

The Structure of Atoms
 Chapter 6 Part 1

Chemistry 221
Professor Michael Russell

MAR
Last update:
4/10/23

MAR

ELECTROMAGNETIC RADIATION

MAR

Exploring color.... on the atomic level

ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC RADIATION

A node in a standing wave

ELECTROMAGNETIC RADIATION

Waves have a frequency
Use the Greek letter "nu", V, for frequency, and units are "cycles per sec"
All radiation: $v \cdot \lambda=C$
where $c=$ velocity of light $=2.998 \times 10^{8} \mathrm{~m} / \mathrm{sec}$
Note: long wavelength --> small frequency short wavelength --> high frequency

Memorize $2.998 \times 10^{8} \mathrm{~m} / \mathrm{sec}!$

ELECTROMAGNETIC RADIATION

Red light has $\lambda=700$ nm. Calculate the frequency.

$$
\begin{gathered}
\text { 700. } \mathrm{nm} \cdot \frac{1 \times 10^{-9} \mathrm{~m}}{1 \mathrm{~nm}}=7.00 \times 10^{-7} \mathrm{~m} \\
\text { Recall: } V=\mathrm{C} / \lambda \\
\text { Freq }=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{7.00 \times 10^{-7} \mathrm{~m}}=4.28 \times 10^{14} \mathrm{sec}^{-1} \\
\text { Frequency }=4.28 * 10^{14} \mathrm{~s}-1 \text { or } \\
4.28 * 10^{14} \mathrm{~Hz}
\end{gathered}
$$

Visible Light / EM Radiation

Note: long wavelength --> small frequency

Miany Regions in the EM Spectrum

Lord Kelvin's 1900 "Clouds" Speech

In 1900, Lord Kelvin stated that current thermodynamic understanding explained all energy phenomenon except for two not yet understood "clouds":

- the failure of the Michelson-Morley experiment (which led to special relativity)
- the inability to understand black body radiation (which led to quantum theory)
"Pride goeth before a fall"
Great scientists make mistakes as well

Ultraviolet Catastrophe

At high temperatures, solids emit red, blue, even white light when heated. Energy of light emitted relative to temperature.

At very high temperature, intensity of light reaches maximum in ultraviolet region, then decreases.

Classical physics predicted no maximum intensity catastrophe!

Quantization of Energy

Max Planck proposed that an object can gain or lose energy by absorbing or emitting radiant energy in QUANTA Proposed that the energy of radiation proportional to the frequency:

$$
\mathrm{E}=\mathrm{h} \cdot \mathrm{v}
$$

where $\mathrm{h}=$ Planck's constant $=$ $6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$ memorize

Quantization of Energy

$$
E=h \cdot v=h c / \lambda
$$

Light with large λ (small v) has a small E.
 Light with a short λ (large v) has a large E.

Albert Einstein (1879-1955) explained phenomenon Received Nobel Prize

Photoelectric Effect

[^0]
Photoelectric Effect

Light applied to metal; electrons emitted as long as threshold frequency maintained.
Elimination of light halts the process

Photoelectric Effect

Experimental observations understood if light consists of particles called PHOTONS with discrete energy.

PROBLEM: Calculate the energy of 1.00 mol of photons of red light ($\lambda=700 . \mathrm{nm}$)

From earlier:

$\lambda=700 . \mathrm{nm}$

$$
v=4.28 \times 10^{14} \mathrm{sec}^{-1}
$$

MAR

Energy of Radiation

PROBLEM: Calculate the energy of 1.00 mol of photons of red light.
$\lambda=700 . \mathrm{nm}$
$v=4.28 \times 10^{14} \mathbf{s e c}^{-1}$
$\mathrm{E}=\mathrm{h} \cdot \mathrm{v}$
$=\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(4.28 \times 10^{14} \mathrm{sec}^{-1}\right)$
$=2.84 \times 10^{-19} \mathrm{~J}$ per photon

MAR

Atomic Line Spectra and Niels Bohr

Bohr's greatest contribution to science was in building a simple model of the atom. His model was based on an understanding of the SHARP LINE SPECTRA of excited atoms.

Energy of Radiation

Energy of 1.00 mol of photons of red light.
E $=\mathrm{h} \cdot \mathrm{v}$

$$
=\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(4.28 \times 10^{14} \mathrm{sec}^{-1}\right)
$$

$$
=2.84 \times 10^{-19} \mathrm{~J} \text { per photon }
$$

E per mol =
$\left(2.84 \times 10^{-19} \mathrm{~J} / \mathrm{ph}\right)\left(6.022 \times 10^{23} \mathrm{ph} / \mathrm{mol}\right)$
$=171,000 \mathrm{~J} / \mathrm{mol}{ }^{*}(\mathrm{~kJ} / 1000 \mathrm{~J})$
$=171 \mathrm{~kJ} / \mathrm{mol}$
This is within the range of energies that can break bonds.

MAR

Refractive Spectrum of White Light

MAR

Line Spectra of Excited Atoms

Excited atoms emit light of only certain wavelengths
The wavelengths of emitted light depend on the element.

The Electric Pickle

Excited atoms can emit light.
Here the solution in a pickle is excited electrically. The Na^{+}ions in the pickle juice give off light characteristic of that element.

Line Emission Spectra of Excited Atoms

Visible lines in H atom spectrum are called the BALMER series.

MAR

Emission Spectra in Astronomy
Composition of stars and stellar objects determined through emission spectrographs

Astronomers must account for red and blue shifts (the "Doppler effect") of moving objects in emission spectra

MAR

Atomic Spectra and Bohr

One view of atomic structure in early 20th century was that an electron (e-) traveled about the nucleus in an orbit.

Atomic Spectra and Bohr

Bohr said classical view is wrong.
Need a new theory - now called QUANTUM or WAVE MECHANICS.
e- can only exist in certain discrete orbits called stationary states.
\mathbf{e} - is restricted to QUANTIZED energy states.

Energy of state $=-\mathrm{Rhc} / \mathrm{n}^{2}$

$\mathrm{n}=$ quantum no. $=1,2,3,4, \ldots$.
($\mathrm{R}=$ Rydberg constant, 1.09 $^{*} 0^{7} \mathrm{~m}^{-1}$)

If e-'s are in quantized energy states, then ΔE of states can have only certain values. This explain sharp line spectra.

$$
\left\{\begin{array}{l}
E=-C(1 / 22) \quad n=2 \\
E=-C(1 / 12) \quad n=1
\end{array}\right.
$$

Note that $C=R h c$

Atomic Spectra and Bohr

Energy of quantized state $=-\mathrm{Rhc} / \mathrm{n}^{2}$
$n=$ quantum no. $=1,2,3,4, \ldots$.
$R=$ Rydberg constant $=1.097 * 10^{7} \mathrm{~m}^{-1}$
$h=$ Planck's constant $=6.626^{*} 10^{-34} \mathrm{~J}$ s
$\mathrm{c}=$ speed of light $=2.998^{*} 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$

But note - same eqns. come from modern wave mechanics approach.
Results can be used to explain atomic
 spectra.

Atomic Spectra and Bohr

$$
\Delta \mathrm{E}=-(3 / 4) \mathrm{Rhc}=-984 \mathrm{~kJ} / \mathrm{mol}
$$

What is the v and λ of the emitted light photon?

$$
\begin{gathered}
v=-984^{*} 10^{3} \mathrm{~J} / \mathrm{mol} /\left(\mathbf{h} * 6.022^{*} \mathbf{1 0}^{23} \mathrm{~mol}^{-1}\right) \\
v=2.47^{*} 10^{15} \mathrm{~s}^{-1}(\text { always positive! }) \\
\text { and } \lambda=\mathbf{c} / v=122 \mathrm{~nm}
\end{gathered}
$$

This is exactly in agreement with experiment! Remember: absorption $=$ endothermic, emission = exothermic

Sample absorbs some wavelengths of
light, causing dark lines in the
continuous spectra
Absorption Spectra

Quantum or Wave Mechanics

L. de Broglie (1892-1987)
de Broglie (1924) proposed that all moving objects have wave properties.
For light: $\mathrm{E}=\mathrm{mc}^{2}$

$$
\mathrm{E}=\mathrm{h} v=\mathrm{hc} / \lambda
$$

Therefore, $\mathrm{mc}=\mathrm{h} / \lambda$
and for particles

$$
\lambda=\mathrm{h} / \mathrm{mv}
$$

(for particles traveling less than speed of light)

> Example: Calculate the wavelength of an electron traveling at 75.0% the speed of light:
> $\lambda=\mathrm{h} / \mathrm{mv}$
> $\lambda=\frac{6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}}{9.11 \times 10^{-31} \mathrm{~kg} * 2.998 \times 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 0.750}$
> $\lambda=3.23 \times 10^{-12} \mathrm{~m}$

Note: $1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$ (derived SI unit) Must use kg for mass in these problems

The de Broglie Wave Equation: $\lambda=\mathrm{h} / \mathrm{mv}$

electron with velocity $=$ $1.90 \times 10^{8} \mathrm{~cm} / \mathrm{sec}$
$\lambda=0.388 \mathrm{~nm}$
measurable!

Schrödinger applied idea of ebehaving as a wave to the problem of electrons in atoms.
Mechanics He developed the WAVE EQUATION
Baseball (115 g) at 1000 mph $\lambda=1.3 \times 10^{-33} \mathrm{~cm}$ unmeasurable, but deadly!
Atomic Line Spectra and
Niels Bohr

WAVE FUNCTIONS, Ψ

Ψ is a function of distance and two angles.
Each Ψ corresponds to an ORBITAL, the region of space within which an electron is found.
Ψ does NOT describe the exact location of the electron.
Ψ^{2} is proportional to the probability of finding an e - at a given point.

$$
\hat{\mathrm{H}} \Psi=i \hbar \frac{\partial}{\partial} \Psi \quad \hat{\mathrm{H}}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})
$$

Implications of Quantum Chemistry

Modern view of the atom involves probability of electron's position (uncertainty principle) while electron's quantized energy level known accurately. Classic physics predicts "planets around the sun" idea, but this is incorrect.

Heisenberg \& Bohr dining in Copenhagen, 1934
(Note the $\mathbb{C a r l s b e r g}$ beer!)
They ALL took Chem 221 at one time just as you are now!
'Argue for your limitations, and they are yours'

Uncertainty Principle

Problem of defining nature MAR
of electrons in atoms explained by Heisenberg. Cannot simultaneously define the position and momentum (or energy) of an electron.
W. Heisenberg 1901-1976
$\Delta x \cdot m \Delta v \geq \frac{h}{4 \pi}$

We define e- energy exactly but accept limitation that we do not know exact position.

The Giants of Quantum Physics

The Usefulness of Quantum

 MechanicsQuantum mechanics involves math equations with calculus
We will use the results of these equations to (eventually) describe how electrons are placed in atoms and ions First we shall look at orbitals, then shells and subshells

Subshells \& Shells

via quantum mechanics (and calculus!):
Orbitals hold electrons.
Orbitals placed in subshells which are further grouped into shells.
Each shell has a number called the PRINCIPAL QUANTUM NUMBER, n
Principal quantum number helps us to determine the energy and size of an orbital or subshell

QUANTUM NUMBERS

Via quantum mechanics, the shape, size, and energy of each orbital is a function of 4 quantum numbers:

```
| (principal) --> shell (energy, size)
| (angular) --> subshell (shape)
m|}\mathrm{ (magnetic) --> designates an orbital
    within a subshell (direction)
m
    direction of an electron (Chapter 6 part 2)
```


) Subshells \& Shells

$\mathrm{n}=$ Principal Quantum Number $=$ Period Number (for main group metals and nonmetals)

MAR
m_{s} covered in Chapter Six Part 2

Shells and Subshells

When $\mathrm{n}=1$, then $\mathrm{I}=0$ and $\mathrm{m}_{\mathrm{l}}=0$
Therefore, in $\mathbf{n}=1$, there is $\mathbf{1}$ type of subshell (I)
and that subshell has a single orbital (m, has a single value ---> 1 orbital)

This subshell is labeled 1S ("ess")
Each shell has 1 orbital labeled s, and it is SPHERICAL in shape.

German: sphere = "sphäre", spherical = "sphärisch"

s Orbitals $(1=0)$
All s orbitals are spherical in
shape.

1s Orbital ($\mathrm{n}=1, \mathrm{l}=0$)

p Orbitals ($\mathrm{l}=1$)
When $\mathrm{n}=2$, then $\mathrm{I}=0$ and 1 Therefore, in $\mathbf{n}=\mathbf{2}$ shell there are 2 types of orbitals or 2 subshells
For I =0 $\quad m_{1}=0$
this is a 2 s subshell
For $I=1 \quad m_{I}=-1,0,+1$
this is a $2 p$ subshell with 3 orbitals

Typical p orbital

planar node
When $I=1$, there is a PLANAR NODE through the nucleus.
p Orbitals (l=1)

The three p orbitals lie 90° apart in space Each p orbital has 1 planar node

d Orbitals (l=2)

When $\mathrm{n}=3$, what are the values of l ?

$$
\mid=0,1,2
$$

and so there are 3 subshells in the shell. For $\mathrm{I}=0, \mathrm{~m}_{1}=0$
---> 3s subshell with single orbital

$$
\text { For } I=1, m_{l}=-1,0,+1
$$

---> $3 p$ subshell with 3 orbitals

$$
\text { For } I=2, m_{l}=-2,-1,0,+1,+2
$$

d Orbitals ($1=2$)
s orbitals have no planar node $(1=0)$ and so are spherical.

$$
\text { ---> 3d subshell with } 5 \text { orbitals }
$$

Nodal
Planes in p and d Orbitals

$$
\begin{aligned}
& 3 d_{y z} \text { Orbital (} n=3, \mathrm{l}=2 \text {) }
\end{aligned}
$$

$3 \mathrm{dx}^{2}-\mathrm{y}^{2}$ Orbital ($\mathrm{n}=3, \mathrm{l}=2$)

The $\mathrm{n}=3$ shell (example)

The Train Track Model

f Orbitals ($1=3$)

When $n=4, I=0,1,2,3$ so there are 4 subshells in the shell.
For $I=0, m_{1}=0$
---> 4s subshell with single orbital
For $I=1, m_{l}=-1,0,+1$
---> 4p subshell with 3 orbitals
For $I=2, m_{l}=-2,-1,0,+1,+2$
---> 4d subshell with 5 orbitals
For $\|=3, m_{1}=-3,-2,-1,0,+1,+2,+3$
---> $4 f$ subshell with 7 orbitals

Quick \& Dirty Quantum Chemistry

```
memorize c = 2.998 \times 108 m/s
memorize h = 6.626 x 10-34 J s
E = h}v=hc/\lambda\quadv=\mathrm{ frequency (Hz)
\lambda=h / mv v
# orbitals in a shell = n2
# orbitals in a subshell = 2l + 1
stupid people drive freakin' gas hogs
0
so a 4d subshell would have }\textrm{n}=4,\textrm{I}=
# planar nodes = I
# spherical nodes = n - I-1
```


End of Chapter Six Part 1

See also:

- Chapter Six Part 1 Study Guide
- Chapter Six Part 1 Concept Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

Pictures of the f Orbitals

Importance of Orbitals

Knowledge of orbitals critical when understanding bonding in molecules (we'll see this in CH 222)

Important Equations, Constants, and Handouts from this Chapter:

- know relationship between frequency, wavelength, energy, speed of light, energy per mole
- know the regions and relative energies within the electromagnetic spectrum
- know about sharp line spectra, absorbance and emission spectra
$\mathbf{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathbf{~ s}$
$\mathrm{E}=\mathrm{h} \nu=\mathrm{hc} / \lambda(\mathrm{E} / \mathrm{M})$
$\lambda=\mathrm{h} / \mathrm{mv}$ (particles)
- know about wave particle duality (including de Broglie)
- quantum numbers: know the origin and meaning of $\mathbf{n}, \mathbf{l}, \mathrm{m}_{1}$
- know "nl" notation (4s, 3d, etc.)
- know how to find spherical and planar nodes, number of orbitals, etc.

Page III-6a-14 / Chapter Six Part I Lecture Notes

End of Chapter Problems: Test Yourself

1. Place the following types of radiation in order of increasing energy per photon: yellow light, \mathbf{x}-rays, microwaves and your favorite FM music radio station at 92.3 MHz .
2. Aluminum has an emission line at 396.15 nm . What is the frequency of this line? What is the energy of one photon with this wavelength? Of 1.00 mol of these photons?
3. A rifle bullet (mass $=1.50 \mathrm{~g}$) has a velocity of 7.00×10^{2} miles per hour. What is the wavelength associated with this bullet? $(0.6214$ miles $=1 \mathrm{~km})$
4. a. When $n=4$, what are the possible values of ℓ ?
b. When ℓ is 2 , what are the possible values of m_{ℓ} ?
c. For a $4 s$ orbital, what are the values of n and ℓ ?
5. Explain why these sets of quantum numbers are incorrect. a. $n=3, l=3, m_{1}=0, m s=+1 / 2$
6. How many nodal surfaces (planar and spherical) are associated with each of the following atomic orbitals? $\mathbf{5 f}$ and $\mathbf{4 s}$

[^0]: Photoelectric effect experiment shows particle nature of light.

 Classical physics said E of ejected e-
 Classical physics said E of ejected e-
 should increase as light intensity increases - not observed!
 No e- observed until light of a minimum $E(o r v)$ is used.

 Light said to display "wave-particle duality" - it behaves like a wave in some experiments (diffraction, interference) but as a particle in others (photoelectric effect)!!!

