CH 222 "q&d" Guide to Nuclear Chemistry

"q&d" = "Quick 'n' Dirty"

$$^{A}_{Z}X^{n+\!/-}$$

$$\begin{split} X &= \text{element symbol} \\ n &= \text{element charge (if any)} \\ Z &= \text{atomic number (number of protons)} \\ A &= \text{mass number (number of protons + neutrons)} \end{split}$$

Types of Radiative Processes

<u>Alpha Decay</u> :	Lose ${}_{2}^{4}$ He	Example:	$^{234}_{92}$ U $\rightarrow ^{4}_{2}$ He + $^{230}_{90}$ Th	Note 1
<u>Beta Decay</u> :	Lose $_{-1}^{0}$ e	Example:	$^{235}_{92}U \rightarrow ^{0}_{-1}e + ^{235}_{93}Np$	Note 4
Gamma Decay:	Emit Energy	Example:	$^{99m}_{43}$ Tc $\rightarrow \gamma + ^{99}_{43}$ Tc	Note 2
Positron Emission:	Lose $_{+1}^{0}$ e	Example:	${}^{207}_{84}\text{Po} \rightarrow {}^{0}_{+1}\text{e} + {}^{207}_{83}\text{Bi}$	Notes 3, 4
Electron Capture:	Gain _1 ⁰ e	Example:	${}^{7}_{4}\text{Be} + {}^{0}_{-1}\text{e} \rightarrow {}^{7}_{3}\text{Li}$	Note 4
<u>Neutron Capture</u> :	Gain 1_0 n	Example:	${}_{3}^{6}\text{Li} + {}_{0}^{1}\text{n} \rightarrow {}_{2}^{4}\text{He} + {}_{1}^{3}\text{H}$	
Note 1:	The alpha particle is actually charged, having a charge of +2. This makes the other product have a negative -2 charge (conservation of charge), but the charges of the ions are rarely considered in nuclear chemistry.			
Note 2:	Gamma emissions have energies in the range of roughly 1 MeV ($1.6*10^{-13}$ J).			
Note 3:	A <u>positron</u> is an <i>antielectron</i> (a particle of antimatter) - when a positron and an electron collide, they annihilate each other $\binom{0}{+1}e + \frac{0}{-1}e \rightarrow 2\gamma$).			
Note 4:	The beta decay process produces an <u>antineutrino</u> in addition to the other products, while the positron emission and electron capture processes result in the creation of a <u>neutrino</u> . This is due to the <u>conservation of spin</u> concept, but you need not concern yourself about neutrinos in <i>this</i> CH 222 class!			