A Comparison of Various Concentration Units

Name	<u>Units</u>	Advantages	<u>Disadvantages</u>
Molarity (M)	mol solute / L solution	Useful in stoichiometry; measure by volume	Temperature dependent; must know density to find solvent mass
Molality (m)	mol solute / kg solvent	Temperature independent; useful in special applications	Measure by mass; must know density to convert to molarity
		Examples: Boiling point elevation: $\Delta T = K_{bp}m$	
		Freezing point depression: $\Delta T = K_{fp}m$	
Mole Fraction (χ)	none	Temperature independent; useful for special applications	Measure by mass; must know density to convert to molarity
		Example: Raoult's Law: $P_{solvent} = \chi_{solvent} P_{solvent}$	
Weight Percent	none (%)	Temperature independent; useful for small amounts	Measure by mass; must know density to convert to molarity