4.00 \mathrm{~mol}\right.$ acetone $\left.+38.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)=\mathbf{0 . 0 9 4 3}$

Answers continue on next page

For $\mathrm{NH}_{4} \mathrm{NO}_{3}:$ molar mass $=80.052 \mathrm{~g} / \mathrm{mol}$. Assume $\mathbf{1 . 0 0 0} \mathbf{~ k g}$ total solvent
Solute: $\mathbf{3 . 5 4} \mathbf{~ m o l ~} \mathbf{N H}_{4} \mathbf{N O}_{3} * 80.052 \mathrm{~g} / \mathrm{mol}=\mathbf{2 8 3} \mathbf{g ~ N H}_{\mathbf{4}} \mathbf{N O}_{\mathbf{3}}$
Solvent: $1.000 \mathrm{~kg} *\left(10^{3} \mathrm{~g} / \mathrm{kg}\right)=1000 . \mathrm{g} *(1 \mathrm{~mol} / 18.016 \mathrm{~g})=\mathbf{5 5 . 5 1} \mathbf{~ m o l ~ H} \mathbf{~} \mathbf{2} \mathbf{O}$
$X=\left(3.54 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}\right) /\left(3.54 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}+55.51 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)=\mathbf{0 . 0 5 9 9}$
$w t \%=\left(283 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}\right) /\left(283 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}+1000 . \mathrm{g} \mathrm{H}_{2} \mathrm{O}\right) * 100 \%=\mathbf{2 2 . 1} \%$
mass solution $=\left(283 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}+1000 . \mathrm{g} \mathrm{H}_{2} \mathrm{O}\right)=\mathbf{1 2 8 3} \mathbf{g}$ solution
volume solution $=1283 \mathrm{~g}$ solution $*(\mathrm{~mL} / 1.112 \mathrm{~g})=\mathbf{1 1 5 4} \mathbf{~ m L}$ solution
molarity $=3.54 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3} / 1.154 \mathrm{~L}=3.07 \mathbf{M}$

For $\mathrm{HCl}:$ molar mass $=36.458 \mathrm{~g} / \mathrm{mol}$. Assume $\mathbf{1 0 0 . 0} \mathbf{g}$ total solution
Solute: $\mathbf{9 0 . 0} \mathbf{~ g ~ H C l ~} *(\mathrm{~mol} / 36.458 \mathrm{~g} / \mathrm{mol})=2.47 \mathbf{~ m o l ~ H C l}$
Solvent: $(100.0-90.0)=\mathbf{1 0 . 0} \mathbf{g ~ H}_{2} \mathbf{O} *(1 \mathrm{~mol} / 18.016 \mathrm{~g})=.555 \mathbf{~ m o l ~} \mathbf{H}_{2} \mathbf{O}$
$X=(2.47 \mathrm{~mol} \mathrm{HCl}) /\left(2.47 \mathrm{~mol} \mathrm{HCl}+0.555 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)=\mathbf{0 . 8 1 7}$
molality $=2.47 \mathrm{~mol} \mathrm{HCl} / 0.0100 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}=247 \mathbf{~ m}$
mass solution $=100.0 \mathrm{~g}$ solution
volume solution $=100.0 \mathrm{~g}$ solution $*(\mathrm{~mL} / 1.47 \mathrm{~g})=\mathbf{6 8 . 0} \mathbf{~ m L}$ solution
molarity $=2.47 \mathrm{~mol} \mathrm{HCl} / 0.0680 \mathrm{~L}=36.3 \mathrm{M}$

Problem \#2 Answers: (answers in bold, try working the problems out on your own!)

Solute	$\begin{gathered} \begin{array}{c} \text { solution } \\ \text { density, } \mathrm{g} / \mathrm{cm}^{3} \end{array} \end{gathered}$	molality (m)	weight percent solute	mole fraction solute (X)	Molarity (M)
KBr	0.9977	7.55 m	47.4\%	0.120	3.96 M
ethanol	0.9163	0.911 m	4.03\%	0.0161	0.801 M
MgI_{2}	1.112	1.17 m	24.5\%	0.0206	0.982 M
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.84	190 m	95.0\%	0.777	17.8 M

Colligative Properties and Phase Diagrams - answers at end

Colligative Properties

1) What is the boiling point of $0.10 \mathrm{M} \mathrm{CaCl}_{2}(\mathrm{aq})$? Would the actual boiling point be higher or lower than what you calculated? Why? $\mathrm{K}_{\mathrm{b}}=0.512$
2) 10 grams of a non-ionic solid $(i=1)$ are dissolved into 100 mL of water. The freezing point of the water is depressed $3.32{ }^{\circ} \mathrm{C}$. What is the molar mass of the solid? $\mathrm{K}_{\mathrm{f}}=1.86$
3) Osmotic pressure can be used to determine the formula weight of a compound and is commonly used to calculate the mass of proteins. If 1.00 grams of a protein are dissolved in 100 mL of water, the osmotic pressure will be 92.92 torr. What is the molar mass of the protein? Assume $i=1$
4) Ocean water has about the same amount of salt in it as 0.82 M NaCl . How much pressure must be exerted if you wanted to turn ocean water into salt water by reverse osmosis? Assume $25^{\circ} \mathrm{C}$.
5) The freezing point depression of a dilute solution of Ammonium Hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$ was used measured and found to have an $i=1.10$. Since this value should not be rounded and it was not a whole value, what can you conclude about the $\mathrm{NH}_{4} \mathrm{OH}$ when it dissolves in water?
6) Why do road crews throw salt on the road when it snows? How does it do it?

Phase Diagrams

1a) Draw the phase diagram for naphthalene. It melts at $80.5^{\circ} \mathrm{C}$, boils at $218^{\circ} \mathrm{C}$, and the solid is more dense that its liquid. You do not have to be perfect. Just give the essential features of the diagram.

1b) Using the diagram just drawn, show how solid naphthalene is more dense than liquid naphthalene.
2) Using the phase diagram for water, explain why an ice skater can glide smoothly across the ice. What is the skater actually gliding on?
3) Sketch a phase diagram for benzene and locate these points: the triple point $\left(5.5^{\circ} \mathrm{C}\right.$ and 35.8 torr), the boiling point $\left(80.1^{\circ} \mathrm{C}\right)$ and the critical point $\left(288.5^{\circ} \mathrm{C}\right.$ and 47.7 atm$)$. Solid benzene does not float on its liquid.
4) Sketch a phase diagram for dry ice (CO2) and locate these points: the triple point $\left(-56.4^{\circ} \mathrm{C}\right.$ and $5.11 \mathrm{~atm})$, the sublimation point $\left(-78.5^{\circ} \mathrm{C}\right)$ and the critical point $\left(31.1^{\circ} \mathrm{C}\right.$ and 73 atm$)$. Solid CO 2 does not float on its liquid.

Colligative Properties

1) What is the boiling point of $0.10 \mathrm{M} \mathrm{CaCl}_{2}$? Would the actual boiling point be higher or lower than what you calculated? Why? $\mathrm{K}_{\mathrm{b}}=0.512$
$\Delta \mathrm{T}=0.512(0.1)(3)=0.1536{ }^{\circ} \mathrm{C}+100^{\circ} \mathrm{C}=100.1536^{\circ} \mathrm{C}$. The actual BP would be lower because i will not be exactly 3 . This is because the ions are not completely separate in solution - they "clump" together a little, making the solution look less concentrated than it really is. We usually ignore this affect when we do our calculations.
2) 10 grams of a non-ionic solid $(i=1)$ are dissolved into 100 mL of water. The freezing point of the water is depressed $3.32{ }^{\circ} \mathrm{C}$. What is the molar mass of the solid? $\mathrm{K}_{\mathrm{f}}=1.86$

$$
\left.\Delta \mathrm{T}=1.86(\mathrm{~m})(1)=3.32^{\circ} \mathrm{C} \longrightarrow \mathrm{~m}=1.785 \mathrm{M}=(10 \mathrm{~g} / \mathrm{MM}) / 0.100 \mathrm{~L}\right) \text { so } \mathrm{MM}=56.02
$$ $\mathrm{g} / \mathrm{mol}$.

3) Osmotic pressure can be used to determine the formula weight of a compound and is commonly used to calculate the mass of proteins. If 1.00 gram of a protein is dissolved in 100 mL of water, the osmotic pressure will be 92.92 torr. What is the molar mass of the protein? Assume $i=1$ and $25^{\circ} \mathrm{C}$.

$$
(92.92 \text { torr } / 760 \text { torr } / \mathrm{atm})=\mathrm{c}(0.08206)(298) \longrightarrow \mathrm{c}=0.005 \mathrm{M}(1 \mathrm{gram} / \mathrm{MM}) /(0.100 \mathrm{~L})=
$$

$$
0.005 \mathrm{M} \longrightarrow \mathrm{MM}=2000 \mathrm{~g} / \mathrm{mol}
$$

4) Ocean water has about the same amount of salt in it as 0.82 M NaCl . How much pressure must be exerted if you wanted to turn ocean water into salt water by reverse osmosis? Assume $25^{\circ} \mathrm{C}$.

$$
\Pi=(2)(0.82 \mathrm{M})(0.08206)(298 \mathrm{~K})=40.1 \mathrm{~atm} \text { or more }
$$

5) The freezing point depression of a dilute solution of Ammonium Hydroxide $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$ was used measured and found to have an $i=1.10$. Since this value should not be rounded and it was not a whole value, what can you conclude about the $\mathrm{NH}_{4} \mathrm{OH}$ when it dissolves in water?

It seems that $\mathrm{NH}_{4} \mathrm{OH}$ does not form $\mathrm{NH}_{4}{ }^{+}$and OH^{-}in water. It stays mostly as $\mathrm{NH}_{4} \mathrm{OH}$ and only a small amount becomes NH_{4}^{+}and OH^{-}.
6) Why do road crews throw salt on the road when it snows? How does it do it?

The salt causes the ice to melt by lowering its freezing point.

Phase Diagrams

1a) Draw the phase diagram for naphthalene. It melts at $80.5^{\circ} \mathrm{C}$, boils at $218^{\circ} \mathrm{C}$, and the solid is more dense that its liquid. You do not have to be perfect. Just give the essential features of the diagram.

1b) Using the diagram just drawn, show how solid naphthalene is more dense than liquid naphthalene.

As pressure increases you move from the liquid into the solid phase. The more dense medium is the solid so it sinks on the liquid.

2) Using the phase diagram for water, explain why an ice skater can glide smoothly across the ice. What is the skater actually gliding on?

The pressure from the skate melts the ice so the skater actually skates on a thin layer of water.

3) Sketch a phase diagram for benzene and locate these points: the triple point $\left(5.5^{\circ} \mathrm{C}\right.$ and 35.8 torr), the boiling point $\left(80.1^{\circ} \mathrm{C}\right)$ and the critical point $\left(288.5^{\circ} \mathrm{C}\right.$ and 47.7 atm$)$.

The diagrams all look the same. The only thing that changes is the temperature and pressures where stuff happens.

4) Sketch a phase diagram for dry ice $\left(\mathrm{CO}_{2}\right)$ and locate these points: the triple point $\left(-56.4^{\circ} \mathrm{C}\right.$ and 5.11 atm), the sublimation point ($-78.5^{\circ} \mathrm{C}$) and the critical point (31.1 ${ }^{\circ} \mathrm{C}$ and 73 atm). Solid CO_{2} does not float on its liquid

In this case, CO_{2} does not have a boiling point or melting point. BP and MP are defined as occurring where the 1 atm pressure line crosses the solid/liquid line (melting point) and the liquid gas line (boiling point). The 1 atm line for CO_{2} does not cross either of these line but crosses the solid/gas line which is sublimation.

Sample Chemistry Question (Ch. 9-11) - CH 222

Questions for Chapters Nine, Ten and Eleven:

1. When 7.00 grams of Helium and 14.0 grams of argon were mixed in a flask, the pressure was measured as 712 torr. What is the partial pressure of helium?
a. 593 torr
b. 356 torr
c. 833 torr
d. 1070 torr
e. 1420 torr
2. The empirical formula of a certain hydrocarbon is CH_{2}. When 0.125 moles of this hydrocarbon are completely combusted with excess oxygen, it is observed that 11.2 L of $\mathrm{H}_{2} \mathrm{O}$ gas is produced at STP. What is the molecular formula of the unknown hydrocarbon?
a. $\mathrm{C}_{2} \mathrm{H}_{4}$
b. $\mathrm{C}_{2} \mathrm{H}_{3}$
c. $\mathrm{C}_{3} \mathrm{H}_{6}$
d. $\mathrm{C}_{4} \mathrm{H}_{8}$
e. $\mathrm{C}_{6} \mathrm{H}_{12}$
3. Lead (atomic mass $207.2 \mathrm{~g} / \mathrm{mol}$) crystallizes in a face-centered cubic arrangement. The radius of an atom of lead is $1.75 * 10^{-8} \mathrm{~cm}$. What is the density of lead?
a. $9.85 \mathrm{~g} / \mathrm{cm}^{3}$
b. $11.4 \mathrm{~g} / \mathrm{cm}^{3}$
c. $13.2 \mathrm{~g} / \mathrm{cm}^{3}$
d. $14.7 \mathrm{~g} / \mathrm{cm}^{3}$
e. $19.7 \mathrm{~g} / \mathrm{cm}^{3}$
4. Rank the compounds $\mathrm{NH}_{3}, \mathrm{CH}_{4}$, and SiH_{4} in order of increasing boiling point.
a. $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{SiH}_{4}$
b. $\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{SiH}_{4}$
c. $\mathrm{NH}_{3}<\mathrm{SiH}_{4}<\mathrm{CH}_{4}$
d. $\mathrm{CH}_{4}<\mathrm{SiH}_{4}<\mathrm{NH}_{3}$
e. $\mathrm{SiH}_{4}<\mathrm{NH}_{3}<\mathrm{CH}_{4}$
5. A $1.34 \mathrm{M} \mathrm{NiCl}_{2}$ aqueous solution has a density of $1.12 \mathrm{~g} / \mathrm{cm}^{3}$. What is the molality of the solution?
a. 0.913 m
b. 1.42 m
c. 1.55 m
d. 2.55 m
e. 3.13 m
6. A solution is prepared by dissolving 0.500 g of non-dissociating solute in 12.0 g of cyclohexane. The freezing point depression of the solution is $8.94{ }^{\circ} \mathrm{C} . \mathrm{K}_{\mathrm{f}}$ for cyclohexane is $20.0^{\circ} \mathrm{C} / \mathrm{m}$. Calculate the molar mass of the solute.
a. $93.3 \mathrm{~g} / \mathrm{mol}$
b. $112 \mathrm{~g} / \mathrm{mol}$
c. $128 \mathrm{~g} / \mathrm{mol}$
d. $182 \mathrm{~g} / \mathrm{mol}$
e. $205 \mathrm{~g} / \mathrm{mol}$

Here are the answers to the previous questions:

1. When 7.00 grams of Helium and 14.0 grams of argon were mixed in a flask, the pressure was measured as 712 torr. What is the partial pressure of helium?
a. 593 torr
b. 356 torr
c. 833 torr
d. 1070 torr
e. 1420 torr

Answer: Pressure is proportional to the quantity of moles present in a gas, and Dalton's Law of Partial Pressures says that the total pressure will be equal to the sum of the respective pressures. The mole fraction of the gas times the total pressure (712 torr) will give the respective pressures of the components. There are (7.00 $\mathrm{g} / 4.00 \mathrm{~g} / \mathrm{mol})=1.75 \mathrm{~mol} \mathrm{He}$ and $(14.0 \mathrm{~g} / 39.9 \mathrm{~g} / \mathrm{mol})=0.351 \mathrm{~mol} \mathrm{Ar}$. The mole fraction of He is $1.75 /(1.75$ $+0.351)=0.833$, and the partial pressure of helium will be $0.833 * 712$ torr $=\mathbf{5 9 3}$ torr, answer (\mathbf{a}).
2. The empirical formula of a certain hydrocarbon is CH_{2}. When 0.125 moles of this hydrocarbon are completely combusted with excess oxygen, it is observed that 11.2 L of $\mathrm{H}_{2} \mathrm{O}$ gas is produced at STP. What is the molecular formula of the unknown hydrocarbon?
a. $\mathrm{C}_{2} \mathrm{H}_{4}$
b. $\mathrm{C}_{2} \mathrm{H}_{3}$
c. $\mathrm{C}_{3} \mathrm{H}_{6}$
d. $\mathrm{C}_{4} \mathrm{H}_{8}$
e. $\mathrm{C}_{6} \mathrm{H}_{12}$

Answer: First, find the moles of $\mathrm{H}_{2} \mathrm{O}$ produced, and then compare this number to 0.125 mol to find the ratio of " H_{2} " units in the hydrocarbon. Ex: ethane, $\mathrm{C}_{2} \mathrm{H}_{4}$, has two " H_{2} " units, so each mole of ethane will give two moles of water.

Also recall that STP implies a temperature of 273 K and 1 atm of pressure.
To find the moles of water: $\mathrm{n}=\mathrm{PV} / \mathrm{RT}=1 \mathrm{~atm} * 11.2 \mathrm{~L} / 0.082057 * 273 \mathrm{~K}=0.500 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$.
The ratio $(0.500 / 0.125)=4$, and this is how many ${ } \mathrm{H}_{2}$ " units are present in the hydrocarbon. Since the empirical formula is CH_{2}, we can imply there are four carbons with the four ${ } \mathrm{H}_{2}$ " units.

The final answer is (d), $\mathbf{C}_{4} \mathbf{H}_{8}$.
3. Lead (atomic mass $207.2 \mathrm{~g} / \mathrm{mol}$) crystallizes in a face-centered cubic arrangement. The radius of an atom of lead is $1.75 * 10^{-8} \mathrm{~cm}$. What is the density of lead?
a. $9.85 \mathrm{~g} / \mathrm{cm}^{3}$
b. $11.4 \mathrm{~g} / \mathrm{cm}^{3}$
c. $13.2 \mathrm{~g} / \mathrm{cm}^{3}$
d. $14.7 \mathrm{~g} / \mathrm{cm}^{3}$
e. $19.7 \mathrm{~g} / \mathrm{cm}^{3}$

Answer: Using unit analysis, we need an answer in $\mathrm{g} / \mathrm{cm}^{3}$. The numerator, g , comes from the molar mass of lead ($207.2 \mathrm{~g} / \mathrm{mol}$), for the mol can be cancelled using Avogadro's number and by remembering that the face centered cubic requires four atoms per unit cell. The denominator, cm^{3}, can be obtained from the equation: Edge $=4 *$ radius $/(2)^{1 / 2}$ and remembering that volume (in cm^{3}) is equal to the cubed root of the edge.

So: numerator $(\mathrm{g})=207.2 \mathrm{~g} / \mathrm{mol} *\left(\mathrm{~mol} / 6.022 * 10^{23}\right.$ atoms $) *(4$ atoms $/$ cell $)=1.38 * 10^{-21} \mathrm{~g}$ denominator $\left(\mathrm{cm}^{3}\right)=(\text { edge })^{3}=\left(4 * 1.75 * 10^{-8} \mathrm{~cm} / 2^{1 / 2}\right)^{3}=1.21 * 10^{-22} \mathrm{~cm}^{3}$
Therefore, density $=1.38 * 10^{-21} \mathrm{~g} / 1.21 * 10^{-22} \mathrm{~cm}^{3}=\mathbf{1 1 . 4} \mathbf{~ g} / \mathbf{c m}^{3}$, answer (b).
4. Rank the compounds $\mathrm{NH}_{3}, \mathrm{CH}_{4}$, and SiH_{4} in order of increasing boiling point.
a. $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{SiH}_{4}$
b. $\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{SiH}_{4}$
c. $\mathrm{NH}_{3}<\mathrm{SiH}_{4}<\mathrm{CH}_{4}$
d. $\mathrm{CH}_{4}<\mathrm{SiH}_{4}<\mathrm{NH}_{3}$
e. $\mathrm{SiH}_{4}<\mathrm{NH}_{3}<\mathrm{CH}_{4}$

Answer: Two factors affect boiling point: 1) mass (molar mass), and 2) strength of intermolecular forces. The larger the molar mass or intermolecular force, the higher the boiling point.

In terms of molar mass, the order would be $\mathrm{CH}_{4}(16 \mathrm{~g} / \mathrm{mol})<\mathrm{NH}_{3}(17 \mathrm{~g} / \mathrm{mol})<\mathrm{SiH}_{4}(32 \mathrm{~g} / \mathrm{mol})$. However, while CH_{4} and SiH_{4} have only induced dipole - induced dipole (ID-ID) forces, NH_{3} experiences hydrogen bonding forces, which is much stronger than the ID-ID force. Because the mass difference is not too large between NH_{3} and SiH_{4}, we would expect the order to be $\mathbf{C H}_{4}<\mathbf{S i H}_{4}<\mathbf{N H}_{3}$, answer (d).
5. A $1.34 \mathrm{M} \mathrm{NiCl}_{2}$ aqueous solution has a density of $1.12 \mathrm{~g} / \mathrm{cm}^{3}$. What is the molality of the solution?
a. 0.913 m
b. 1.42 m
c. 1.55 m
d. 2.55 m
e. 3.13 m

Answer: Converting from molarity to molality (or weight percent or mole fraction) requires a solution density value. 1.34 M implies that there are 1.34 moles of NiCl_{2} in 1 L of solution.

We wish to calculate molality, which is the moles of solute per kg of solvent. We have 1.34 mol of solute in 1 L of solution, so if we can calculate the kg of solvent, we'll be good to go.
$1.34 \mathrm{~mol}^{*} 129.6 \mathrm{~g} / \mathrm{mol}=174 \mathrm{~g} \mathrm{NiCl}_{2}$
$1 \mathrm{~L} *(1000 \mathrm{~mL} / \mathrm{L}) *\left(\mathrm{~cm}^{3} / \mathrm{mL}\right) *\left(1.12 \mathrm{~g} / \mathrm{cm}^{3}\right)=1120 \mathrm{~g}$ of solution (which equals the g of NiCl_{2} and water)
$\mathrm{g} \mathrm{H}_{2} \mathrm{O}=1120 \mathrm{~g}-174 \mathrm{~g}=950 \mathrm{~g}$ water $*(1 \mathrm{~kg} / 1000 \mathrm{~g})=0.95 \mathrm{~kg}$ water
molality $=$ mol solute $/ \mathrm{kg}$ solvent $=1.34 \mathrm{~mol} / 0.95 \mathrm{~kg}=\mathbf{1 . 4} \mathbf{~ m}$, answer (\mathbf{b}).
6. A solution is prepared by dissolving 0.500 g of non-dissociating solute in 12.0 g of cyclohexane. The freezing point depression of the solution is $8.94^{\circ} \mathrm{C} . \mathrm{K}_{\mathrm{f}}$ for cyclohexane is $20.0^{\circ} \mathrm{C} / \mathrm{m}$. Calculate the molar mass of the solute.
a. $93.3 \mathrm{~g} / \mathrm{mol}$
b. $112 \mathrm{~g} / \mathrm{mol}$
c. $128 \mathrm{~g} / \mathrm{mol}$
d. $182 \mathrm{~g} / \mathrm{mol}$
e. $205 \mathrm{~g} / \mathrm{mol}$

Answer: molar mass $=\mathrm{g} / \mathrm{mol}$. We have 0.500 g for the mass, so we need to calculate the moles of solute present. We can use the freezing point depression equation, $\Delta \mathrm{T}=\mathrm{k}_{\mathrm{f}}^{*} \mathrm{~m}^{*} \mathrm{i}$.

Since the solute is non-dissociating, we can assume that $\mathrm{i}=1$.
Solve for $\mathrm{m}: ~ \mathrm{~m}=\Delta \mathrm{T} / \mathrm{k}_{\mathrm{f}}=8.94{ }^{\circ} \mathrm{C} / 20.0^{\circ} \mathrm{C} / \mathrm{m}=0.447 \mathrm{~m}=0.447 \mathrm{~mol}$ solute $/ \mathrm{kg}$ solvent (cyclohexane)
Since the problem used 12.0 g of solvent, $\{0.447 \mathrm{~mol} \text { solute } / \mathrm{kg} \text { solvent (cyclohexane) }\}^{*} 0.0120 \mathrm{~kg}$ solvent $=5.36^{*} 10^{-3} \mathrm{~mol}$ solute

Molar mass $=\mathrm{g}$ solute $/ \mathrm{mol}$ solute $=0.500 \mathrm{~g} / 5.36^{*} 10^{-3} \mathrm{~mol}=\mathbf{9 3 . 3} \mathbf{g} / \mathbf{m o l}$, answer ($\mathbf{(a)}$.

Nuclear Chemistry - Radioactive Decay (answers at ent)

1. What particle is emitted when a Fr-210 nucleus decays to At-206?
(a) alpha
(b) beta
(c) neutron
(d) positron
(e) proton
2. What particle is emitted when a Ra-221 nucleus decays to Rn-217?
(a) alpha
(b) beta
(c) neutron
(d) positron
(e) proton
3. What particle is emitted when a Th-228 nucleus decays to Ra-224?
(a) alpha
(b) beta
(c) neutron
(d) positron
(e) proton
4. What particle is emitted when a F-20 nucleus decays to $\mathrm{Ne}-20$?
(a) alpha
(b) beta
(c) neutron
(d) positron
(e) proton
5. What particle is emitted when an Ar-39 nucleus decays to K-39?
(a) alpha
(b) beta
(c) neutron
(d) positron
(e) proton
6. What particle is emitted when a $\mathrm{Sr}-90$ nucleus decays radioactively to $\mathrm{Y}-90$?
(a) alpha
(b) beta
(c) neutron
(d) positron
(e) proton
7. What particle is emitted when a carbon-11 nucleus decays to boron-11?
(a) alpha
(b) beta
(c) neutron
(d) positron
(e) proton
8. What particle is emitted when a fluorine-17 nucleus decays to oxygen-17?
(a) alpha
(b) beta
(c) neutron
(d) positron
(e) proton
9. What particle is emitted when a neon-19 nucleus decays to fluorine-19?
(a) alpha
(b) beta
(c) neutron
(d) positron
(e) proton
10. What nuclide is produced when Pt-175 decays by alpha emission?
(a) ${ }_{175}^{171} \mathrm{Os}$
(b) ${ }_{171}^{76} \mathrm{Os}$
(c) ${ }_{171}^{78} \mathrm{Pt}$
(d) ${ }_{175}^{79} \mathrm{Au}$
(e) 79 Au
11. What nuclide is produced when U-235 decays by alpha emission?
(a) ${ }_{230}^{935} \mathrm{Th}$
(b) ${ }_{90}^{901} \mathrm{Th}$
(c) ${ }_{22}^{92} \mathrm{U}$
(d) ${ }_{93}^{93} \mathrm{~Np}$
(e) $\quad 93 \mathrm{~Np}$
12. What nuclide is produced when Ra-223 decays by alpha and gamma emission?
(a) ${ }_{227}^{86} \mathrm{Rn}$
(b) ${ }_{26} \mathrm{Rn}$
(c) ${ }_{228}^{28} \mathrm{Ra}$
(d) ${ }_{220}^{90} \mathrm{Th}$
(e) 90 Th
13. What radionuclide decays to $\mathrm{Pb}-210$ by alpha emission?
(a) $\begin{aligned} & 206 \\ & 80 \\ & 814\end{aligned}$
(b) ${ }_{206}^{806} \mathrm{Hg}$
(c) 82 Pb
(d) ${ }_{214}^{84} \mathrm{Po}$
(e) 84 Po
14. What nuclide is produced when K-43 decays by beta emission?
(a) ${ }_{18}^{43} \mathrm{Ar}$
(b) ${ }_{19}^{42} \mathrm{~K}$
(c) ${ }_{20}^{42} \mathrm{Ca}$
(d) ${ }_{20}^{43} \mathrm{Ca}$
(e) ${ }_{20}^{44} \mathrm{Ca}$
15. What nuclide is produced when $\mathrm{Pb}-210$ decays by beta emission?
(a) ${ }_{21}^{81} \mathrm{Tl}$
(b) ${ }_{211}^{81} \mathrm{Tl}$
(c) ${ }_{22} \mathrm{~Pb}$
(d) ${ }_{211}^{83} \mathrm{Bi}$
(e) 83 Bi
16. What nuclide is produced when Ar-39 decays by beta and gamma emission?
(a) $\begin{aligned} & 39 \\ & 40 \\ & 40\end{aligned}$
(b) ${ }_{40}^{17} \mathrm{Cl}$
(c) ${ }_{39}^{18} \mathrm{Ar}$
(d) ${ }_{40}^{19} \mathrm{~K}$
(e) ${ }_{19} \mathrm{~K}$
17. What radionuclide decays to $\mathrm{Fe}-56$ by beta emission?
(a) ${ }_{55}^{55} \mathrm{Mn}$
(b) ${ }_{55}^{25} \mathrm{Mn}$
(c) ${ }_{56}^{26} \mathrm{Fe}$
(d) ${ }_{57}^{27} \mathrm{Co}$
(e) ${ }_{27} \mathrm{Co}$
18. What nuclide is produced when $\mathrm{N}-13$ decays by positron emission?
(a) ${ }_{6}^{12} \mathrm{C}$
(b) ${ }_{6}^{13} \mathrm{C}$
(c) ${ }_{6}^{14} \mathrm{C}$
(d) ${ }_{7}^{14} \mathrm{~N}$
(e) ${ }_{8}^{13} \mathrm{O}$
19. What nuclide is produced when $\mathrm{O}-15$ decays by positron emission?
(a) ${ }_{7}^{14} \mathrm{~N}$
(b) ${ }_{7}^{15} \mathrm{~N}$
(c) ${ }_{8}^{14} \mathrm{O}$
(d) ${ }_{9}^{15} \mathrm{~F}$
(e) ${ }_{9}^{16} \mathrm{~F}$
20. What nuclide is produced when K-40 decays by positron emission?
(a) ${ }_{18}^{39} \mathrm{Ar}$
(b) ${ }_{18}^{40} \mathrm{Ar}$
(c) ${ }_{18}^{41} \mathrm{Ar}$
(d) ${ }_{19}^{40} \mathrm{~K}$
(e) ${ }_{20}^{40} \mathrm{Ca}$
21. What radionuclide decays to $\mathrm{Br}-73$ by positron emission?
(a) ${ }_{74}^{72} \mathrm{Se}$
(b) ${ }_{32}^{34} \mathrm{Se}$
(c) ${ }_{74}^{35} \mathrm{Br}$
(d) ${ }_{35} \mathrm{Br}$
(e) 36 Kr
22. What nuclide is produced when a Cs- 129 nucleus decays by electron capture?
(a) ${ }_{124} \mathrm{Xe}$
(b) ${ }_{129}^{129} \mathrm{Xe}$
(c) ${ }_{128}^{55} \mathrm{Cs}$
(d) ${ }_{126}^{56} \mathrm{Ba}$
(e) ${ }_{56}^{129} \mathrm{Ba}$
23. What nuclide is produced when a W-181 nucleus decays by electron capture?
(a) ${ }^{180} 73 \mathrm{Ta}$
(b) ${ }^{181} 7 \mathrm{Ta}$
(c) ${ }_{74}^{180} \mathrm{~W}$
(d) ${ }_{185}^{74} \mathrm{Re}$
(e) ${ }_{75} \mathrm{Re}$
24. What nuclide is produced when a Mn-52 nucleus decays by electron capture?
(a) ${ }_{24}^{52} \mathrm{Cr}$
(b) ${ }_{24}^{53} \mathrm{Cr}$
(c) ${ }_{25}^{53} \mathrm{Mn}$
(d) ${ }_{26}^{52} \mathrm{Fe}$
(e) ${ }_{26}^{53} \mathrm{Fe}$
25. What radionuclide decays to Cs-133 by electron capture?
(a) ${ }_{132}^{132} \mathrm{Xe}$
(b) ${ }_{134}^{54} \mathrm{Xe}$
(c) ${ }_{133}^{55} \mathrm{Cs}$
(d) ${ }_{136} \mathrm{Ba}$
(e) 56 Ba

Radioactive Decay Series

26. In the final step of the uranium-238 disintegration series, the parent nuclide decays to lead-206 and an alpha particle. What is the parent nuclide?
(a) ${ }_{202}^{802} \mathrm{Hg}$
(b) ${ }_{23} \mathrm{Bi}$
(c) ${ }_{24}^{206} \mathrm{Po}$
(d) ${ }_{84}^{210} \mathrm{Po}$
(e) none of the above
27. In the final step of the uranium-235 disintegration series, the parent nuclide decays to lead-207 and a beta particle. What is the parent nuclide?
(a) ${ }_{201}^{207} \mathrm{Tl}$
(b) ${ }_{82}^{206} \mathrm{~Pb}$
(c) ${ }_{228}^{208} \mathrm{~Pb}$
(d) ${ }_{23}^{\stackrel{82}{207}} \mathrm{Bi}$
(e) none of the above
28. In the final step of the thorium- 232 disintegration series, the parent nuclide decays to lead-208 and an alpha particle. What is the parent nuclide?
(a) ${ }_{83}^{208} \mathrm{Bi}$
(b) ${ }_{83}^{212} \mathrm{Bi}$
(c) ${ }_{208}^{83} \mathrm{Po}$
(d) ${ }_{84} \mathrm{Po}$
(e) none of the above
29. The uranium-238 decay series begins with the emission of an alpha particle. If the daughter decays by beta emission, what is the resulting nuclide?
(a) ${ }_{89}^{234} \mathrm{Ac}$
(b) ${ }_{203}^{233} \mathrm{Th}$
(c) ${ }_{90}^{234} \mathrm{Th}$
(d) ${ }_{{ }_{234}^{233}}^{234} \mathrm{~Pa}$
(e) ${ }_{91}^{234} \mathrm{~Pa}$
30. The uranium-235 decay series begins with the emission of an alpha particle. If the daughter decays by beta emission, what is the resulting nuclide?
(a) ${ }_{231}^{231} \mathrm{Ac}$
(b) ${ }_{90}^{230} \mathrm{Th}$
(c) ${ }_{90}^{231} \mathrm{Th}$
(d) ${ }_{231}^{230} \mathrm{~Pa}$
(e) ${ }_{91} \mathrm{~Pa}$
31. The thorium-232 decay series begins with the emission of an alpha particle. If the daughter decays by beta emission, what is the resulting nuclide?
(a) 228
(a) ${ }_{227}^{827} \mathrm{Fr}$
(b) ${ }_{228}^{828} \mathrm{Ra}$
(c) ${ }_{{ }_{228}^{828}}^{228} \mathrm{Ra}$
(d) ${ }_{288}^{89} \mathrm{Ac}$
(e) 89 Ac

Answer Key

1A, 2A, 3A, 4B, 5B, 6B, 7D, 8D, 9D, 10A, 11A, 12A, 13E, 14D, 15D, 16D, 17B, 18B, 19B, 20B, 21E, 22B, , 23B, 24A, 25D, 26D, 27A, 28D, 29E, 30E, 31E

Sample Quiz \#1 Name: \qquad Lab Section: \qquad
Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. Give the number of core and valence electrons in the following elements: Li, Te, and Ga . (6 pts)
2. Write Lewis Dot structures for the following molecules: $\mathrm{BeI}_{2}, \mathrm{CBr}_{2} \mathrm{Cl}_{2}$, and AsI_{3}. (6 pts)
3. Draw and name the electron-pair geometry and molecular shape for AlF_{3} and AlF_{4}. (4 pts)
4. Determine the formal charge on each atom in the molecule $\mathrm{ClF}_{2}{ }^{-1}$. (4 pts)

Sample Quiz \#1 Name: \qquad Lab Section: \qquad
Answers

1. Give the number of core and valence electrons in the following elements: Li, Te, and Ga . (6 pts)

Li: 2 core, 1 valence
Te: 46 core, 6 valence
Ga: 28 core, 3 valence
2. Write Lewis Dot structures for the following molecules: $\mathrm{BeI}_{2}, \mathrm{CBr}_{2} \mathrm{Cl}_{2}$, and AsI_{3}. (6 pts)

BeI 2_{2} : linear EPG and MG, no lone pairs
$\mathrm{CBr}_{2} \mathrm{Cl}_{2}$: Tetrahedral for both EPG and MG, lone pairs around outer atoms
AsI 3: tetrahedral EPG, trigonal pyramid MG, 1 lone pair on As
3. Draw and name the electron-pair geometry and molecular shape for AlF_{3} and AlF_{4}^{-}. (4 pts)

AIF 3: trigonal planar for both EPG and MG, no lone pairs
$\mathrm{AlF}_{4}{ }^{-1}$: tetrahedral for both EPG and MG
4. Determine the formal charge on each atom in the molecule $\mathrm{ClF}_{2}{ }^{-1} .(4 \mathrm{pts})$
$\mathrm{ClF}_{2}{ }^{-1}$: EPG is trigonal bipyramid, MG is linear, Cl has 3 lone pairs
$\mathrm{Cl}: 7-6-2=-1$
(both) F: 7-6-1 = 0

Sample Quiz \#2 Name: \qquad Lab Section: \qquad
Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. Complete the following table: (12 points)

Molecule	Lewis Structure	Electron Pair Geometry \& Molecular Geometry	Bond Angle(s)	Polar or Nonpolar?
$\mathrm{ICl}_{2} \mathrm{Br}$				
SeBr_{4}				
IF5				

2. Complete the following table: (6 points)

3. Arrange the following bonds in order of increasing polarity: $\mathrm{Na}-\mathrm{Br}, \mathrm{Br}-\mathrm{Br}, \mathrm{N}-\mathrm{Br}, \mathrm{As}-\mathrm{Br} .(2 \mathrm{pts})$
\qquad
\qquad
4. Complete the following table: (12 points)

Molecule	Lewis Structure	Electron Pair Geometry \& Molecular Geometry	Bond Angle(s)	Polar or Nonpolar?
$\mathbf{I C l} 2 \mathrm{Br}$	I in middle, 2 lone pairs on I, $\mathrm{Cl}-\mathrm{I}-\mathrm{Cl}$ has 180 angle	$\begin{gathered} \text { EPG = trigonal } \\ \text { bipyramid } \\ \text { MG }=\text { T-shaped } \end{gathered}$	90, 180	polar
SeBr_{4}	Se in middle, 1 lone pair on Se , lone pair in "plane" of molecule	EPG = trigonal bipyramid MG = see-saw	$\begin{aligned} & 90,120, \\ & 180 \end{aligned}$	polar
IF	I in middle, 1 lone pair on I,	EPG = octahedral MG = square pyramid	90, 180	polar

2. Complete the following table: (6 points)

Molecule	Lewis Structure	Bond Order	Which structure has stronger bonds?	Which structure has longer bonds?	Does it exhibit resonance?
$\mathrm{PO}_{2}{ }^{-1}$	P in middle, 1 lone pair on P, one double bond to O , one single bond to 0	1.5		longer	yes
PO2 ${ }^{+1}$	P in middle, 0 lone pair on P, two double bonds to O ,	2	stronger		no

3. Arrange the following bonds in order of increasing polarity: $\mathrm{Na}-\mathrm{Br}, \mathrm{Br}-\mathrm{Br}, \mathrm{N}-\mathrm{Br}, \mathrm{As}-\mathrm{Br} .(2 \mathrm{pts})$
$\mathbf{B r}-\mathrm{Br}, \mathrm{As}-\mathrm{Br}, \mathrm{N}-\mathrm{Br}, \mathrm{Na}-\mathrm{Br}$

Sample Quiz \#3 Name: \qquad Lab Section: \qquad
Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. For the molecules B_{2} and $\mathrm{B}_{2}{ }^{2-}$:
a. Draw molecular orbital energy level diagrams. (6 points)
b. For each molecule determine the bond order and magnetic properties (para-/dia-magnetic) (2 points).
c. Which has the longer bond? (1 point)
d. Which has the highest bond energy? (1 point)
2. Provide names or structures for the following organic molecules: (10 pts)

3-methylhexane	2-pentanone	cyclobutyl bromide
structure:	structure:	structure:

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

2-heptyne	toluene	acetone
structure:	structure:	structure:

ethanal
\square
\qquad Lab Section: \qquad

1. For the molecules B_{2} and $\mathrm{B}_{2}{ }^{2-}$:
a. Draw molecular orbital energy level diagrams. (6 points)
b. For each molecule determine the bond order and magnetic properties (para-/dia-magnetic) (2 points).
c. Which has the longer bond? (1 point)
d. Which has the highest bond energy? (1 point)

2. Provide names or structures for the following organic molecules: (10 pts)

3-methylhexane			
structure:	structure:		structure:

Sample Quiz \#4 Name: \qquad Lab Section: \qquad
Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. Ammonia $\left(\mathrm{NH}_{3}\right)$ is synthesized through the combination of hydrogen and nitrogen gases. What mass of nitrogen gas must be reacted to create ammonia at 3.00 atm in a 2.50 L flask at $100 .{ }^{\circ} \mathrm{C}$? Hint: write a balanced equation! (6 pts)
2. Calculate the density $(\mathrm{g} / \mathrm{L})$ of gaseous phosphorus pentachloride at STP to three significant figures. (5 pts)
3. What volume of O_{2}, measured at $44.3^{\circ} \mathrm{C}$ and 766 mm Hg , will be produced by the decomposition of $4.27 \mathrm{~g} \mathrm{NaClO}_{3}$? (5 points) $2 \mathrm{NaClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{NaCl}(\mathrm{s})+3 \mathbf{O}_{2}(\mathrm{~g})$
4. The lid is tightly sealed on a rigid flask containing $3.50 \mathrm{~L} \mathrm{H}_{2}$ at $17.0^{\circ} \mathrm{C}$ and 694 torr. If the flask is heated to $71{ }^{\circ} \mathrm{C}$, what is the pressure in the flask in atm? (4 points)

Sample Quiz \#4 Name: \qquad Lab Section: \qquad Answers

1. Ammonia $\left(\mathrm{NH}_{3}\right)$ is synthesized through the combination of hydrogen and nitrogen gases. What mass of nitrogen gas must be reacted to create ammonia at 3.00 atm in a 2.50 L flask at $100 .{ }^{\circ} \mathrm{C}$? Hint: write a balanced equation! (6 pts)

3.43 g

2. Calculate the density (g/L) of gaseous phosphorus pentachloride at STP to three significant figures. (5 pts)

$9.30 \mathrm{~g} / \mathrm{L}$

3. What volume of O_{2}, measured at $44.3^{\circ} \mathrm{C}$ and 766 mm Hg , will be produced by the decomposition of 4.27 g NaClO ? (5 points)
$2 \mathbf{N a C l O}_{3}(\mathrm{~s}) \rightarrow \mathbf{2} \mathbf{~ N a C l}(\mathrm{s})+\mathbf{3} \mathbf{O}_{2}(\mathrm{~g})$
$\mathrm{V}=1.56 \mathrm{~L}$
4. The lid is tightly sealed on a rigid flask containing $3.50 \mathrm{~L} \mathrm{H}_{2}$ at $17.0^{\circ} \mathrm{C}$ and 694 torr. If the flask is heated to $71^{\circ} \mathrm{C}$, what is the pressure in the flask in atm? (4 points)

$$
\mathbf{P}_{\mathbf{2}}=\mathbf{1 . 0 8} \mathbf{~ a t m} \quad \text { also: } 823 \text { torr }
$$

\qquad Lab Section: \qquad
Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. Fill in the blanks using the following species: (1 point each)

$$
\mathrm{MgO}, \mathrm{LiCl}, \mathrm{NH}_{3}, \mathrm{CHCl}_{3}, \mathrm{Kr}(\mathrm{~g}), \mathrm{Mg}^{2+}(\mathrm{aq})
$$

a. Which species will have no appreciable intermolecular forces?
b. Which species will exhibit hydrogen bonding in the liquid state?
c. Which species will have the highest melting point?
d. Which has the lowest normal boiling point?
e. Will species has a solvent and solute?
2. The molar enthalpy of vaporization for 2-pentanol is $46.26 \mathrm{~kJ} / \mathrm{mol}$ at $71.0^{\circ} \mathrm{C}$, and the density is $0.9884 \mathrm{~g} / \mathrm{cm}^{3}$. How much energy is required to evaporate 2.25 L of 2-pentanol? (5 points)
3. A quantity (161 mmol , where $1 \mathrm{mmol}=10^{-3} \mathrm{~mol}$) of a nonvolatile solute is dissolved in 0.101 kg of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$. The vapor pressure of pure benzene at $27^{\circ} \mathrm{C}$ is 115.8 mm Hg . Find the mole fraction of the solute and the vapor pressure of the solution at $27^{\circ} \mathrm{C}$. (5 points)
4. Which will generate the higher osmotic pressure at $298 \mathrm{~K}: 1 \mathrm{~L}$ of a 0.250 M cesium sulfate solution or 1 L of a 0.220 M phosphoric acid? Explain your reasoning, calculate the osmotic pressure for both solutions and assume 100% dissociation into ions. (5 points)
\qquad
\qquad Answers

1. Fill in the blanks using the following species: (1 point each)

$$
\mathrm{MgO}, \mathrm{LiCl}, \mathrm{NH}_{3}, \mathrm{CHCl}_{3}, \mathrm{Kr}(\mathrm{~g}), \mathrm{Mg}^{2+}(\mathrm{aq})
$$

a. Which species will have no appreciable intermolecular forces? $\underline{\mathbf{K r}}$
b. Which species will exhibit hydrogen bonding in the liquid state? $\quad \mathbf{N H}_{\mathbf{3}}$
c. Which species will have the highest melting point? $\quad \mathbf{M g O}$
d. Which has the lowest normal boiling point? $\underline{\mathbf{K r}}$
e. Will species has a solvent and solute? $\quad \mathbf{M g}^{\mathbf{2 +}(\mathbf{a q})}$
2. The molar enthalpy of vaporization for 2-pentanol is $46.26 \mathrm{~kJ} / \mathrm{mol}$ at $71.0^{\circ} \mathrm{C}$, and the density is $0.9884 \mathrm{~g} / \mathrm{cm}^{3}$. How much energy is required to evaporate 2.25 L of 2-pentanol? (5 points)

1170 kJ

3. A quantity (161 mmol , where $1 \mathrm{mmol}=10^{-3} \mathrm{~mol}$) of a nonvolatile solute is dissolved in 0.101 kg of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$. The vapor pressure of pure benzene at $27^{\circ} \mathrm{C}$ is 115.8 mm Hg . Find the mole fraction of the solute and the vapor pressure of the solution at $27^{\circ} \mathrm{C}$. (5 points)
$\chi($ solute $)=0.111$
$V P=103 \mathrm{~mm} \mathrm{Hg}$
4. Which will generate the higher osmotic pressure at $298 \mathrm{~K}: 1 \mathrm{~L}$ of a 0.250 M cesium sulfate solution or 1 L of a 0.220 M phosphoric acid? Explain your reasoning, calculate the osmotic pressure for both solutions and assume 100% dissociation into ions. (5 points)
for $\mathrm{Cs}_{2} \mathrm{SO}_{4}: \pi=18.3 \mathrm{~atm}$
for $\mathrm{H}_{2} \mathrm{PO}_{4}: \pi=21.5 \mathrm{~atm}$
$\mathrm{H}_{3} \mathrm{PO}_{4}$ is higher!

Sample Quiz \#6 Name: \qquad Lab Section: \qquad
Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. Consider the data (below) gathered for the following reaction: $\mathbf{A}+\mathbf{B} \rightarrow \mathbf{C} \quad$ (8 points)

$[\mathrm{A}](\mathrm{M})$	$[\mathrm{B}](\mathrm{M})$	$\Delta[\mathrm{C}] / \Delta t($ initial $) \mathrm{M} / \mathrm{s}$
0.100	0.200	6.80×10^{-6}
0.100	0.400	2.72×10^{-5}
0.200	0.400	5.44×10^{-5}

a. What is the order of the reaction with respect to A: \qquad B: \qquad Overall order: \qquad
b. What is the numerical value for the rate constant?
c. Write the rate law for the reaction.
d. What is the value of the rate when $[\mathrm{A}]=0.337 \mathrm{M}$ and $[\mathrm{B}]=0.122 \mathrm{M}$?
2. In basic solution, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ reacts according to the equation below.
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Cl}^{-}$
The accepted mechanism for the reaction is
$\begin{array}{ll}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl} \\ \left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{Cl}^{-} & \text {(slow) } \\ \left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH} & \text { (fast) }\end{array}$
a. What is a rate law that is consistent with the mechanism for this reaction? (2 points)
b. Are intermediates present in the reaction? If so, list them. (2 points)
3. For a chemical reaction, the activation energy for the forward reaction is +187 kJ and the activation energy for the backward reaction is +112 kJ . What is the overall energy change for the forward reaction? (4 points)
4. What is the half-life of a first order reaction with a rate constant of $0.457 \mathrm{~s}^{-1}$? (4 points)
\qquad
\qquad

1. Consider the data (below) gathered for the following reaction: $\mathbf{A}+\mathbf{B} \rightarrow \mathbf{C}$ (8 points)

$[\mathrm{A}](\mathrm{M})$	$[\mathrm{B}](\mathrm{M})$	$\Delta[\mathrm{C}] / \Delta t($ initial $) \mathrm{M} / \mathrm{s}$
0.100	0.200	6.80×10^{-6}
0.100	0.400	2.72×10^{-5}
0.200	0.400	5.44×10^{-5}

a. What is the order of the reaction with respect to A: $\mathbf{1}$

B: _2_ Overall order: _-
b. What is the numerical value for the rate constant?
$\mathrm{k}=1.70 \times 10^{-3}$
c. Write the rate law for the reaction. $\quad \mathbf{r a t e}=\mathbf{k}[\mathbf{A}][\mathbf{B}]^{2}$
d. What is the value of the rate when $[\mathrm{A}]=0.337 \mathrm{M}$ and $[\mathrm{B}]=0.122 \mathrm{M}$?

```
rate = 8.53 x 10-6
```

2. In basic solution, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ reacts according to the equation below.
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Cl}^{-}$
The accepted mechanism for the reaction is
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{Cl}^{-}$
(slow)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
(fast)
a. What is a rate law that is consistent with the mechanism for this reaction? (2 points)
rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right] \quad$ slow step
b. Are intermediates present in the reaction? If so, list them. (2 points)
yes, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$
3. For a chemical reaction, the activation energy for the forward reaction is +187 kJ and the activation energy for the backward reaction is +112 kJ . What is the overall energy change for the forward reaction? (4 points)
```
forward reaction is endothermic (reverse reaction has lower activation energy)
\DeltaH=187-112=+75 kJ
```

4. What is the half-life of a first order reaction with a rate constant of $0.457 \mathrm{~s}^{-1}$? (4 points)
$\mathrm{t}_{1 / 2}=\mathbf{1 . 5 2 \mathrm { s }}$

Exam I Name: \qquad Lab Section: \qquad
Part I: Multiple Choice Questions (100 Points) There is only one best answer for each question.

1. Which of the following statements are CORRECT?
2. Ionic bonds form when one or more valence electrons are transferred from one atom to another.
3. Covalent bonds involve sharing of electrons between atoms.
4. Ionic bond formation is always exothermic; covalent bond formation is always endothermic.
a. 1 only
b. 2 only
c. 3 only
d. 1 and 2
e. 1,2 , and 3
5. Which of the following compounds is expected to have the strongest ionic bonds?
a. MgO
b. KBr
c. NaI
d. SrO
e. CaS
6. What is the total number of valence electrons in a carbonate ion?
a. 20
b. 22
c. 24
d. 26
e. 30
7. Which of the following species will have a Lewis structure most like that of the hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$?
a. $\mathrm{NO}_{3}{ }^{-}$
b. NH_{3}
c. SO_{3}
d. $\mathrm{CO}_{3}{ }^{2-}$
e. $\mathrm{H}_{2} \mathrm{CO}$
8. How many resonance structures can be drawn for the thiocyanate ion, SCN^{-1} ? The carbon atom is in the center of this ion.
a. 1
b. 2
c. 3
d. 4
e. 5
9. The central atom in XeF_{4} is surrounded by
a. 3 single bonds, 1 double bond, and no lone pairs of electrons.
b. 2 single bonds, 2 double bonds, and no lone pairs of electrons.
c. 3 single bonds, 1 double bond, and 1 lone pair of electrons.
d. 4 single bonds, no double bonds, and no lone pairs of electrons.
e. 4 single bonds, no double bonds, and 2 lone pairs of electrons.
10. Use VSEPR theory to predict the electron-pair geometry and the molecular geometry of iodine trichloride, ICl_{3}.
a. The e--pair geometry is trigonal-planar, the molecular geometry is trigonal-planar.
b. The e--pair geometry is tetrahedral, the molecular geometry is trigonal-pyramidal.
c. The e--pair geometry is tetrahedral, the molecular geometry is trigonal-planar.
d. The e--pair geometry is trigonal-bipyramidal, the molecular geometry is T-shaped.
e. The e--pair geometry is trigonal-bipyramidal, the molecular geometry is trigonal-planar.
11. What is the formal charge on each atom in a hypobromite ion, OBr^{-1} ?
a. $\quad \mathrm{O}=-2, \mathrm{Br}=-1$
b. $\mathrm{O}=-2, \mathrm{Br}=+1$
c. $\mathrm{O}=-1, \mathrm{Br}=+1$
d. $\mathrm{O}=-1, \mathrm{Br}=0$
e. $\mathrm{O}=0, \mathrm{Br}=-1$
12. When heated, azomethane decomposes into nitrogen and ethane gas: $\mathbf{C H}_{3} \mathbf{N}=\mathbf{N C H}_{\mathbf{3}}(\mathbf{g}) \rightarrow \mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}(\mathbf{g})$ Using this equation and the table of bond enthalpies below, calculate the enthalpy of reaction.

	Bond Energy			
$\underline{\text { Bond }}$	$\frac{\text { BJond Energy }}{(\mathrm{kJol})}$	$\underline{\text { Bond }}$	$\underline{\underline{(\mathrm{kJ} / \mathrm{mol})}}$	
$\overline{\mathrm{C}-\mathrm{H}}$	413	$\mathrm{~N}-\mathrm{N}$	163	
$\mathrm{C}-\mathrm{N}$	305	$\mathrm{~N}=\mathrm{N}$	418	
$\mathrm{C}-\mathrm{C}$	346	$\mathrm{~N} \equiv \mathrm{~N}$	945	

a. $\quad-611 \mathrm{~kJ}$
b. $\quad-527 \mathrm{~kJ}$
c. -429 kJ
d. -313 kJ
e. -263 kJ
10. Based on bond order, predict which molecule has the shortest carbon-oxygen bond length.
a. CO
b. CO_{2}
c. $\mathrm{CH}_{3} \mathrm{OH}$
d. $\mathrm{H}_{2} \mathrm{CO}$
e. O_{3}
11. All of the following statements concerning valence bond (VB) and molecular orbital (MO) bond theories are correct EXCEPT
a. MO theory predicts that electrons are delocalized over the molecule.
b. in VB theory, bonding electrons are localized between pairs of atoms.
c. VB theory describes a molecular bond as the overlap between two atomic or hybrid orbitals.
d. MO theory can describe molecular bonding in excited states.
e. VB theory is used to predict the colors of compounds.
12. How many sigma (σ) bonds and pi (π) bonds are in acetic acid?

a. $\quad \operatorname{six} \sigma$ and one π
b. $\operatorname{six} \sigma$ and two π
c. seven σ and one π
d. eight σ and zero π
e. eight σ and one π
13. What is the hybridization of the sulfur atom in SF_{4} ?
a. sp
b. sp^{2}
c. sp^{3}
d. $s p^{3} \mathrm{~d}$
e. $s p^{3} d^{2}$
14. In which of the following molecules and ions does the central carbon atom have sp hybridization: $\mathrm{Cl}_{2} \mathrm{CO}, \mathrm{CH}_{2} \mathrm{Br}_{2}, \mathrm{CO}_{2}$, and OCN^{-1} ?
a. $\mathrm{Cl}_{2} \mathrm{CO}$ only
b. $\mathrm{Cl}_{2} \mathrm{CO}$ and $\mathrm{CH}_{2} \mathrm{Br}_{2}$
c. $\mathrm{CH}_{2} \mathrm{Br}_{2}$ and CO_{2}
d. $\mathrm{CH}_{2} \mathrm{Br}_{2}$ and OCN^{-1}
e. CO_{2} and OCN^{-1}
15. What is the molecular geometry around a central atom that is sp^{2} hybridized, has three sigma bonds, and has one pi bond?
a. trigonal-planar
b. trigonal-pyramidal
c. trigonal-bipyramidal
d. linear
e. tetrahedral
16. Carbon dioxide reacts with an aqueous solution of sodium hydroxide to form carbonate ion. What change in the hybridization of carbon occurs in this reaction?
a. $\quad \mathrm{sp}$ to sp^{2}
b. sp^{2} to sp^{3}
c. $\quad \mathrm{sp}^{3}$ to $\mathrm{sp}^{3} \mathrm{~d}$
d. $\quad s p^{3}$ to $s p^{3} d^{2}$
e. no change
17. For which of the following compounds is it possible for cis and trans isomers to exist?

(1)

(2)

(3)
a. 1 only
b. 2 only
c. 3 only
d. 1 and 2
e. 1,2 , and 3
18. Atomic orbitals combine most effectively to form molecular orbitals when
a. electrons in the orbitals have no spins.
b. electrons in the orbitals have the same spin.
c. the atomic orbitals are hybridized.
d. the atomic orbitals have similar energies.
e. metals combine with nonmetals.
19. According to molecular orbital theory, which of the following species is the most likely to exist?
a. $\mathrm{H}_{2}{ }^{2-}$
b. He_{2}
c. Li_{2}
d. $\mathrm{Li}_{2}{ }^{2-}$
e. Be_{2}
20. According to molecular orbital theory, what is the bond order of superoxide, $\mathrm{O}_{2}{ }^{-1}$?
a. 1
b. $3 / 2$
c. 2
d. $5 / 2$
e. 3
21. Use molecular orbital theory to predict which ion is diamagnetic.
a. $\mathrm{C}_{2}{ }^{-2}$
b. O_{2}
c. NO
d. $\mathrm{N}_{2}{ }^{-1}$
e. $\quad \mathrm{B}_{2}{ }^{-1}$
22. What is the molecular orbital configuration of CO ?
a. [core electrons] $\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}^{*}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}$
b. [core electrons] $\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma^{*}{ }_{2 \mathrm{~s}}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{2}\left(\sigma_{2 \mathrm{p}}\right)^{2}\left(\pi^{*}{ }_{2 \mathrm{p}}\right)^{2}$
c. [core electrons] $\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}\left(\sigma_{2 \mathrm{p}}\right)^{2}$
d. [core electrons] $\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{p}}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}$
e. [core electrons] $\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}^{*}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{2}$
23. Which molecule will have the following valence molecular orbital level energy diagram?

a. $\quad \mathrm{Li}_{2}$
b. Be_{2}
c. B_{2}
d. C_{2}
e. N_{2}
24. Which of the following molecules may be a cycloalkane?
a. $\mathrm{C}_{3} \mathrm{H}_{8}$
b. $\mathrm{C}_{4} \mathrm{H}_{6}$
c. $\mathrm{C}_{5} \mathrm{H}_{12}$
d. $\mathrm{C}_{6} \mathrm{H}_{12}$
e. $\mathrm{C}_{7} \mathrm{H}_{16}$
25. What is the molecular formula for heptane?
a. $\mathrm{C}_{6} \mathrm{H}_{12}$
b. $\mathrm{C}_{6} \mathrm{H}_{14}$
c. $\mathrm{C}_{7} \mathrm{H}_{14}$
d. $\mathrm{C}_{7} \mathrm{H}_{16}$
e. $\mathrm{C}_{8} \mathrm{H}_{14}$

Part II: Short Answer / Calculation. Show all work!

1. For each of the following molecules or ions,
i) draw the Lewis structure
ii) give the hybridization of the central atom
iii) predict the electron pair and molecular shape of the molecule, and
iv) state if the molecule is polar or nonpolar
a) ICl_{3}
b) TeBr_{2}
c) XeF_{4}
d) $\mathrm{BrF}_{2}{ }^{-1}$
e) $\mathrm{I}_{3}{ }^{-1}$
2. Draw molecular orbital energy diagrams for $\mathrm{N}_{2}, \mathrm{~N}_{2}{ }^{1+}$ and $\mathrm{N}_{2}{ }^{1-}$. Determine the bond order and indicate if each molecule is paramagnetic or diamagnetic. Indicate which of the molecules will have the shortest bond length.
3. Provide the correct name for each of the following compounds.

$\mathrm{C}_{2} \mathrm{H}_{6}$

$\mathrm{C}_{2} \mathrm{H}_{4}$ \qquad
$\mathrm{C}_{2} \mathrm{H}_{2}$ \qquad
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
\qquad
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$
$\mathrm{CH}_{3} \mathrm{CHO}$
$\mathrm{C}_{6} \mathrm{H}_{6}$ \qquad
$\mathrm{CH}_{3} \mathrm{OH}$ \qquad
NH_{3}

Exam I Name: \qquad Lab Section: \qquad
Answers
Part I: Multiple Choice Questions

1. D
2. A
3. C
4. B
5. C
6. E
7. D
8. D
9. E
10. A
11. E
12. C
13. D
14. E
15. A
16. A
17. B
18. D
19. C
20. B
21. A
22. D
23. D
24. D
25. D

Part II: Short Answer / Calculation.

1. Lewis structures:
a. ICl_{3} : trigonal bipyramid EPG, T-shape MG, $\boldsymbol{d s p}{ }^{3}$, polar
b. TeBr_{2} : tetrahedral EPG, bent MG, $s p^{3}$, polar
c. XeF4: octahedral EPG, square planar MG, $d^{2} s p^{3}$, nonpolar
d. $\mathrm{BrF}_{2}{ }^{-1}$: trigonal bipyramid EPG, linear MG, $\boldsymbol{d s p} \boldsymbol{p}^{3}$, nonpolar
e. $\mathrm{I}_{3}{ }^{-1}$: trigonal bipyramid EPG, linear MG, $d s p^{3}$, nonpolar
2. Molecular orbitals:
N_{2} : [core electrons] $\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}^{*}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}\left(\sigma_{2 \mathrm{p}}\right)^{2}$ bond order $=3$, diamagnetic, shortest bond length
$\mathbf{N}_{2}{ }^{+1}$: [core electrons] $\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma_{2 \mathrm{~s}}^{*}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}\left(\sigma_{2 \mathrm{p}}\right)^{1}$ bond order $=\mathbf{2 . 5}$, paramagnetic
$\mathrm{N}_{2}{ }^{-1}$: [core electrons] $\left(\sigma_{2 \mathrm{~s}}\right)^{2}\left(\sigma^{*}{ }_{2 \mathrm{~s}}\right)^{2}\left(\pi_{2 \mathrm{p}}\right)^{4}\left(\sigma_{2 \mathrm{p}}\right)^{2}\left(\pi^{*}{ }_{2 p}\right)^{1}$ bond order $=2.5$, paramagnetic
3. names:
a. ethane
b. ethene
c. ethyne or acetylene
d. ethanol
e. methoxy methane or dimethyl ether
f. propanone or acetone
g. ethanal
h. benzene
i. methanol
j. ammonia
\qquad Lab Section: \qquad
Part I: Multiple Choice Questions (100 Points) There is only one best answer for each question.
4. A sample of gas $(24.2 \mathrm{~g})$ initially at 4.00 atm was compressed from 8.00 L to 2.00 L at constant temperature. After the compression, the gas pressure was \qquad atm.
a. $\quad 4.00$
b. $\quad 2.00$
c. $\quad 1.00$
d. $\quad 8.00$
e. 16.0
5. A balloon originally had a volume of 4.39 L at $44^{\circ} \mathrm{C}$ and a pressure of 729 torr. The balloon must be cooled to \qquad ${ }^{\circ} \mathrm{C}$ to reduce its volume to 3.78 L (at constant pressure).
a. 38
b. 0
c. 72.9
d. 273
e. 546
6. If 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy \qquad L at STP.
a. $\quad 3.92$
b. 50.8
c. $\quad 12.9$
d. 25.5
e. 5.08
7. The reaction of 50 mL of Cl_{2} gas with 50 mL of CH_{4} gas via the equation below will produce a total of \qquad mL of products (assume pressure and temperature are kept constant.)

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{Cl}(\mathrm{~g})
$$

a. 100
b. 50
c. 200
d. 150
e. 250
5. The pressure of a sample of CH_{4} gas $(6.022 \mathrm{~g})$ in a 30.0 L vessel at 402 K is \qquad atm.
a. $\quad 2.42$
b. 6.62
c. 0.413
d. 12.4
e. 22.4
6. The density of $\mathrm{N}_{2} \mathrm{O}$ at 1.53 atm and $45.2{ }^{\circ} \mathrm{C}$ is \qquad g / L.
a. $\quad 18.2$
b. 1.76
c. 0.388
d. 9.99
e. 2.58
7. Automobile air bags use the decomposition of sodium azide as their source of gas for rapid inflation per the reaction below. What mass (g) of NaN_{3} is required to provide 40.0 L of N_{2} at $25.0^{\circ} \mathrm{C}$ and 763 torr?

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

a. $\quad 1.64$
b. 1.09
c. 160
d. 71.1
e. 107
8. A vessel contained $\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{He}$, and Ne . The total pressure in the vessel was 987 torr. The partial pressures of nitrogen, argon, and helium were $44.0,486$, and 218 torr, respectively. The partial pressure of neon in the vessel was \qquad torr.
a. $\quad 42.4$
b. 521
c. $\quad 19.4$
d. 239
e. 760
9. Of the following, \qquad has the highest boiling point.
a. $\quad \mathrm{N}_{2}$
b. Br_{2}
c. H_{2}
d. Cl_{2}
e. O_{2}
10. Of the following, \qquad is an exothermic process.
a. melting
b. subliming
c. freezing
d. boiling
e. All of the above are exothermic.
11. The heat of fusion of water is $333 \mathrm{~J} / \mathrm{g}$. The conversion of 50.0 g of ice at $0.0^{\circ} \mathrm{C}$ to liquid water at $22.0^{\circ} \mathrm{C}$ requires how many kilojoules (kJ) of heat?
a. $\quad 3.8 \times 10^{2}$
b. 21.3
c. $\quad 17.2$
d. 0.469
e. Insufficient data are given.
12. Of the following, \qquad is the most volatile.
a. CBr_{4}
b. CCl_{4}
c. CF_{4}
d. CH_{4}
e. $\mathrm{C}_{6} \mathrm{H}_{14}$
13. Potassium metal crystallizes in a body-centered cubic structure with a unit cell edge length of $5.31 \AA$. The radius of a potassium atom is \qquad Å.
a. 1.33
b. $\quad 1.88$
c. 2.30
d. 2.66
e. 5.31
14. As a solid element melts, the atoms become \qquad and they have \qquad attraction for one another.
a. more separated, more
b. more separated, less
c. closer together, more
d. closer together, less
e. larger, greater
15. Which one of the following exhibits dipole-dipole attraction between molecules?
a. XeF_{4}
b. AsH_{3}
c. CO_{2}
d. BCl_{3}
e. Cl_{2}
16. Based on the following information, which compound has the strongest intermolecular forces?

Substance	$\mathbf{\Delta H} \mathbf{V a p}(\mathbf{k J} / \mathbf{m o l})$
Argon (Ar)	6.3
Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	31.0
Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$	39.3
Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$	40.8
Methane $\left(\mathrm{CH}_{4}\right)$	9.2

a. Argon
b. Benzene
c. Ethanol
d. Water
e. Methane
17. The vapor pressure of any substance at its normal boiling point is
a. 1 bar
b. 1 torr
c. 1 atm
d. equal to atmospheric pressure
e. equal to the vapor pressure of water
18. The solubility of oxygen gas in water at $25^{\circ} \mathrm{C}$ and 1.0 atm pressure of oxygen is $0.041 \mathrm{~g} / \mathrm{L}$. The solubility of oxygen in water at 3.0 atm and $25^{\circ} \mathrm{C}$ is \qquad g / L.
a. 0.041
b. 0.014
c. 0.31
d. 0.12
e. 3.0
19. A sample of potassium nitrate $(49.0 \mathrm{~g})$ is dissolved in 101 g of water at $100^{\circ} \mathrm{C}$ with precautions taken to avoid evaporation of any water. The solution is cooled to $30.0^{\circ} \mathrm{C}$ and a small amount of precipitate is observed. This solution is \qquad -.
a. hydrated
b. placated
c. saturated
d. unsaturated
e. supersaturated
20. The concentration of urea in a solution prepared by dissolving 16 g of urea in 39 g of $\mathrm{H}_{2} \mathrm{O}$ is \qquad \% by mass. The molar mass of urea is $60.0 \mathrm{~g} / \mathrm{mol}$.
a. 29
b. 41
c. 0.29
d. 0.41
e. 0.48
21. The concentration of KBr in a solution prepared by dissolving 2.21 g of KBr in 897 g of water is \qquad molal.
a. 2.46
b. 0.0167
c. 0.0207
d. 2.07×10^{-5}
e. 0.0186
22. A solution is prepared by dissolving 15.0 g of NH_{3} in 250.0 g of water. The density of the resulting solution is $0.974 \mathrm{~g} / \mathrm{mL}$. The molarity of NH_{3} in the solution is \qquad .
a. 0.00353
b. 0.882
c. 60.0
d. 3.24
e. 3.53
23. The concentration of sodium chloride in an aqueous solution that is 2.23 M and that has a density of $1.01 \mathrm{~g} / \mathrm{mL}$ is \qquad \% by mass.
a. 2.21
b. 7.83
c. 45.3
d. 12.9
e. 10.1
24. The vapor pressure of pure water at $25^{\circ} \mathrm{C}$ is 23.8 torr. What is the vapor pressure (torr) of water above a solution prepared by dissolving 18.0 g of glucose (a nonelectrolyte, MW $=180.0 \mathrm{~g} / \mathrm{mol}$) in 95.0 g of water?
a. 24.3
b. 23.4
c. 0.451
d. 0.443
e. 23.8
25. Determine the freezing point $\left({ }^{\circ} \mathrm{C}\right)$ of a 0.015 molal aqueous solution of MgSO_{4}. The molal freezing-point-depression constant of water is $1.86^{\circ} \mathrm{C} / \mathrm{m}$. Note: Check your van't Hoff factor!
a. -0.056
b. -0.028
c. -0.17
d. -0.084
e. 0.000

Part II: Short Answer / Calculation. Show all work!

1. A $1.44-\mathrm{g}$ sample of an unknown pure elemental gas occupies a volume of 0.335 L at a pressure of 1.00 atm and a temperature of $100.0^{\circ} \mathrm{C}$. Use this information to determine the identity of the unknown gas. (10 points)

Part II: Short Answer / Calculation (continued) Show all work!

2. The fluorocarbon $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}$ has a normal boiling point of $47.6^{\circ} \mathrm{C}$. The specific heats of $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}(\mathrm{l})$ and $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}(\mathrm{~g})$ are $0.910 \mathrm{~J} / \mathrm{g}-\mathrm{K}$ and $0.670 \mathrm{~J} / \mathrm{g}-\mathrm{K}$, respectively. The heat of vaporization of the compound is $27.49 \mathrm{~kJ} / \mathrm{mol}$. Calculate the heat required to convert 50.0 g of the compound from the liquid at $5.0^{\circ} \mathrm{C}$ to the gas at $80.0^{\circ} \mathrm{C}$ in kilojoules $(\mathrm{kJ}) .(10$ points $)$
3. What is the molar mass of a nonelectrolyte if 6.02 grams dissolved in 30.0 grams of benzene freezes at $-1.55^{\circ} \mathrm{C}$? The freezing point of pure benzene is $5.50^{\circ} \mathrm{C}$ and the freezing point depression constant, K_{fp}, is $-5.12{ }^{\circ} \mathrm{C} / \mathrm{m}$. (10 points)

Extra Credit Question: The nonelectrolyte compound in problem \#3 is found to have the following: 49.31\%C, $\mathbf{6 . 9 0} \mathbf{\%} \mathbf{H}$, and $\mathbf{4 3 . 7 9} \% \mathbf{O}$. Determine the empirical and molecular formulas for the unknown compound. (5 points)

Exam II Name: \qquad Lab Section: \qquad Answers

Part I: Multiple Choice Questions

1. E
2. B
3. D
4. A
5. C
6. E
7. D
8. D
9. B
10. C
11. B
12. D
13. C
14. B
15. B
16. D
17. C
18. D
19. C
20. A
21. C
22. D
23. D
24. B
25. A

Part II: Short Answer / Calculation.

1. xenon gas
2. $\quad 10.36 \mathrm{~kJ}$
3. $146 \mathrm{~g} / \mathrm{mol}$
4. (bonus question) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ (EF), $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$ (MF)
\qquad
\qquad
Multiple Choice Questions (160 Points) There is only one best answer for each question. Good luck!
5. Atomic number describes the number of \qquad in an atom.
a. protons
b. neutrons
c. electrons
d. a and b
e. all of the above
6. Which of the following symbols represents an alpha particle?
a. $\quad{ }_{2}^{4} \mathrm{He}$
b. ${ }_{4}^{2} \mathrm{He}$
c. ${ }_{+1}^{0} \mathrm{e}$
d. ${ }_{-1}^{0} \mathrm{e}$
e. ${ }_{0}^{1} \mathrm{n}$
7. The most penetrating type of radiation is $a(n)$
a. alpha particle
b. beta particle
c. gamma ray
d. positron
e. cathode ray
8. If plutonium-244 decays by successive $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\beta}, \boldsymbol{\alpha}$ emissions, what nucleus is produced?
a. $\quad{ }_{88}^{236} \mathrm{Ra}$
b. $\quad{ }_{89}^{236} \mathrm{Ac}$
c. $\quad{ }_{90}^{236} \mathrm{Th}$
d. $\quad{ }_{90}^{240} \mathrm{Th}$
e. ${ }_{92}^{236} \mathrm{U}$
9. If Ag-106 decays by electron capture, what is the product?
a. $\quad{ }_{46}^{105} \mathrm{Pd}$
b. $\quad{ }_{46}^{106} \mathrm{Pd}$
c. $\quad{ }_{47}^{105} \mathrm{Ag}$
d. ${ }_{48}^{106} \mathrm{Cd}$
${ }_{47}^{107} \mathrm{Ag}$
10. By what (single step) process does polonium-211 decay to lead-207?
a. α particle emission
b. $\quad \beta$ particle emission
c. positron emission
d. electron capture
e. neutron capture
11. The decay of radioactive elements is a first-order process. The half-life of carbon-14 is 5730 years. How many years will it take for 5.0 g of carbon-14 to decay to 1.0 mg ?
a. 5730 years
b. 17,200 years
c. 24,900 years
d. 57,300 years
e. 70,400 years
12. Given the initial rate data for the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$, determine the rate expression for the reaction.

$[\mathrm{A}], \mathrm{M}$	$[\mathrm{B}], \mathrm{M}$	$\underline{\Delta[\mathrm{C}] / \Delta t(\text { initial } \mathrm{M} / \mathrm{s}}$
0.334	0.134	4.11×10^{-9}
0.334	0.187	8.00×10^{-9}
0.668	0.134	4.11×10^{-9}

$\frac{\Delta[\mathrm{C}]}{\Delta t}=2.75 \times 10^{-7} \mathrm{M}^{-2} \mathrm{~s}^{-1}[\mathrm{~A}]^{2}[\mathrm{~B}]$
$\frac{\Delta[\mathrm{C}]}{\Delta t}=3.07 \times 10^{-8} \mathrm{~s}^{-1}[\mathrm{~B}]$
$\frac{\Delta[\mathrm{C}]}{\Delta t}=2.29 \times 10^{-7} \mathrm{M}^{-1} \mathrm{~s}^{-1}[\mathrm{~B}]^{2}$
$\frac{\Delta[\mathrm{C}]}{\Delta t}=6.85 \times 10^{-7} \mathrm{M}^{-2} \mathrm{~s}^{-1}[\mathrm{~A}][\mathrm{B}]^{2}$
e. $\frac{\Delta[\mathrm{C}]}{\Delta t}=1.23 \times 10^{-8} \mathrm{~s}^{-1}[\mathrm{~A}]$
9. For a zero order reaction, which of the following (if plotted versus time) should give a straight line?
a. $\ln [\mathrm{A}]$
b. $\quad \ln k$
c. $\ln [1 / \mathrm{A}]$
d. $1 /[\mathrm{A}]$
e. [A]
10. In basic solution, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$ reacts according to the equation:
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{Cl}^{-}$
The accepted mechanism for the reaction is
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{Cl}^{-} \quad$ (slow)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{OH}^{-} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
(fast)
What is a rate law that is consistent with the mechanism for this reaction?
a. \quad rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]$
b. rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]\left[\mathrm{OH}^{-}\right]$
c. \quad rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}\right]\left[\mathrm{OH}^{-}\right]$
d. rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{Cl}^{-}\right]$
e. \quad rate $=\mathrm{k}\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{Cl}^{-}\right]$
11. The elementary steps for the catalyzed decomposition of dinitrogen monoxide are shown below.

$$
\begin{aligned}
& 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \\
& 2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
\end{aligned}
$$

Which of the following statement(s) is/are CORRECT?

1. The overall balanced reaction is $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$.
2. $\mathrm{NO}(\mathrm{g})$ is a catalyst for the reaction.
3. $\mathrm{N}_{2}(\mathrm{~g})$ is a reaction intermediate.
a. 1 only
b. 2 only
c. 3 only
d. 1 and 2
e. 1,2, and 3
4. What is the half-life for a first-order reaction with a rate constant of $0.291 \mathrm{~s}^{-1}$?
a. $\quad 0.420 \mathrm{~s}$
b. $\quad 1.93 \mathrm{~s}$
c. 2.38 s
d. 6.87 s
e. $\quad 13.1 \mathrm{~s}$
5. The effect of adding a catalyst to a reaction is to
a. increase the number of collisions between reactants
b. increase the energy of the products
c. increase the equilibrium constant of a reaction
d. lower the activation energy of a reaction
e. decrease the enthalpy change of a reaction
6. Which of the following elements is most likely to form compounds with an expanded valence shell?
a. P
b. Ne
c. F
d. Li
e. N
7. Which of the following combinations is most likely to produce an ionic bond?
a. Cl and Br
b. $\quad \mathrm{P}$ and S
c. N and O
d. B and O
e. Li and F
8. Which of the following aqueous solutions would have the highest vapor pressure at $25^{\circ} \mathrm{C}$?
a. pure water
b. 1 m glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
c. $1 \mathrm{~m} \mathrm{NaNO}_{3}$
d. $1 \mathrm{~m} \mathrm{MgCl}_{2}$
e. $1 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
9. What is the formal charge on each atom in a hypobromite ion, OBr^{-1} ?
a. $\quad \mathrm{O}=-2, \mathrm{Br}=-1$
b. $\mathrm{O}=-2, \mathrm{Br}=+1$
c. $\mathrm{O}=-1, \mathrm{Br}=+1$
d. $\mathrm{O}=-1, \mathrm{Br}=0$
e. $\mathrm{O}=0, \mathrm{Br}=-1$
10. Use VSEPR theory to predict the molecular geometry of HCN .
a. bent
b. linear
c. trigonal planar
d. tetrahedral
e. octahedral
11. How many sigma (σ) bonds and pi (π) bonds are in acetylene, $\mathrm{C}_{2} \mathrm{H}_{2}$?
a. one σ, one π
b. two σ, two π
c. three σ, one π
d. three σ, two π
e. four σ, one π
12. One product of the combustion of ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$, is carbon dioxide. What change in hybridization of the carbon occurs in this reaction?
a. sp^{3} to sp^{2}
b. sp^{2} to sp
c. sp^{3} to $\mathrm{sp}^{3} \mathrm{~d}$
d. sp^{2} to $\mathrm{sp}^{3} \mathrm{~d}^{2}$
e. sp^{2} to sp
13. Use molecular orbital theory to predict which ion is paramagnetic.
a. $\quad \mathrm{C}_{2}{ }^{2-}$
b. $\mathrm{O}_{2}{ }^{2-}$
c. $\mathrm{O}_{2}{ }^{2+}$
d. $\quad \mathrm{N}_{2}{ }^{2-}$
e. $\quad \mathrm{B}_{2}{ }^{2-}$
14. Which of the following molecules may be a cycloalkane?
a. $\mathrm{C}_{3} \mathrm{H}_{8}$
b. $\mathrm{C}_{4} \mathrm{H}_{6}$
c. $\mathrm{C}_{5} \mathrm{H}_{12}$
d. $\mathrm{C}_{6} \mathrm{H}_{12}$
e. $\mathrm{C}_{7} \mathrm{H}_{16}$
15. The empirical formula of a certain hydrocarbon is CH_{2}. When 0.120 mole of the hydrocarbon is completely combusted with excess oxygen, $17.7 \mathrm{~L} \mathrm{CO}_{2}$ gas is produced at $27^{\circ} \mathrm{C}$ and 1.00 atm . What is the molecular formula of the hydrocarbon?
a. $\mathrm{C}_{2} \mathrm{H}_{2}$
b. $\mathrm{C}_{2} \mathrm{H}_{4}$
c. $\mathrm{C}_{3} \mathrm{H}_{6}$
d. $\mathrm{C}_{5} \mathrm{H}_{10}$
e. $\mathrm{C}_{6} \mathrm{H}_{12}$
16. An unknown gaseous hydrocarbon contains $85.63 \% \mathrm{C}$. Its density is $0.426 \mathrm{~g} / \mathrm{L}$ at 0.465 atm and 373 K . What is the molecular formula of the gas?
a. $\mathrm{C}_{2} \mathrm{H}_{4}$
b. $\mathrm{C}_{3} \mathrm{H}_{6}$
c. $\mathrm{C}_{4} \mathrm{H}_{8}$
d. $\mathrm{C}_{5} \mathrm{H}_{10}$
e. $\mathrm{C}_{6} \mathrm{H}_{12}$
17. What intermolecular force or bond is primarily responsible for the solubility of $\mathrm{H}_{2} \mathrm{~S}$ in water?
a. ion-dipole force
b. dipole-dipole force
c. ionic bonding
d. covalent bonding
e. hydrogen bonding
18. What is the solute mole fraction of $1.98 \mathrm{~m} \mathrm{Fe}_{\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq}) \text { ? The molar mass of } \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \text { is } 241.9 \mathrm{~g} / \mathrm{mol} \text { and the molar mass of }{ }^{\text {a }} \text {. }}$ water is $18.02 \mathrm{~g} / \mathrm{mol}$.
a. 0.0345
b. 0.0641
c. 0.324
d. 0.479
e. 0.863
19. Concentrated hydrofluoric acid is 28.9 M and has a density of $1.18 \mathrm{~g} / \mathrm{mL}$. What is the weight percent of concentrated HF?
a. 24.5%
b. 49.0%
c. 51.0%
d. 68.2%
e. 75.5%
20. The Henry's law constant for N_{2} in water at $37^{\circ} \mathrm{C}$ is $8.2 \times 10^{-7} \mathrm{M} / \mathrm{mm} \mathrm{Hg}$. What is the equilibrium concentration of N_{2} in water when the partial pressure of N_{2} is 634 mm Hg ?
a. $\quad 1.3 \times 10^{-9} \mathrm{M}$
b. $\quad 5.2 \times 10^{-4} \mathrm{M}$
c. $\quad 1.9 \times 10^{-2} \mathrm{M}$
d. $\quad 1.9 \times 10^{3} \mathrm{M}$
e. $\quad 7.7 \times 10^{8} \mathrm{M}$
21. Which of the following species will have a Lewis structure most like that of a sulfate ion, $\mathrm{SO}_{4}{ }^{2-}$? Assume that the Lewis structure has no double bonds.
a. NH_{3}
b. CBr_{4}
c. SO_{3}
d. $\mathrm{H}_{2} \mathrm{CO}$
e. $\mathrm{H}_{2} \mathrm{O}$
22. Use Lewis structures to predict the bond order for a nitrogen-oxygen bond in the nitrite ion, $\mathrm{NO}_{2}{ }^{1-}$.
a. $1 / 2$
b. 1
c. $4 / 3$
d. $3 / 2$
e. 3
23. For $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq})$, the solvent is
a. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
b. $\mathrm{NH}_{4}{ }^{+}$
c. $\quad \mathrm{NO}_{3}{ }^{1-}$
d. water
e. Duff beer
24. Determine which of the following species is paramagnetic.
a. NO^{+1}
b. CO
c. CN^{-1}
d. OF^{-1}
e. NO
\qquad
\qquad

Answers

Part I: Multiple Choice Questions

1. A
2. A
3. C
4. E
5. B
6. A
7. E
8. C
9. E
10. A
11. D
12. C
13. D
14. A
15. E
16. A
17. D
18. B
19. D
20. E
21. D
22. D
23. E
24. A
25. B
26. A
27. B
28. B
29. B
30. D
31. D
32. E

[^0]: Have a great quarter! Peace,
 Michael A. Russell, Ph.D. (he/him/his)
 mike.russell@mhcc.edu
 (503) 491-7348, AC 2568 (office on campus)
 mhchem.org/222

[^1]: Element $=$ Show relevant work below

[^2]: Element $=$ Show relevant work below

[^3]: Simple cubic unit cell.
 Note that each atom is at a corner of a unit cell and is shared among 8 unit cells.

[^4]: A. CuO
 B. $\mathrm{Cu}_{2} \mathrm{O}$
 C. CuO_{2}
 D. $\mathrm{Cu}_{2} \mathrm{O}_{3}$
 E. $\mathrm{Cu}_{4} \mathrm{O}_{9}$

[^5]: Isotopes of boron have different \# of neutrons but

[^6]: Alkynes
 Elemental Formula: $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{2 \mathrm{n}-2}$ or $\mathbf{R}-\mathbf{C} \equiv \mathbf{C}-\mathbf{R}$

 Nomenclature Guidelines: Count number of carbons; then alkyl -yl +yne
 Example: $\mathbf{C H}_{3} \mathbf{C} \equiv \mathbf{C H}$ - propyne - three carbons like propane
 Example: $\mathbf{C H}_{\mathbf{3}} \mathbf{C} \equiv \mathbf{C C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{3}$ - 2-hexyne - six carbons, hexane
 Example: $\mathbf{C H}_{3} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C} \equiv \mathbf{C H}$ - 1-pentyne - note that the number indicates starting position of triple bond, i.e. 2-pentyne is $\mathbf{C H}_{3} \mathbf{C H}_{2} \mathbf{C} \equiv \mathbf{C C H}_{3}$

[^7]: The flowchart below can help you decide which intermolecular force acts upon a particular substance.

