The Structure of Atoms and Periodic Trends *Chapter Six Part 2*

Arrangement of Electrons in Atoms

Electrons in atoms are arranged as

Arrangement of Electrons in Atoms

- Each orbital can be assigned no more than 2 electrons!
- This is tied to the existence of a 4th quantum number, the electron spin quantum number, m_s.
- m_s arises naturally when relativity (Einstein) combined with quantum mechanics (Paul Dirac)

Electron spin can be proven experimentally. Two spin directions are given by m_s where m_s = +1/₂ and -1/₂. Leads to magnetism in atoms and ions

MAR

In ferromagnetic substances the orientations of magnetic fields from unpaired electrons are affected by spins from electrons around them.

Magnetism

Electron Spin Quantum Number

Diamagnetic: NOT attracted to a magnetic field; spin paired. Paramagnetic: substance is attracted to a magnetic field. Substance has unpaired electrons.

MAR

MAR

See: Quantum Numbers Handout

No two electrons in the same atom can have the same set of 4 quantum numbers.

That is, each electron has a unique address which will consist of its own values of n, l, m_l and m_s.

Wolfgang Pauli

Electrons in Atoms - the Pauli Exclusion Principle

When $n = 1$, then $l = 0$ and $m_l = 0$			
this shell has a single orbital (1s) to which			
2e- can be assigned			
$n = 1, I = 0, m_I = 0, m_s = +1/_2$ - this is ele $n = 1, I = 0, m_I = 0, m_s = -1/_2$ - this is ele	ectro ectro	on # on #	1
When n = 2 , then I = 0 (s), 1 (p)	1	n 2	

	2s orbital	2e-		
	three 2p orbitals	6e-		umbe
	TOTAL =	8e-		ctron n
"No two electrons in the same atom can have the same set of 4 quantum numbers."				elec

Electrons in Atoms

When I	n = 3, then $I = 0$ (s	s), 1 (p), 2 (d)
35 or	bital	2e-
three	e 3p orbitals	6e-
five 🕄	d orbitals	10e-
TOTA	AL =	18e-
fou	ir quantum number	set or s!
мар	Wolfgang Pauli	(k) (ky) (ky) (ky) (ky) (k) (k) (k) (k) (k) (k) (k) (k

		n	1	m	ms	
	1	3	0	0	1/2	3s
	2 3 0	0	0	-1/2	3s	
	3	3	1	-1	1/2	Зр
	4	3	1	-1	-1/2	Зр
	5	3	1	0	1/2	Зр
	6	3	1	0	-1/2	Зр
2	7	3	1	+1	1/2	Зр
nbe	8	3	1	+1	-1/2	Зр
Inu	9	3	2	-2	1/2	3d
tron	10	3	2	-2	-1/2	3d
elec	11	3	2	-1	1/2	3d
	12	3	2	-1	-1/2	3d
	13	3	2	0	1/2	3d
	14	3	2	0	-1/2	3d
	15	3	2	+1	1/2	3d
	16	3	2	+1	-1/2	3d
	17	3	2	+2	1/2	3d
	18	3	2	+2	-1/2	3d

2s

2s

2р 2р

2р

-1/2 2p

2 0 0

2 1 -1 1/2

2

2 1 0 -1/2 2р

0 0 -1/2

1

-1 -1/2

+1 +1 1/2

2 2

3 4

. 5 6 2 1 0 1/2 2р

7 2 1

8 2 1

Assigning Electrons to Atoms

- Electrons generally assigned to orbitals of successively higher energy.
- For H atoms, E = Rhc(1/n²). E depends only on n.
- For many-electron atoms, energy depends on both n and I... introducing the "n + I" rule

Assigning Electrons to Subshells

- In H atom all subshells of same n have same energy.
- In many-electron atom:
- a) subshells increase in energy as value of n + I increases. (The *important* n + I rule)
- b) for subshells of same n + I, subshell with lower n is lower in energy.

See <u>Electron Configurations</u> <u>Handout</u>

Using the n + I rule assumes zero point energy - the lowest energy state possible, or ground state

MAR

MAR

One electron has n = 1, l = 0, m_l = 0, m_s = + 1/2 Other electron has n = 1, l = 0, m_l = 0, m_s = - 1/2

MAR

MAR

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn <mark>Sb</mark> a Hf Ta W Re Os Ir Pt Au Hg T1 Pb Bi Ic Rf Ha Sg Ns Hs Mt

> Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Atomic Electron Configurations

65

55

40

28

Order

MAR

Electron Configurations and the Periodic Table

Group 1A Atomic number = 11 1s² 2s² 2p⁶ 3s¹ or "neon core" + 3s1

[Ne] 3s¹ (uses noble gas notation) And: we have begun a new period! All Group 1A elements have [core]ns¹ configurations.

MAR

MAR

Atomic number = 15 1s² 2s² 2p⁶ 3s² 3p³ or [Ne] 3s² 3p³

All* Group 5A elements have

[core] ns² np³ configurations where n is the period number.

28

ł

1s

* some have (n-1)d10 also

MAR

MAR

Transition Metals

Iron: Zinc: **Technetium:** Niobium: Osmium: Meitnerium: notice f orbitals in 6th period & beyond

Redox Reactions

Why do metals lose electrons in their reactions?

Why does Mg form Mg²⁺ ions and not Mg³⁺?

Why do nonmetals take on electrons?

Ionization Energy
Mg (g) + <mark>738 kJ</mark> > Mg ⁺ (g) + e-
Mg⁺(g) + 1451 kJ> Mg²+(g) + e-
Mg ²⁺ (g) + 7733 kJ> Mg ³⁺ (g) + e-
Mg⁺ has 12 protons and only 11 electrons.

Therefore, IE for Mg⁺ > Mg.

IE = energy required to remove an electron from an atom in the gas phase.

MAR

MAR

Trends in Ionization Energy

Ionization Energy increases moving right across a period and up a group on the periodic table

Metals lose electrons more easily than nonmetals. Metals are good reducing

agents. Nonmetals lose electrons

with difficulty.

Periodic Trend in the Reactivity of Alkali Metals with Water

Lithium

MAR

Trends in Ionization Energy

Trends in Electron Affinity

	(1)							(18)
Electron Affinity	Н -72.6	2A (2)	3A (13)	4A (14)	5A (15)	6A (16)	7A (17)	He (0.0)*
move right across a	Li -59.6	Be >0	В -26.7	С -122	N +7	0 -141	F -328	Ne (+29)*
period (EA becomes more	Na -52.9	Mg >0	Al -42.5	Si -134	Р -72.0	S -200	C1 -349	Ar (+35)*
negative).	К -48.4	Ca -2.4	Ga -28.9	Ge -119	As -78.2	Se -195	Br -325	Kr (+39)*
increases as you	Rb -46.9	Sr -5.0	In -28.9	Sn -107	Sb -103	Те -190	I -295	Xe (+41)*
(EA becomes more	Cs -45.5	Ba -14	T1 -19.2	Рь -35.2	Bi -91.3	Po -183.3	At -270*	Rn (+41)*
negative).	*Calculat	ed values						

MAR

Electron Affinity values (kJ/mol)

8A

Trends in Electron Affinity

Notice: $EA_{(F)} < EA_{(CI)}$

unknown mechanism. electron repulsion?

atom size?

Implications of Periodic Trends

Useful in predicting reactivities, chemical formulas, etc.

Metals: low ionization energy, give up electrons easily Nonmetals: high electron affinity, love electrons from metals

MAR

HATE TELLING NOBLE GAS MAR

HERE'S NEVER A REACTIO

See also:

- · Chapter Six Part 2 Study Guide
- <u>Chapter Six Part 2 Concept Guide</u>
- · Important Equations (following this slide)
- End of Chapter Problems (following this slide) MAR

Important Equations, Constants, and Handouts from this Chapter:

- quantum numbers: know the origin and meaning of n, l, m_I, m_s • understand paramagnetism and diamagnetism for atoms and
- ions
- know "nl" notation (4s, 3d, etc.) and the "n + l" rule for energy
- know how the Pauli Exclusion Theory and Hund's Rule apply towards electrons in orbitals; know the Aufbau Principle
- know how to create electron configurations for neutral atoms and also cations and anions using both orbital box and spectroscopic notation
- · know the periodic trends for size, ion size, ionization energy and electron affinity

Page III-6b-11 / Chapter Six Part II Lecture Notes

MAR

MAR

End of Chapter Problems: Test Yourself

- Depict the electron configuration for arsenic (As) using *spdf* notation.
 Using orbital box diagrams and/or noble gas notation, depict the electron configurations of the following: (a) V, (b) V²⁺, and (c) V⁵⁺. Are any of the ions paramagnetic? How many unpaired electrons are in each species?
 Arrange the following elements in order of increasing size: Al, B, C, K, and Na.
 Name the element corresponding to each characteristic below.

 a. the element with the electron configuration 1s²2s²2p³3²3³
 b. the alkaline earth element with the smallest atomic radius
 the element with the largest ionization energy in Group 5A
 d. the element with the most negative electron affinity in Group 6A
 f. the element whose electron configuration is [Ar]3d¹⁰4s²

MAR

End of Chapter Problems: Answers

- [Ar]3d¹⁰4s²4p³ or 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p³
 V: [Ar]4s²3d³ (paramagnetic, 3 unpaired electrons); V²*: [Ar]3d³ (paramagnetic, 3 unpaired electrons); V⁵*: [Ar] (diamagnetic, 0 unpaired electrons); 3. C < B < Al < Na < K 4. a. P b. Be c. N d. Tc e. O f. Zn