The Structure of Atoms and Periodic Trends
Chapter Six Part 2

Periodic Table of the Elements

Arrangement of Electrons in Atoms

Electrons in atoms are arranged as

MAR

Arrangement of Electrons in Atoms

Each orbital can be assigned no more
than 2 electrons!

This is tied to the existence of a 4th
quantum number, the electron spin
quantum number, m_{s}.
m_{s} arises naturally when relativity
(Einstein) combined with quantum mechanics (Paul Dirac)

Electron
Spin
Quantum
Number,
m_{s}

Electron spin can be proven experimentally. Two spin directions are given by m_{s} where m_{s} $=+1 / 2$ and $-1 / 2$.
Leads to magnetism in atoms and ions

Magnetism

In diamagnetic systems,
(1) (1) (1) (I) all electron spins are paired - no net magnetic
(I) (1) (1) (1) moment.
(1) (I) (1) (I)

(I) (1) (I) (1)

Electron Spin Quantum Number

Diamagnetic: NOT attracted to a magnetic field; spin paired.
Paramagnetic: substance is attracted to a magnetic field. Substance has unpaired electrons.

Electrons in Atoms - the Pauli Exclusion Principle
When $\mathrm{n}=1$, then $\mathrm{I}=0$ and $\mathrm{m}_{\mathrm{I}}=0$
this shell has a single orbital (1s) to which $2 \mathrm{e}-$ can be assigned

$$
\begin{aligned}
& n=1, I=0, m_{I}=0, m_{s}=+1 / 2 \text { - this is electron \#1 } \\
& n=1, I=0, m_{I}=0, m_{s}=-1 / 2 \quad \text { - this is electron \#2 }
\end{aligned}
$$

When $\mathrm{n}=2$, then $\mathrm{I}=0(\mathrm{~s}), 1$ (p)

	$\stackrel{1}{9}$	1	2	0	0	1/2	2s
2s orbital 2e-		2	2	0	0	-1/2	2s
three $2 p$ orbitals 6e-		3	2	1	-1	1/2	$2 p$
TOTAL = 8e-		5	2	1	0	1/2	$2 p$
"No two electrons in the same		6	2	1	0	-1/2	$2 p$
atom can have the same set		7	2	1	+1	1/2	$2 p$
of 4 quantum numbers."		8	2	1	+1	-1/2	$2 p$

Paramagnetic: substance is attracted to a magnetic field. Substance has unpaired electrons.

Diamagnetic: NOT attracted to a magnetic field MAR

No two electrons in the same atom can have the same set of 4 quantum numbers.
That is, each electron has a unique address which will consist of its own values of n, I, m_{l} and m_{s}.

Wolfgang Pauli

Electrons in Atoms

When $\mathrm{n}=3$, then $\mathrm{I}=0(\mathrm{~s}), 1(\mathrm{p}), 2(d)$
3 s orbital
three 3 p orbitals
five 3 d orbitals
TOTAL $=$
$6 \mathrm{e}-$

Each electron has its own set of four quantum numbers!

MAR
Wolfgang Pauli

2e-
$6 \mathrm{e}-$

18e-

n					l
c	m_{l}	m_{s}			
1	3	0	0	$1 / 2$	$3 s$
2	3	0	0	$1 / 2$	$3 s$
3	3	1	-1	$1 / 2$	$3 p$
4	3	1	-1	$1 / 2$	$3 p$
5	3	1	0	$1 / 2$	$3 p$
6	3	1	0	$1 / 2$	$3 p$
7	3	1	+1	$1 / 2$	$3 p$
8	3	1	+1	$-1 / 2$	$3 p$
9	3	2	-2	$1 / 2$	$3 d$
10	3	2	-2	$1 / 2$	$3 d$
11	3	2	-1	$1 / 2$	$3 d$
12	3	2	-1	$1 / 2$	$3 d$
13	3	2	0	$1 / 2$	$3 d$
14	3	2	0	$1 / 2$	$3 d$
15	3	2	+1	$1 / 2$	$3 d$
16	3	2	+1	$1 / 2$	$3 d$
17	3	2	+2	$1 / 2$	$3 d$
18	3	2	+2	$1 / 2$	$3 d$

Electrons in Atoms

MAR

When $\mathrm{n}=4, \mathrm{I}=\mathbf{0}(\mathrm{s}), \mathbf{1}(\mathrm{p}), \mathbf{2}(\mathrm{d}), \mathbf{3}(\mathrm{f})$
4 s orbital 2 e -
three $4 p$ orbitals 6e-
five 4d orbitals
seven 4 f orbitals TOTAL =

Assigning Electrons to Atoms

Electrons generally assigned to orbitals of successively higher energy.
For H atoms, $\mathrm{E}=-\mathrm{Rhc}\left(1 / \mathrm{n}^{2}\right)$. E depends only on n.
For many-electron atoms, energy depends on both n and $\mathrm{I} .$. introducing the " $\mathrm{n}+\mathrm{l}$ " rule

Aufbau comes from a German word meaning "building up", formulated by

Distribution of Electrons in Shells

Writing Atomic Electron Configurations

One electron has $n=1, I=0, m_{l}=0, m_{s}=+1 / 2$
Other electron has $n=1, I=0, m_{l}=0, m_{s}=-1 / 2$

Electron Configurations and the Periodic Table

Beryllium

Group 2A
Atomic number $=4$
$\mathbf{1 s}^{\mathbf{2}} \mathbf{2 s}^{2}$---> 4 total electrons
diamagnetic

Atomic Electron Configurations Diagram

MAR

MAR

MAR

Lithium

Group 1A
Atomic number $=3$ 1s ${ }^{\mathbf{2}} \mathbf{2 s}^{1}$---> 3 total electrons paramagnetic

Boron

Group 3A
Atomic number $=5$
$\mathbf{1 s}^{2} \mathbf{2} \mathbf{s}^{2} \mathbf{2 p}{ }^{1}$--->
5 total electrons paramagnetic

Neon

Group 8A
Atomic number $=10$
1s ${ }^{2} \mathbf{2 s}^{2} \mathbf{2 p}{ }^{6}$--->
10 total electrons
diamagnetic
Note that we have reached the end of the 2nd period, and the 2 nd shell is full!

Fluorine

Group 7A
Atomic number $=9$ 1s ${ }^{\mathbf{2}} \mathbf{2 s}^{\mathbf{2}} \mathbf{2 p}{ }^{5}$--->

9 total electrons paramagnetic

MAR

Electron Configurations of p-Block Elements

Phosphorus

Group 5A
Atomic number $=15$ 1s ${ }^{2}$ 2s ${ }^{2}$ 2p ${ }^{6}$ 3s \mathbf{s}^{2} 3p ${ }^{3}$ or [Ne] 3s ${ }^{2} \mathbf{3 p}^{3}$

All* Group 5A elements have [core] ns ${ }^{2} \mathrm{np}^{3}$ configurations where n is the period number.

* some have (n-1)d ${ }^{10}$ also

Transition Metals

Fourth Period Electron Configurations

Electron Configuration Anomalies

Chromium, copper and other elements do not follow the $n+\boldsymbol{l}$ filling orders
Anomalies arise from stability associated with half-filled and completely filled d-subshells.
Know how $n+l$ rule works, and know that anomalies exist on the periodic table

Anion Configurations

To form anions from elements add 1 or more eusing normal $n+1$ rules
$P[\mathrm{Ne}] 3 s^{2} 3 p^{3}+3 e-\cdots \quad P^{3}[\mathrm{Ne}] 3 s^{2} 3 p^{6}$
Anion Configurations

To form anions from elements add 1 or more e-
using normal $n+1$ rules
$P[\mathrm{Ne}] \mathbf{3 s}^{2} 3 p^{3}+3 e-\cdots \quad P^{3-}[\mathrm{Ne}] 3 s^{2} 3 p^{6}$

Cation Configurations

To form cations from elements remove 1 or more e - from subshell of highest n [or highest $(\mathrm{n}+\mathrm{l})$]. $P[\mathrm{Ne}] 3 \mathbf{s}^{2} 3 \mathrm{p}^{3}-3 \mathrm{e}-\cdots \mathrm{P}^{3+}[\mathrm{Ne}] 3 \mathbf{s}^{2}$

Lanthanides and Actinides

All these elements have the configuration [core]ns $\mathrm{x}(\mathrm{n}-1) \mathrm{dy}(\mathrm{n}-2) \mathrm{fz}$ and so are "f-block" elements

Transition Metals

Iron:
Zinc:
Technetium:
Niobium:
Osmium:
Meitnerium:
notice f orbitals in 6th period \& beyond

MAR

Periodic Trends

CH 221 Q\&D Guide to Periodic Trends:

- Atomic and ionic size: increase left and down
- Ionization energy and Electron affinity: increase right and up
- See Periodic Trends Handout

Electrons held more tightly

Ion Configurations

For transition metals, remove ns electrons and then ($\mathrm{n}-1$) electrons.
$\mathrm{Fe}[\mathrm{Ar}] \mathbf{4 s}^{\mathbf{2}} \mathbf{3 \mathrm { d } ^ { 6 }} \boldsymbol{- - - >} \mathrm{Fe}^{2+}[\mathrm{Ar}] \mathbf{3 d}{ }^{6}$ $--->\mathrm{Fe}^{3+}[\mathrm{Ar}] \mathbf{d}^{5}$

Magnetic Properties

Magnetic properties of ions assist us with charges DIAMAGNETIC ions have no unpaired electrons. Ions with unpaired electrons are PARAMAGNETIC.
As number of unpaired electrons increases, the degree of paramagnetism also increases

$\mathbf{Z n}^{2+}$
diamagnetic

paramagnetic,
4 unpaired e^{-s}

CH 221 Periodic Trends "Cheat Sheet"

Increasing ionization energy
Decreasing atomic radius
Increasing nonmetallic character and electronegativity Decreasing metallic character

Atomic Size

Size increases as you go down a group.
Because electrons are added further from the nucleus, there is less attraction.
Size increases as you go left across a period.

$\xrightarrow{\text { Ion Sizes }}$| Li,152 pm |
| :--- |
| 3e and 3 p |\quad| Does the size go |
| :--- |
| up or down when |
| losing an |
| electron to form a |
| cation? |

Atomic

Ion Sizes		
$\begin{aligned} & \mathrm{Li}, 152 \text { pm } \\ & 3 \mathrm{e} \text { and } 3 \mathrm{p} \end{aligned}$	$\xrightarrow[\substack{\mathrm{Li}+, 60 \mathrm{pm} \\ 2 \mathrm{e} \text { and } 3 \mathrm{p}}]{\oplus}$	Forming a cation.
CATIONS are SMALLER than the atoms from which they come.		
- The electron/proton attraction has increased, and so size DECREASES.		

$\longrightarrow \xrightarrow{\text { IOn Sizes }}$| Does the size go up or |
| :--- |
| down when gaining an |
| 9 em and 9 p |\quad| electron to form an |
| :--- |
| anion? |

Ionization Energy

Mg^{+}has 12 protons and only 11 electrons. Therefore, IE for $\mathbf{M g}^{+} \mathbf{>} \mathbf{M g}$.

IE = energy required to remove an electron from an atom in the gas phase.

Trends in Ionization Energy

Ionization Energy
increases moving right
across a period and up a
group on the periodic
table
Metals lose electrons more
easily than nonmetals.
Metals are good reducing
agents.
Nonmetals lose electrons
with difficulty.

Redox Reactions

Why do metals lose electrons in their reactions?
Why does $\mathbf{M g}$ form $\mathbf{M g}^{2+}$ ions and not $\mathbf{M g}^{3+}$?

Why do nonmetals take on electrons?

Trends in Ionization Energy

Periodic Trend in the

Lithium

Sodium

Potassium

Electron Affinity

MAR

Trends in Electron Affinity

Notice: $E A_{(F)}<E A_{(C l)}$ unknown mechanism, electron repulsion?
atom size?

See also:

- Chapter Six Part 2 Study Guide
- Chapter Six Part 2 Concept Guide

MAR - End of Chapter Problems (following this slide)
Trends in Electron Affinity

Electron Affinity increases as you move right across a period (EA becomes more negative).	$\begin{aligned} & \text { 1A } \\ & (1) \end{aligned}$							$\begin{aligned} & 8 \mathrm{~A} \\ & (18) \end{aligned}$
	$\begin{gathered} \mathrm{H} \\ -72.6 \end{gathered}$	2A	$\begin{gathered} 3 \mathrm{~A} \\ (13) \end{gathered}$	$\begin{gathered} 4 \mathrm{~A} \\ (14) \end{gathered}$	$\begin{gathered} 5 \mathrm{~A} \\ (15) \end{gathered}$	$\begin{aligned} & 6 \mathrm{~A} \\ & (16) \end{aligned}$	$\begin{gathered} 7 \mathrm{~A} \\ (17) \end{gathered}$	$\begin{gathered} \mathrm{He} \\ (0.0)^{*} \end{gathered}$
	$\begin{array}{\|c\|} \hline \mathrm{Li} \\ -59.6 \end{array}$	$\begin{gathered} \mathrm{Be} \\ >0 \end{gathered}$	[$\begin{gathered}\text { B } \\ -26.7\end{gathered}$	C -122	N +7	$\begin{array}{c\|} \hline \mathrm{O} \\ -141 \end{array}$	$\begin{gathered} \hline \mathrm{F} \\ -328 \end{gathered}$	$\underset{\substack{\mathrm{Ne} \\(+29)^{*} \\ \hline}}{\text { a }}$
	$\begin{array}{\|c\|} \hline \mathrm{Na} \\ -52.9 \end{array}$	$\underset{>0}{\mathrm{Mg}}$	Al -42.5	$\begin{array}{c\|} \hline \mathrm{Si} \\ -134 \end{array}$	$\begin{array}{c\|} \hline \mathrm{P} \\ -72.0 \end{array}$	$\begin{gathered} \hline \mathrm{S} \\ -200 \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{Cl} \\ -349 \end{array}$	$\begin{gathered} \mathrm{Ar} \\ (+35)^{*} \end{gathered}$
	$\begin{array}{\|c\|} \hline \mathrm{K} \\ -48.4 \\ \hline \end{array}$	$\begin{gathered} \mathrm{Ca} \\ -2.4 \end{gathered}$	Ga -28.9	$\begin{array}{\|c\|} \hline \mathrm{Ge} \\ -119 \end{array}$	$\begin{array}{\|c\|} \hline \text { As } \\ -78.2 \end{array}$	$\begin{gathered} \hline \mathrm{Sc} \\ -195 \end{gathered}$	$\begin{gathered} \mathrm{Br} \\ -325 \end{gathered}$	$\begin{gathered} \mathrm{Kr} \\ (+39)^{*} \end{gathered}$
increases as you	$\left\lvert\, \begin{gathered} \mathrm{Rb} \\ -46.9 \end{gathered}\right.$	$\begin{gathered} \mathrm{Sr} \\ -5.0 \end{gathered}$	In -28.9	$\begin{array}{\|c\|} \hline \mathrm{Sn} \\ -107 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Sb} \\ -103 \end{array}$	$\begin{gathered} \mathrm{Te} \\ -190 \\ -10 \end{gathered}$	$\underset{-295}{\mathrm{I}}$	$\underset{(+41)^{*}}{\mathrm{Xe}}$
move up a group (EA becomes more	$\left\lvert\, \begin{gathered} \mathrm{Cs} \\ -45.5 \end{gathered}\right.$	$\begin{gathered} \mathrm{Ba} \\ -14 \end{gathered}$	$\begin{array}{\|c} \mathrm{Tl} \\ -19.2 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Pb} \\ -35.2 \end{array}$	$\left\lvert\, \begin{gathered} \mathrm{Bi} \\ -91.3 \end{gathered}\right.$	$\begin{gathered} \text { Po } \\ -183.3 \end{gathered}$	$\begin{gathered} \text { At } \\ -270^{*} \end{gathered}$	$\begin{gathered} \mathrm{Rn} \\ (+41)^{*} \end{gathered}$

Electron Affinity values ($\mathrm{kJ} / \mathrm{mol}$)

Implications of Periodic Trends
Useful in predicting reactivities, chemical formulas, etc.

Metals: low ionization energy, give up electrons easily Nonmetals: high electron affinity, love electrons from metals

MAR

Important Equations, Constants, and Handouts from this Chapter:

- quantum numbers: know the origin and meaning of $\mathbf{n}, \mathbf{l}, \mathbf{m}_{\mathbf{l}}, \mathbf{m}_{\mathbf{s}}$
- understand paramagnetism and diamagnetism for atoms and ions
- know "nl" notation (4s, 3d, etc.) and the "n + I" rule for energy
- know how the Pauli Exclusion Theory and Hund's Rule apply towards electrons in orbitals; know the Aufbau Principle
- know how to create electron configurations for neutral atoms and also cations and anions using both orbital box and spectroscopic notation
- know the periodic trends for size, ion size, ionization energy and electron affinity

Page III-6b-12 / Chapter Six Part II Lecture Notes

End of Chapter Problems: Test Yourself

1. Depict the electron configuration for arsenic (As) using spdf notation.
2. Using orbital box diagrams and/or noble gas notation, depict the electron configurations of the following: (a) V , (b) V^{2+}, and (c) V^{5+}. Are any of the
. Arrange the following elements in order of increasing size: Al, B, C, K, and
Na .
Name the element corresponding to each characteristic below.
a. the element with the electron configuration $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
. the alkaline earth element with the smallest atomic radius
c. the element with the largest ionization energy in Group 5 A
d. the element whose $2+$ ion has the configuration $[\mathrm{Kr}] 4 \mathrm{~d}^{5}$
e. the element with the most negative electron affinity in Group 6A
f. the element whose electron configuration is $[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2}$

End of Chapter Problems: Answers

1. $[\operatorname{Ar}] 3 d^{10} 4 s^{2} 4 p^{3}$ or $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{3}$
2. $\mathrm{V}:[\mathrm{Ar}] 4 s^{2} 3 d^{3}$ (paramagnetic, 3 unpaired electrons); V^{2+} : $[\mathrm{Ar}] 3 d^{3}$ (paramagnetic, 3 unpaired electrons); $\mathrm{V} 5+:[\mathrm{Ar}]$ (diamagnetic, 0 unpaired electrons);
3. $\mathrm{C}<\mathrm{B}<\mathrm{Al}<\mathrm{Na}<\mathrm{K}$
4. a. P b. Be c. N d. Tc e. O f. Zn
