

Chemical Reactions Chapter 3 \& Chapter 4,
Chapter 3 \& Chapter 4,
"Chapter 4 Part II"

Chemistry 221
Professor Michael Russell

In SOLUTION we need to define the -- SOLVENT
the component whose physical state is preserved when solution forms

- SOLUTE
the other solution component
- Compounds are soluble when they dissolve, insoluble when they stay as solids
Last update: Last update.
$4 / 10 / 23$

Water Solubility of Ionic Compounds

WATER SOLUBILITY OF IONIC COMPOUNDS

Not all ionic compounds dissolve in water. Some are INSOLUBLE.
Many ions, however, make compounds SOLUBLE all of the time.

> Examples: $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Li}^{+}$, $\mathrm{NH}_{4}^{+}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{ClO}$ 4^{-}, $\mathrm{CH}_{3} \mathrm{CO}_{2}-$, and most $\mathrm{SO}_{4}^{2-}, \mathrm{Cl}^{-}, \mathrm{Br}$ and I^{-} compounds.

MAR
MAR
Most metal hydroxides and dxides Use this solubility guide in CH 221-223! insoluble should write $\mathrm{BaSO}_{4}(\mathrm{~s})$!
\qquad

Terminology

Aqueous Solutions

$\mathrm{HCl}, \mathrm{MgCl}_{2}$, and NaCl are strong electrolytes. They dissociate completely (or nearly so) into ions.

MAR

Aqueous Solutions
Some compounds (sugar, ethanol, acetone, etc.) dissolve in water but do not conduct electricity. They are called nonelectrolytes.

See "Dissolve, Dissociate and Electrolyte" Guide

Aqueous Solutions
Acetic acid ionizes only to a small extent, so it is a weak electrolyte $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})$ …
$\mathrm{CH}_{3} \mathrm{CO}_{2}-(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$

Acids
An acid -------> \mathbf{H}^{+}in water
Some strong acids include:

HCl
HNO_{3}
HClO_{4}
$\mathrm{H}_{2} \mathrm{SO}_{4}$
hydrochloric
nitric
perchloric
sulfuric

Weak Acids

BASES

Base ---> OH^{-}in water

Bases are often metal hydroxides $\mathrm{NaOH}(\mathrm{aq}) \quad-->\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq})$

NaOH is a	NaOH	NaOH
strong		
base	NaOH	NaOH
	NaOH	NaOH

All strong bases are strong electrolytes

Common Acids and Bases

Net Ionic Equations
 ``` Mg(s) + 2 HCl(aq)

->\mp@subsup{\textrm{H}}{2}{(g)}+\mp@subsup{MgGCl}{2}{(aq)
 $\mathbf{M g}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{MgCl}_{2}(\mathrm{aq})$```}

Aqueous solutes \(\left(\mathrm{HCl}, \mathrm{MgCl}_{2}\right)\) dissociate; we really should write:
\(\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq}) \rightarrow\)
\(\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq})\)
We leave the spectator ions (\(\mathrm{Cl}^{-}\)) out in writing the NET IONIC EQUATION:
\(\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Mg}^{2+}(\mathrm{aq})\) See Net lonic Reactions Handout

MAR

\section*{Net Ionic Equations}
\(\mathbf{M g}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})\)--> \(\mathrm{H}_{2}(\mathrm{~g})+\mathrm{MgCl}_{2}(\mathrm{aq})\)
We really should write:
\(\mathrm{Mg}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{Cl}(\mathrm{aq})-->\) \(\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq})\)

MAR

\section*{Net Ionic Equations}
\(\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})-->\)
\(\mathrm{PbCrO}_{4}(\mathbf{s})+2 \mathrm{KNO}_{3}(\mathrm{aq})\)

NET IONIC EQUATION
\(\left.\mathbf{P b}^{2+}(\mathbf{a q})+\mathrm{CrO}_{4}{ }^{2-(} \mathbf{(a q}\right)--->\mathrm{PbCrO}_{4}(\mathbf{s})\)
\(\mathrm{K}^{+}\)and \(\mathrm{NO}_{3}{ }^{-}\)are spectators

See Net Ionic Reactions Handout

\section*{CHEMICAL REACTIONS IN WATER}

\section*{Acid-Base Reactions}

Acids react readily with bases. The
"driving force" is the formation of water.
\(\mathrm{NaOH}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow\)
\(\mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{liq})\)
Net ionic equation:
\(\mathrm{OH}-(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightarrow\)
\(\mathrm{H}_{2} \mathrm{O}\) (liq)

This applies to ALL reactions of STRONG acids and bases.
Acid-base reactions often called
"neutralizations", water and "salt" created

See "Five Types of Reactions" Handout

\section*{Combustion Reactions}

A special example of a gas-forming reaction
Used in quantitative chemistry; high temperatures
Reactants: oxygen \(\left(\mathrm{O}_{2}\right)\) and "something organic" (C, H, sometimes O or N)
Products: water and carbon dioxide (also \(\mathrm{NO}_{2}\) if N
present)

Examples:
\(\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{CO}_{2(\mathrm{~g})}\)
\(4 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+29 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 10 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+24 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{NO}_{2(\mathrm{~g})}\)

\section*{Precipitation Reactions}

The "driving force" is the formation of an insoluble compound - a precipitate.
\(\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{NaOH}(\mathrm{aq})\)
\(-\mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})\)

Net ionic equation
\(\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}-(\mathrm{aq})--->\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})\)

See "Five Types of Reactions" Handout
\[
\mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})
\]

Carbonic acid is unstable and forms \(\mathrm{CO}_{2} \& \mathrm{H}_{2} \mathrm{O}\)
\(\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})\)---> \(\mathrm{CO}_{2}(\mathrm{~g})+\) water
Another gas forming species:
\(\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})-->\mathrm{NH}_{3}(\mathrm{~g})+\) water
ivi40 (aq)

See "Five Types of Reactions" Handout

Oxidation-Reduction Reactions
REDOX \(=\) reduction \(\&\) oxidation
\(2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})--->2 \mathrm{H}_{2} \mathrm{O}\) (liq)

See "Five Types of Reactions" Handout

5

LEO
says GER

\section*{REDOX} REACTIONS

In all reactions: if something has been oxidized then something has also been reduced:
\(\begin{aligned} & \mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \\ & \mathrm{Cu}^{2}+(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})\end{aligned}\)
Redox reactions incredibly useful (fuels, batteries, much more)
Oxidation numbers help visualize electron transfer pathways
\[
\begin{array}{ll}
\mathrm{Zn}(\mathrm{~s}) \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}- & \begin{array}{l}
\text { Oxidized } \\
\mathrm{Cu}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{Cu}(\mathrm{~s})
\end{array} \\
\text { Reduced }
\end{array}
\]

Can also use "OIL RIG":
OIL = "Oxidation is Losing" (electrons)
RIG \(=\) "Reduction is Gaining" (electrons)
- Atoms in free element have ox. no. \(=0\) \(\mathrm{Zn}(\mathrm{s}), \mathrm{O}_{2}(\mathrm{~g}), \mathrm{Br}_{2}(\mathrm{liq})\)
- In simple ions, ox. no. = charge on ion -1 for Cl - +2 for \(\mathrm{Mg}^{2+}\)
- In compounds, F is always \(-1, \mathrm{O}\) is -2 (except peroxides \((O=-1)\) and with F\()\) and H is +1 (except hydrides \((H=-1)\))
- Sum of oxidation numbers \(=0\) for a compound or equals the overall charge for an ion

\section*{OXIDATION NUMBERS}

\section*{OXIDATION NUMBERS}

Determining oxidation numbers takes practice
\[
\mathrm{H}-\ddot{\mathrm{F}}
\]

HF
\(\mathrm{ClO}_{4}{ }^{-}\)
H: +1
CI: +7
F: -1
O: -2

\section*{Examples of Redox Reactions}
\(\mathrm{NO}=\) reducing agent \(\mathrm{O}_{2}=\) oxidizing agent \(2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}\)

\(\mathrm{Fe}=\) reducing agent \(\mathrm{Cl}_{2}=\) oxidizing agent \(2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}\)

reducing agent \(=\) oxidized oxidizing agent \(=\) reduced

\section*{Concentration (Molarity) of Solute}

The amount of solute in a solution is given by its concentration

Molarity (M) \(=\frac{\text { moles solute }}{\text { liters of solution }}\)
\[
\text { Concentration }(\mathrm{M})=[\ldots]
\]
"3.6 M" means a concentration of 3.6 molarity "concentration" and molarity often the same

PROBLEM: Dissolve 5.00 g of \(\mathrm{NiCl}_{2}{ }^{\circ} 6 \mathrm{H}_{2} \mathrm{O}\) in enough water to make 250. mL of solution. Calculate molarity.

Step 1: Calculate moles of \(\mathrm{NiCl}_{2} \cdot \mathbf{6} \mathbf{H}_{2} \mathrm{O}\)
\(5.00 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{237.7 \mathrm{~g}}=0.0210 \mathrm{~mol}\)
Step 2: Calculate molarity
\(\frac{0.0210 \mathrm{~mol}}{0.250 \mathrm{~L}}=0.0841 \mathrm{M}\)
\(\left[\mathrm{NiCl}_{2}{ }^{\circ} 6 \mathrm{H}_{2} \mathrm{O}\right]=0.0841 \mathrm{M}\)
MAR

\section*{USING MOLARITY}

What mass of oxalic acid, \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\), is required to make \(250 . \mathrm{mL}\) of a 0.0500 M solution?
\[
\text { moles }=\mathbf{M} \cdot \mathbf{V}
\]

Step 1: Calculate moles of acid required. \((0.0500 \mathrm{~mol} / \mathrm{L})(0.250 \mathrm{~L})=0.0125 \mathrm{~mol}\)
Step 2: Calculate mass of acid required. \((0.0125 \mathrm{~mol})(90.00 \mathrm{~g} / \mathrm{mol})=1.13 \mathrm{~g}\)

\section*{Preparing Solutions}

The important point: moles of NaOH in ORIGINAL solution = moles of \(\mathbf{N a O H}\) in FINAL solution
You have 50.0 mL of 3.0 M NaOH and you want 0.50 M NaOH . What do you do? \(\square\)
You have 50.0 mL of 3.0 M NaOH and you want 0.50 M NaOH . What do you do?
MAR

\section*{Conclusion:}
\[
M * V=
\]
\((3.0 \mathrm{~mol} / \mathrm{L})(0.0500 \mathrm{~L})=0.15 \mathrm{~mol} \mathrm{NaOH}\) Therefore, moles of NaOH in final solution must also \(=0.15 \mathrm{~mol} \mathrm{NaOH}\) or \(300 \mathrm{~mL}=\) volume of final solution
\(M A R\)

\section*{Preparing Solutions by Dilution}

\section*{SOLUTION STOICHIOMETRY}

Zinc reacts with acids to produce
\(\mathrm{H}_{2}\) gas. What volume of 2.50 M HCl is needed to convert 10.0 g of Zn ?

MAR

Zinc reacts with acids to produce \(\mathrm{H}_{2}\) gas. What volume of 2.50 M HCl is needed to convert 10.0 g of Zn ?

Step 1: Calculate moles of \(\mathbf{Z n}\)
\[
10.0 \mathrm{~g} \mathrm{Zn} \cdot \frac{1.00 \mathrm{~mol} \mathrm{Zn}}{65.39 \mathrm{~g} \mathrm{Zn}}=0.153 \mathrm{~mol} \mathrm{Zn}
\]

Step 2: Use the stoichiometric factor
\[
0.153 \mathrm{~mol} \mathrm{Zn} \cdot \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Zn}}=0.306 \mathrm{~mol} \mathrm{HCl}
\]

Step 3: Calculate volume of HCl required
\[
0.306 \mathrm{~mol} \mathrm{HCl} \cdot \frac{1.00 \mathrm{~L}}{2.50 \mathrm{~mol}}=0.122 \mathrm{~L} \mathrm{HCl}
\]

ACID-BASE REACTIONS

\section*{Titrations}
\begin{tabular}{ll}
\(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})\) \\
acid
\end{tabular}\(+\)\begin{tabular}{c}
\(2 \mathrm{NaOH}(\mathrm{aq})\) \\
\\
\\
\\
\\
\\
\(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(\mathrm{aq})\)
\end{tabular}\(+2 \mathrm{H}_{2} \mathrm{O}\) (liq)

Carry out this reaction using a TITRATION.

Oxalic acid,
\(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\)

LAB PROBLEM \#1: Standardize a solution of NaOH - i.e., accurately determine its concentration.

1.065 g of \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) (oxalic acid) requires 35.62 mL of NaOH for titration to an equivalence point. What is the concentration of the NaOH ? of NaOH for titration to an equivalence point. What is the concentration of the NaOH ?

Step 1: Calculate moles of \(\mathbf{H}_{2} \mathbf{C}_{2} \mathbf{O}_{4}\)
\(=0.01183 \mathrm{~mol}\) acid
Step 2: Calculate moles of NaOH req'd
\(=0.02366 \mathbf{~ m o l ~ N a O H}\)
Step 3: Calculate concentration of NaOH
\[
\frac{0.02366 \mathrm{~mol} \mathrm{NaOH}}{0.03562 \mathrm{~L}}=0.6642 \mathrm{M}
\]
\[
[\mathrm{NaOH}]=0.6642 \mathrm{M}
\]

Setup for titrating an acid with a base

1.065 g of \(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\) (oxalic acid) requires 35.62 mL of NaOH for titration to an equivalence point. What is the concentration of the NaOH ?

Step 1: Calculate moles of \(\mathbf{H}_{\mathbf{2}} \mathbf{C}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}\)
\[
1.065 \mathrm{~g} * \frac{1 \mathrm{~mol}}{90.04 \mathrm{~g}}=0.01183 \mathrm{~mol}
\]

Step 2: Calculate moles of NaOH req'd
0.01183 mol acid \(\cdot \frac{2 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \text { acid }}=0.02366 \mathrm{~mol} \mathrm{NaOH}\)
\(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+2 \mathrm{NaOH}(a q)-->\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\) liq)

\section*{LAB PROBLEM \#2:}

Use standardized NaOH to determine the amount of an acid in an unknown.

Apples contain malic acid, \(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}\).
\(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq})\)--->
\(\mathrm{Na}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}\) (liq)
76.80 g of apple requires 34.56 mL of 0.6642 M NaOH for titration. What is weight \(\%\) of malic acid?
76.80 g of apple requires 34.56 mL of 0.6642 M NaOH for titration. What is weight \% of malic acid?

Step 1: Calculate moles of NaOH used.
M * V \(=(0.6642 \mathrm{M})(0.03456 \mathrm{~L})\)
\(=0.02295 \mathrm{~mol} \mathrm{NaOH}\)
Step 2: Calculate moles of acid titrated.
\[
\begin{gathered}
0.02295 \mathrm{~mol} \mathrm{NaOH} \cdot \frac{1 \mathrm{~mol} \mathrm{acid}}{2 \mathrm{~mol} \mathrm{NaOH}} \\
=\mathbf{0 . 0 1 1 4 8} \mathbf{~ m o l} \text { acid }
\end{gathered}
\]
76.80 g of apple requires 34.56 mL of 0.6642 M NaOH for titration. What is weight \% of malic acid?

Step 1: moles of \(\mathrm{NaOH}=\mathbf{0 . 0 2 2 9 5}\)
Step 2: moles of acid titrated \(=0.01148\)
Step 3: Calculate mass of acid titrated.
0.01148 mol acid \(\cdot \frac{134.1 \mathrm{~g}}{\mathrm{~mol}}=1.539 \mathrm{~g}\)

Step 4: Calculate \% malic acid.
\((1.539 \mathrm{~g}\) acid \(/ 76.80 \mathrm{~g}\) apple) \(* 100=\) \(2.004 \%\)

MAR
\(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{5}(\) aq \()+2 \mathrm{NaOH}(a q)\)---> \(\mathrm{Na}_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\) liq \()\)
pH, a Concentration Scale
pH : a way to express acidity - the concentration (M) of \(\mathrm{H}^{+}\)in solution.

Low pH: high [\(\mathrm{H}^{+}\)]

High pH: low \(\left[\mathrm{H}^{+}\right]\)
\begin{tabular}{|ll|}
\hline Acidic solution & \(\mathbf{p H}<7\) \\
Neutral & \(\mathbf{p H}=7\) \\
Basic solution & \(\mathbf{p H}>7\) \\
\hline
\end{tabular}

The pH Scale

MAR
\[
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
\]

In a neutral solution,
\[
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =[\mathrm{OH}-]=1.00 \times 10^{-7} \mathrm{M} \text { at } 25{ }^{\circ} \mathrm{C} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left(1.00 \times 10^{-7}\right) \\
& =-(-7)=7
\end{aligned}
\]

\section*{[\(\mathrm{H}^{+}\)] and pH}

If the \(\left[\mathrm{H}^{+}\right]\)of soda is \(1.6 \times 10^{-3} \mathrm{M}\), the pH is \(\qquad\) ?
Because pH \(=-\log \left[\mathrm{H}^{+}\right]\)
then
\(\mathrm{pH}=-\log \left(1.6 \times 10^{-3}\right)\)
\(\mathrm{pH}=-(-2.80)\)
\(\mathrm{pH}=2.80\)

\[
\mathrm{pH} \text { and }\left[\mathrm{H}^{+}\right]
\]

If the pH of Coke is 3.12 , it is \(\qquad\) —.
Because \(\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]\)then
\[
\log \left[\mathrm{H}^{+}\right]=-\mathrm{pH}
\]

Take antilog and get
\(\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}\)
\(\left[\mathrm{H}^{+}\right]=10-3.12\)
\(\left[\mathrm{H}^{+}\right]=7.6 \times 10^{-4} \mathrm{M}\)

more on acids, bases and pH in \(\mathrm{CH} 223 .\).

\section*{End of Chapter Four Part 2}

See also:
- Chapter Four Part 2 Study Guide
- Chapter Four Part 2 Concept Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

When you dilute a solution:

MAR

R

Important Equations, Constants, and Handouts
from this Chapter:
- Know how the solubility guide works
- Know what makes an acid acidic (and bases basic) and strong or weak; know how to use the pH scale
- Know how to write and determine net ionic equations and find spectator ions
- Know how to use molarity with solution stoichiometry problems
- Molarity \((M)=\) mol of solute per Liter of solution
- \(\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}\)

Solutions: Solute, solvent, aqueous, electrolyte (strong, weak, non), solubility (use the Net lonics solubility table), precipitation, types of reactions, molarity (M)

Know the five types of reactions: precipitation, acid-base, gas forming, combustion and redox. Know how to determine if something has been oxidized or reduced (and the oxidizing agent and reducing agent)
1. Predict whether these compounds would be labeled as insoluble or soluble: \(\mathrm{HCl}, \mathrm{NaCl}, \mathrm{AgCl}\)
2. Predict the products of this precipitation reaction and write the net ionic equation: \(\mathrm{NiCl}_{2}(\mathrm{aq})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow\) ? List any spectator ions.
3. In the following reaction, decide which reactant is oxidized and which is reduced. Designate the oxidizing agent and the reducing agent. Si(s) + 2 reduced. Designa
\(\mathbf{C l}_{2}(\mathrm{~g}) \rightarrow \mathrm{SiCl}_{4}(\mathrm{I})\)
4. Identify the ions and their concentration that exist in this aqueous solution \(0.25 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}\)
5. What volume of \(0.109 \mathrm{M} \mathrm{HNO}_{3}\), in milliliters, is required to react completely with 2.50 g of \(\mathrm{Ba}(\mathrm{OH})_{2}\) ? \(2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathbf{s}) \rightarrow \mathbf{2} \mathbf{H}_{2} \mathrm{O}(\mathrm{I})\) completely with
\(+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})\)
6. A table wine has a pH of 3.40 . What is the hydrogen ion concentration of the wine? Is it acidic or basic?
7. If 50.0 mL of \(0.0135 \mathrm{M} \mathrm{BaCl}_{2}\) is diluted to a total of 400 mL , what is the new concentration of \(\mathrm{BaCl}_{2}\) ?

End of Chapter Problems: Answers
1. Soluble: \(\mathrm{HCl}(\mathrm{aq}), \mathrm{NaCl}(\mathrm{aq})\). Insoluble: \(\mathrm{AgCl}(\mathrm{s})\)
2. \(\mathrm{NiCl}_{2}(\mathrm{aq})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{NiS}(\mathrm{s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})\)
\(\mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightarrow \mathrm{NiS}(\mathrm{s})\) Spectator ions: \(\mathrm{NH}_{4}{ }^{+1}\) and \(\mathrm{Cl}^{-1}\)
3. Si is oxidized and is the reducing agent; \(\mathrm{Cl}_{2}\) is reduced and is the oxidizing agent
4. \(0.50 \mathrm{M} \mathrm{NH}_{4}{ }^{+1} ; 0.25 \mathrm{M} \mathrm{SO}_{4}{ }^{2-}\)
5. 268 mL
6. acidic; \(\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-4} \mathrm{M}\)
7. 0.00169 M```

