

In SOLUTION we need to define the -

• SOLVENT

the component whose physical state is preserved when solution forms

• SOLUTE

the other solution component

 Compounds are soluble when they dissolve, insoluble when they stay as solids

MAR

Water Solubility of Ionic Compounds

MAR

WATER SOLUBILITY OF IONIC COMPOUNDS

Not all ionic compounds dissolve in water. Some are INSOLUBLE.

Many ions, however, make compounds SOLUBLE all of the time.

Examples: Na⁺, K⁺, Li⁺, NH₄⁺, NO₃⁻, ClO₃⁻, ClO₄⁻, CH₃CO₂⁻, and most SO_4^{2-} , Cl⁻, Br⁻ and l⁻ compounds.

MAR

Aqueous Solutions

How do we know ions are present in aqueous solutions?

The solutions conduct electricity! The ions are called ELECTROLYTES

HCI, KMnO₄, MgCl₂, and NaCI are

strong electrolytes. They dissociate completely (*or nearly so*) into ions. KMnO₄(aq) ---> K⁺(aq) + MnO₄·(aq)

Aqueous Solutions

HCI, MgCI₂, and NaCI are

strong electrolytes. They dissociate completely (or nearly so) into ions.

MAR

MAR

Aqueous Solutions

Some compounds (sugar, ethanol, acetone, etc.) dissolve in water but do not conduct electricity. They are called nonelectrolytes.

See "Dissolve, Dissociate and Electrolyte" Guide

Acids	An acid> H+ in w	vater
Some <mark>str</mark> include:	ong acids	
HCI	hydrochloric	
HNO ₃	nitric	
HCIO₄	perchloric	
H₂SO₄	sulfuric	
	H-CI H-CI H-CI H-CI H-CI	-CI
All strong acids strong electroly MAR	are H-Cl	H-CI

The Nature of Acids H Co н HCI H_2O H₃O⁺ hydronium ion

Weak Acids

MAR

All weak bases are weak electrolytes

Strong Ac	ids (Strong Electrolytes)	Strong Bases (Strong Electrolytes)
нсі	Hydrochloric acid	LiOH Lithium hydroxide
HBr	Hydrobromic acid	NaOH Sodium hydroxide
HI	Hydroiodic acid	KOH Potassium hydroxide
HNO_3	Nitric acid	
HClO ₄	Perchloric acid	
H_2SO_4	Sulfuric acid	
Weak Aci	ds (Weak Electrolytes)*	Weak Base (Weak Electrolyte)
H ₃ PO ₄	Phosphoric acid	NH3 Ammonia
H_2CO_3	Carbonic acid	
CH ₃ CO ₂ H	Acetic acid	Know the strong
$H_2C_2O_4$	Oxalic acid	
C4H606	Tartaric acid	acids & bases!
C ₆ H ₈ O ₇	Citric acid	

Net Ionic Equations

Mg(s) + 2 HCl(aq) --> H₂(g) + MgCl₂(aq) *We really should write:* Mg(s) + 2 H⁺(aq) + 2 Cl⁻(aq) ---> H₂(g) + Mg²⁺(aq) + 2 Cl⁻(aq)

MAR

MAR

Net Ionic Equations

Mg(s) + 2 HCl(aq) → H₂(g) + MgCl₂(aq) Aqueous solutes (HCl, MgCl₂) dissociate; we *really* should write:

Mg(s) + 2 H⁺(aq) + <mark>2 CI⁻(aq)</mark> → H₂(g) + Mg²⁺(aq) + <mark>2 CI⁻(aq)</mark>

We leave the spectator ions (CI⁻) out in writing the NET IONIC EQUATION: $Mg(s) + 2 H^{+}(aq) \rightarrow H_{2}(g) + Mg^{2+}(aq)$ See <u>Net Ionic Reactions Handout</u>

Net Ionic Equations

K₂CrO₄(aq) + Pb(NO₃)₂(aq) --> PbCrO₄(s) + 2 KNO₃(aq)

NET IONIC EQUATION Pb²⁺(aq) + CrO₄²⁻(aq) ---> PbCrO₄(s)

K⁺ and NO₃⁻ are spectators

See Net Ionic Reactions Handout

MAR

Precipitation Reactions

The "driving force" is the formation of an insoluble compound - a precipitate.

Fe(NO₃)₃(aq) + 3 NaOH(aq) -----> 3 NaNO₃(aq) + Fe(OH)₃(s)

Net ionic equation Fe³⁺(aq) + 3 OH (aq) ---> Fe(OH)₃(s)

See "Five Types of Reactions" Handout

Acid-Base Reactions Gas-Forming Reactions Acids react readily with bases. The 'driving force" is the formation of water. NaOH(aq) + HCI(aq) \rightarrow NaCl(aq) + H₂O(liq) CaCO₃(s) + 2 HCl(aq) ---> Net ionic equation: $CaCl_2(aq) + H_2CO_3(aq)$ OH-(aq) + H+(aq) -Carbonic acid is unstable and forms CO₂ & H₂O H₂O(liq) $H_2CO_3(aq) \longrightarrow CO_2(g) + water$ This applies to ALL reactions of STRONG acids and bases. Another gas forming species: Acid-base reactions often called NH₄OH(aq) ---> NH₃(g) + water "neutralizations", water and "salt" created See "Five Types of Reactions" Handout See "Five Types of Reactions" Handout MAR

MAR

MAR

Combustion Reactions

A special example of a gas-forming reaction Used in quantitative chemistry; high temperatures Reactants: oxygen (O_2) and "something organic" (C, H, sometimes O or N) Products: water and carbon dioxide (also NO₂ if N present)

 $\begin{array}{c} \textit{Examples:} \\ \text{C}_{2}\text{H}_{4(g)} \ + \ 3 \ \text{O}_{2(g)} \ \rightarrow \ 2 \ \text{H}_{2}\text{O}_{(g)} \ + \ 2 \ \text{CO}_{2(g)} \\ \text{4 } \text{C}_{6}\text{H}_{5}\text{NO}_{2} \ + \ 29 \ \text{O}_{2(g)} \ \rightarrow \ 10 \ \text{H}_{2}\text{O}_{(g)} \ + \ 24 \ \text{CO}_{2(g)} \ + \ 4 \ \text{NO}_{2(g)} \end{array}$

MAR

See "Five Types of Reactions" Handout

Oxidation-Reduction Reactions REDOX = reduction & oxidation

Gain Electrons Reduced

$Zn(s) \rightarrow Zn^{2+} + 2e^{-1}$	Oxidized
$Cu^{2+} + 2e \rightarrow Cu(s)$	Reduced

Can also use "OIL RIG": OIL = "Oxidation is Losing" (electrons) RIG = "Reduction is Gaining" (electrons)

MAR

In all reactions: if something has been oxidized then something has also been reduced:

LEO

says

GER

Cu(s) + 2 Ag⁺(aq) → Cu²+(aq) + 2 Ag(s)

Redox reactions incredibly useful (fuels, batteries, much more)

Oxidation numbers help visualize electron transfer pathways Use oxidation number rules to determine redox activity:

- Atoms in free element have ox. no. = 0 Zn(s), O₂(g), Br₂(liq)
- In simple ions, ox. no. = charge on ion
 -1 for Cl-, +2 for Mg²⁺
- In compounds, F is always -1, O is -2 (except peroxides (O = -1) and with F) and H is +1 (except hydrides (H = -1))
- Sum of oxidation numbers = 0 for a compound or equals the overall charge for an ion

OXIDATION NUMBERS

MAR

MAR

Examples of Redox Reactions

Fe = reducing agent

Cl₂ = oxidizing agent

 $2 Fe + 3 Cl_2 \rightarrow 2 FeCl_3$

NO = reducing agent O₂ = oxidizing agent $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$

reducing agent = oxidized oxidizing agent = reduced

Concentration (Molarity) of Solute

The amount of solute in a solution is given by its concentration

"3.6 M" means a concentration of 3.6 molarity

"concentration" and molarity often the same

moles solute

Molarity (M)

Concentration (M) = [...]

MAR

PROBLEM: Dissolve 5.00 g of NiCl₂•6 H₂O in enough water to make 250. mL of solution. Calculate molarity.

MAR

MAR

in enough water to make 250. mL of solution. Calculate molarity. Step 1: Calculate moles of NiCl₂•6H₂O

PROBLEM: Dissolve 5.00 g of NiCl₂•6 H₂O

 $5.00 \text{ g} \cdot \frac{1 \text{ mol}}{237.7 \text{ g}} = 0.0210 \text{ mol}$

Step 2: Calculate molarity

0.0210 mol = 0.0841 M 0.250 L

 $[NiCl_2 \cdot 6 H_2 O] = 0.0841 M$

MAR

USING MOLARITY

What mass of oxalic acid, H₂C₂O₄, is required to make 250. mL of a 0.0500 M solution?

moles = $M \cdot V$

Step 1: Calculate moles of acid required. (0.0500 mol/L)(0.250 L) = 0.0125 mol Step 2: Calculate mass of acid required.

(0.0125 mol)(90.00 g/mol) = 1.13 g

H₂0

MAR

3.0 M NaOH

Concentrated

Preparing Solutions

or

Weigh out a solid

solute and dissolve in a given quantity of solvent

Dilute a concentrated solution to give one that is less concentrated.

MAR

Preparing Solutions by Dilution A shortcut Minitial * Vinitial = Mfinal * Vfinal Often abbreviated: MiV1 = MfVf or C1V1 = C2V2

You have 50.0 mL of 3.0 M NaOH and you want 0.50 M NaOH. What do you do?

But how much water

0.50 M NaOH

Dilute

do we add?

The important point:

ORIGINAL solution =

moles of NaOH in FINAL

moles of NaOH in

solution

SOLUTION STOICHIOMETRY

Zinc reacts with acids to produce H_2 gas. What volume of 2.50 M HCl is needed to convert 10.0 g of Zn?

Zinc reacts with acids to produce H_2 gas. What volume of 2.50 M HCl is needed to convert 10.0 g of Zn?

MAR

 $Zn(s) + 2 HCl(aq) --> ZnCl_2(aq) + H_2(g)$

MAR

 $Zn(s) + 2 HCl(aq) --> ZnCl_2(aq) + H_2(g)$

ACID-BASE REACTIONS Titrations

H₂C₂O₄(aq) + 2 NaOH(aq) ---> acid base Na₂C₂O₄(aq) + 2 H₂O(liq) Carry out this reaction using a **TITRATION**.

MAR

LAB PROBLEM #1: Standardize a solution of NaOH - i.e., accurately determine its concentration.		1.065 g of $H_2C_2O_4$ (oxalic acid) requires 35.62 mL of NaOH for titration to an equivalence point. What is the concentration of the NaOH?
1.065 g of $H_2C_2O_4$ (oxalic		Step 1: Calculate moles of H ₂ C ₂ O ₄
acid) requires 35.62 mL of NaOH for titration to an equivalence point. What is the concentra- tion of the NaOH?		$1.065 \text{ g} * \frac{1 \text{ mol}}{90.04 \text{ g}} = 0.01183 \text{ mol}$
	Step 2: Calculate moles of NaOH req'd	
		0.01183 mol acid • $\frac{2 \mod \text{NaOH}}{1 \mod \text{acid}} = 0.02366 \mod \text{NaOH}$
$H_2C_2O_4(aq) + 2 NaOH(aq)> Na_2C_2O_4(aq) + 2 H_2O(liq)$	MAR	$H_2C_2O_4(aq) + 2 NaOH(aq)> Na_2C_2O_4(aq) + 2 H_2O(liq)$

1.065 g of H₂C₂O₄ (oxalic acid) requires 35.62 mL of NaOH for titration to an equivalence point. What is the concentration of the NaOH?		
Step 1: Calculate moles of H ₂ C ₂ O ₄		
= 0.01183 mol acid		
Step 2: Calculate moles of NaOH req'd		
= 0.02366 mol NaOH		
Step 3: Calculate concentration of NaOH		
$\frac{0.02366 \text{ mol NaOH}}{0.02562 \text{ J}} = 0.6642 \text{ M}$		
0.03562 L		
[NaOH] = 0.6642 M		

Apples contain malic acid, C₄H₆O₅.

Na₂C₄H₄O₅(aq) + 2 H₂O(liq)

76.80 g of apple requires 34.56 mL of 0.6642 M NaOH for titration. What is weight % of malic acid?

MAR

 $H_2C_2O_4(aq) + 2 NaOH(aq) ---> Na_2C_2O_4(aq) + 2 H_2O(liq)$

C₄H₆O₅(aq) + 2 NaOH(aq) --->

MAR

Page III-4b-8 / Chapter Four Part II Lecture Notes

Step 1:Calculate moles of NaOH used.M * V = (0.6642 M)(0.03456 L)= 0.02295 mol NaOHStep 2:Calculate moles of acid titrated.

 $0.02295 \text{ mol NaOH} \bullet \frac{1 \text{ mol acid}}{2 \text{ mol NaOH}}$

= 0.01148 mol acid

 $C_4H_6O_5(aq) + 2 NaOH(aq) ---> Na_2C_4H_4O_5(aq) + 2 H_2O(liq)$

76.80 g of apple requires 34.56 mL of 0.6642 M NaOH for titration. What is weight % of malic acid?

Step 1:moles of NaOH = 0.02295Step 2:moles of acid titrated = 0.01148Step 3:Calculate mass of acid titrated.

0.01148 mol acid •
$$\frac{134.1 \text{ g}}{\text{mol}} = 1.539 \text{ g}$$

Step 4: Calculate % malic acid. (1.539 g acid / 76.80 g apple) *100 = 2.004 %

MAR

 $C_4H_6O_5(aq) + 2 NaOH(aq) ---> Na_2C_4H_4O_5(aq) + 2 H_2O(liq)$

MAR

[H⁺] and pH

If the [H⁺] of soda is 1.6 x 10⁻³ M, the pH is _____? Because pH = - log [H⁺] then pH= - log (1.6 x 10⁻³) pH = - (-2.80) pH = 2.80 $\begin{array}{l} \mbox{pH and [H^+]} \\ \mbox{If the pH of Coke is 3.12, it is } \\ \mbox{Because pH = - log [H^+] then} \\ \mbox{log [H^+] = - pH} \\ \mbox{Take antilog and get} \\ \mbox{[H^+] = 10^{-pH}} \\ \mbox{[H^+] = 10^{-3.12}} \\ \mbox{[H^+] = 7.6 x 10^{-4} M} \end{array}$

more on acids, bases and pH in CH 223...

End of Chapter Four Part 2

See also:

- Chapter Four Part 2 Study Guide
- <u>Chapter Four Part 2 Concept Guide</u>
- Important Equations (following this slide)
- · End of Chapter Problems (following this slide)

When you dilute a solution:

MAR

Solutions: Solute, solvent, aqueous, electrolyte (strong, weak, non), solubility (use the Net Ionics solubility table), precipitation, types of reactions, molarity (M)

Know the five types of reactions: precipitation, acid-base, gas forming, combustion and redox. Know how to determine if something has been oxidized or reduced (and the oxidizing agent and reducing agent)

End of Chapter Problems: Test Yourself

- 1. Predict whether these compounds would be labeled as insoluble or
- Predict Whether these compounds would be labeled as insolutive of soluble. HCI, NaCI, AgCI
 Predict the products of this precipitation reaction and write the net ionic equation: NiCl¿(a) + (NH₄)₂S(aq) → ? List any spectator ions.
 In the following reaction, decide which reactant is oxidized and which is reduced. Designate the oxidizing agent and the reducing agent. Si(s) + 2
- reduced. Designate the oxidizing agent and the reducing agent. Si(s) + 2 $Cl_2(g) \rightarrow SiCl_4(I)$ 4. Identify the ions and their concentration that exist in this aqueous solution: 0.25 M (NH₄)₂SO₄ 5. What volume of 0.109 M HNO₃, in milliliters, is required to react completely with 2.50 g of Ba(OH)₂? 2 HNO₃(aq) + Ba(OH)₂(s) \rightarrow 2 H₂O(I) + Ba(NO₃)₂(aq) 6. A table wine has a pH of 3.40. What is the hydrogen ion concentration of the wine? Is it acidito re basic?

- the wine? Is it acidic or basic?
 If 50.0 mL of 0.0135 M BaCl₂ is diluted to a total of 400. mL, what is the new concentration of BaCl₂?

End of Chapter Problems: Answers

- 2.
- 3. Si is oxidized and is the reducing agent; Cl_2 is reduced and is the oxidizing agent 0.50 M NH4⁺¹; 0.25 M SO4²⁻
- 4. 5.

Important Equations, Constants, and Handouts

· Know how the solubility

· Know what makes an acid

acidic (and bases basic) and

strong or weak; know how to

equations and find spectator

· Know how to use molarity

with solution stoichiometry

Molarity (M) = mol of solute

guide works

use the pH scale

Know how to write and

determine net ionic

per Liter of solution

from this Chapter:

ions

MAR

problems

• $M_1V_1 = M_2V_2$

- 268 mL acidic; [H+] = 4.0 × 10-4 M
- 6. acidic; [H+] 7. 0.00169 M