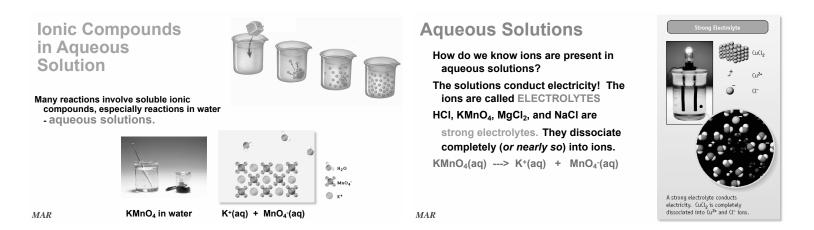


Water Solubility of Ionic Compounds


WATER SOLUBILITY OF IONIC COMPOUNDS

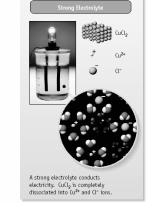
Not all ionic compounds dissolve in water. Some are INSOLUBLE.

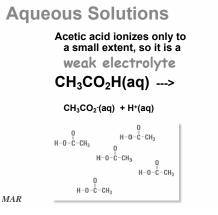
Many ions, however, make compounds SOLUBLE all of the time.

Examples: Na⁺, K⁺, Li⁺, NH₄⁺, NO₃⁻, ClO₃⁻, ClO₄⁻, CH₃CO₂⁻, and *most* SO₄²⁻, Cl⁻, Br⁻ and l⁻ compounds.
 Solution CORFOUND

 Sales of inits, NS, NS, Solution, NS, Solution,

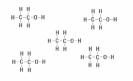
Aqueous Solutions


HCI, MgCI₂, and NaCI are


strong electrolytes. They dissociate completely (or nearly so) into ions.

MAR

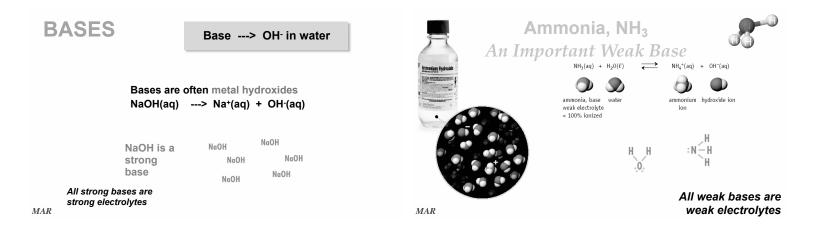
MAR



Aqueous Solutions

Some compounds (sugar, ethanol, acetone, etc.) dissolve in water but do not conduct electricity. They are called nonelectrolytes.

See "Dissolve, Dissociate and Electrolyte" Guide



Acids An acid -----> H+ in water Some strong acids include: HCI hydrochloric nitric HNO₃ **HCIO**₄ perchloric H₂SO₄ sulfuric H-CI H-CI H-CI H-CI H-CI H-CI All strong acids are H-CI H-CI strong electrolytes H-CI MAR

Weak Acids **The Nature** нí ìн of Acids All weak acids are weak electrolytes H _o CH₃CO₂H acetic acid н H₂CO₃ carbonic acid H₃PO₄ phosphoric acid HCI H-F H-F H_2O H_3O^+ H-F H-F H-F н-і hydronium H-F ion H-F H-F H-F H-F Acetic acid MAR MAR

Page III-4b-2 / Chapter Four Part II Lecture Notes

Strong Ac	ids (Strong Electrolytes)	Strong Bases (Strong Electrolytes)
HCL	Hydrochloric acid	LiOH Lithium hydroxide
HBr	Hydrobromic acid	NaOH Sodium hydroxide
HI	Hydroiodic acid	KOH Potassium hydroxide
HNO_3	Nitric acid	
HClO ₄	Perchloric acid	
H_2SO_4	Sulfuric acid	
Weak Aci	ds (Weak Electrolytes)*	Weak Base (Weak Electrolyte)
H ₃ PO ₄	Phosphoric acid	NH3 Ammonia
H_2CO_3	Carbonic acid	Know the strong acids & bases!
CH ₃ CO ₂ H	Acetic acid	
$H_2C_2O_4$	Oxalic acid	
$C_4H_6O_6$	Tartaric acid	
C6H807	Citric acid	
C6H8U7		

MAR

*These are representative of hundreds of weak acids.

Net Ionic Equations

Mg(s) + 2 HCl(aq) → H₂(g) + MgCl₂(aq) Aqueous solutes (HCl, MgCl₂) dissociate; we *really* should write:

 $\begin{array}{l} Mg(s) + 2 \ H^{\scriptscriptstyle +}(aq) + 2 \ Cl^{\scriptscriptstyle -}(aq) \rightarrow \\ H_2(g) + \ Mg^{2+}(aq) + \ 2 \ Cl^{\scriptscriptstyle -}(aq) \end{array}$

We leave the spectator ions (CI-) out in writing the NET IONIC EQUATION:

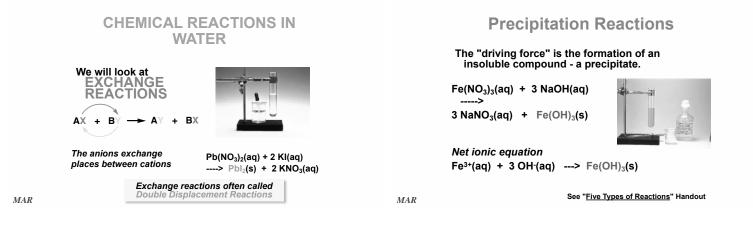
 $\begin{array}{rll} Mg(s) \ + \ 2 \ H^{\scriptscriptstyle +}(aq) \ \rightarrow \ H_2(g) \ + \ Mg^{2+}(aq) \\ See \ \underline{Net \ Ionic \ Reactions \ Handout} \end{array}$

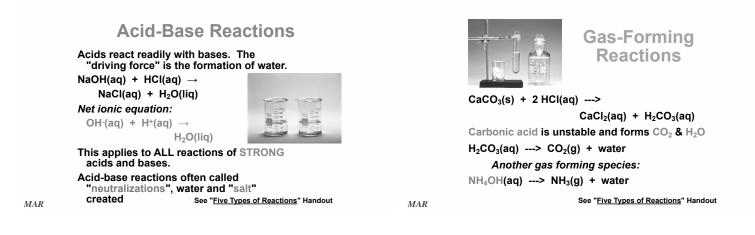
Net Ionic Equations

Mg(s) + 2 HCl(aq) --> H₂(g) + MgCl₂(aq) We really should write: Mg(s) + 2 H⁺(aq) + 2 Cl⁻(aq) ---> H₂(g) + Mg²⁺(aq) + 2 Cl⁻(aq)

MAR

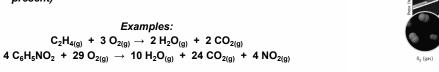
Net Ionic Equations


K₂CrO₄(aq) + Pb(NO₃)₂(aq) --> PbCrO₄(s) + 2 KNO₃(aq)

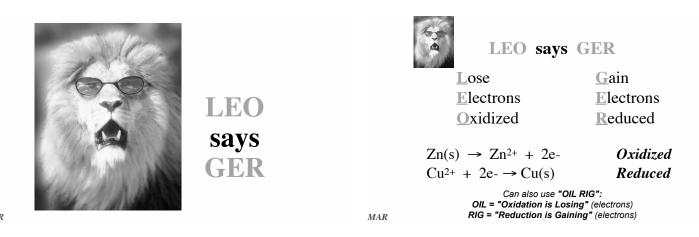

NET IONIC EQUATION Pb²⁺(aq) + CrO₄²⁻(aq) ---> PbCrO₄(s)

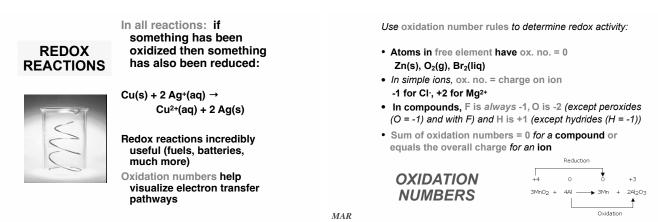
K⁺ and NO₃⁻ are spectators

See Net Ionic Reactions Handout



Used in quantitative chemistry; high temperatures Reactants: oxygen (O₂) and "something organic" (C, H, sometimes O or N) Products: water and carbon dioxide (also NO₂ if N present)




See "Five Types of Reactions" Handout

Oxidation-Reduction Reactions REDOX = reduction & oxidation $2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(liq)$ $V = V_{0,(gn)} + V_{0$

See "Five Types of Reactions" Handout

MAR

Examples of Redox Reactions

Fe = reducing agent

Cl₂ = oxidizing agent

2 Fe + 3 $Cl_2 \rightarrow$ 2 Fe Cl_3

NO = reducing agent O_2 = oxidizing agent $2 NO + O_2 \rightarrow 2 NO_2$

> reducing agent = oxidized oxidizing agent = reduced

Concentration (Molarity) of Solute

The amount of solute in a solution is given by its concentration

"3.6 M" means a concentration of 3.6 molarity

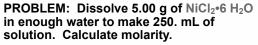
"concentration" and molarity often the same

moles solute

liters of solution

Molarity (M)

Concentration (M) = [...]

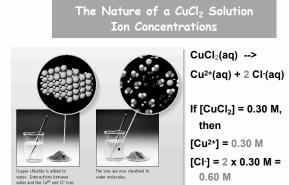

MAR

PROBLEM: Dissolve 5.00 g of NiCl₂•6 H₂O in enough water to make 250. mL of solution. Calculate molarity.

MAR

MAR

Step 1: Calculate moles of NiCl₂•6H₂O


 $5.00 \text{ g} \cdot \frac{1 \text{ mol}}{237.7 \text{ g}} = 0.0210 \text{ mol}$

Step 2: Calculate molarity

 $\frac{0.0210 \text{ mol}}{0.250 \text{ L}} = 0.0841 \text{ M}$

 $[NiCl_2 \cdot 6 H_2 O] = 0.0841 M$

MAR

MAR

USING MOLARITY

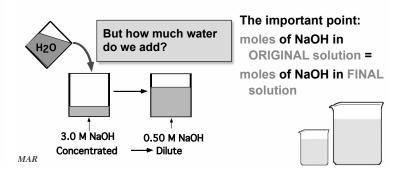
What mass of oxalic acid, $H_2C_2O_4,$ is required to make 250. mL of a 0.0500 M solution?

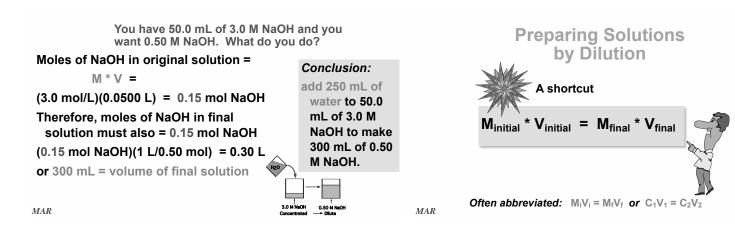
moles =
$$M \cdot V$$

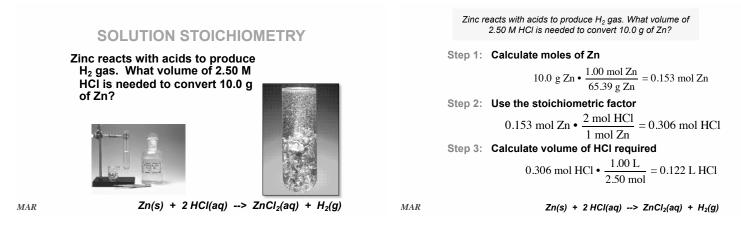
Step 1: Calculate moles of acid required. (0.0500 mol/L)(0.250 L) = 0.0125 mol Step 2: Calculate mass of acid required.

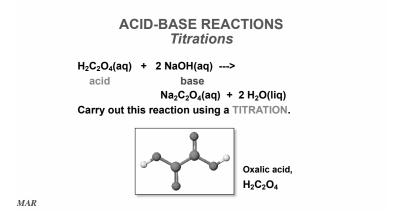
(0.0125 mol)(90.00 g/mol) = 1.13 g

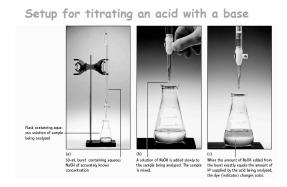
Preparing Solutions

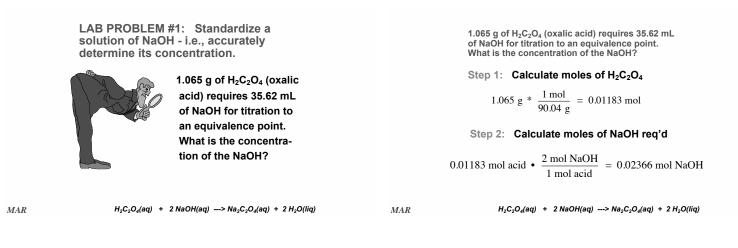

or

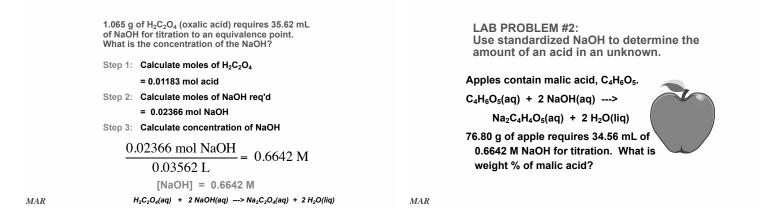



MAR

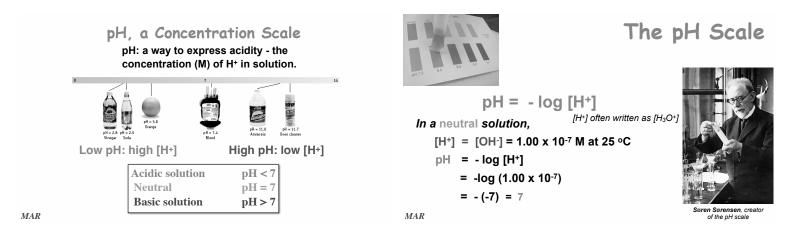

Weigh out a solid solute and dissolve in a given quantity of solvent

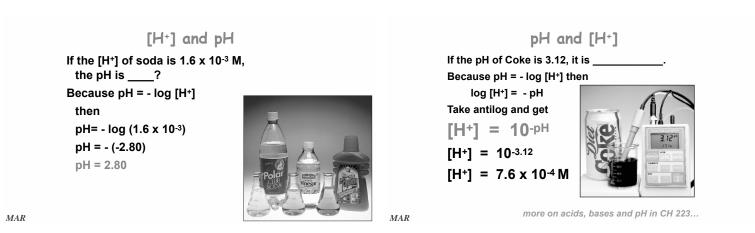

Dilute a concentrated solution to give one that is less concentrated. You have 50.0 mL of 3.0 M NaOH and you want 0.50 M NaOH. What do you do?

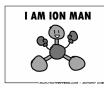












End of Chapter Four Part 2

See also:

- Chapter Four Part 2 Study Guide
- <u>Chapter Four Part 2 Concept Guide</u>
- Important Equations (following this slide)
- · End of Chapter Problems (following this slide)

When you dilute a solution:

MAR

Solutions: Solute, solvent, aqueous, electrolyte (strong, weak, non), solubility (use the Net Ionics solubility

table), precipitation, types of reactions, molarity (M)

Know the five types of reactions: precipitation, acid-base, gas forming, combustion and redox. Know how to determine if something has been oxidized or reduced (and the oxidizing agent and reducing agent)

End of Chapter Problems: Test Yourself

- 1. Predict whether these compounds would be labeled as insoluble or
- Predict whether these compounds would be have used to indecate the soluble: HCI, NaCI, AgCI
 Predict the products of this precipitation reaction and write the net ionic equation: NiCl₂(aq) + (NH₄)₂S(aq) → ? List any spectator ions.
 In the following reaction, decide which reactant is oxidized and which is reduced. Designate the oxidizing agent and the reducing agent. Si(s) + 2 CL(A) → SiCL(B)
- reduced. Designate the oxidizing agent and the reducing agent. Si(s) + 2 Cl₂(g) \rightarrow SiCl₄(l) 4. Identify the ions and their concentration that exist in this aqueous solution: 0.25 M (NH₄)₂SO₄ 5. What volume of 0.109 M HNO₃, in milliliters, is required to react completely with 2.50 g of Ba(OH)₂? 2 HNO₃(aq) + Ba(OH)₂(s) \rightarrow 2 H₂O(l) + Ba(NO₃)₂(aq) 6. A table wine has a pH of 3.40. What is the hydrogen ion concentration of the wine? Is it action or basic?

- the wine? Is it acidic or basic?
 If 50.0 mL of 0.0135 M BaCl₂ is diluted to a total of 400. mL, what is the new concentration of BaCl₂?

End of Chapter Problems: Answers

- 1. 2.
- 3. Si is oxidized and is the reducing agent; Cl_2 is reduced and is the oxidizing agent 0.50 M NH4⁺¹; 0.25 M SO4²⁻
- 4. 5.

Important Equations, Constants, and Handouts

· Know how the solubility

· Know what makes an acid

acidic (and bases basic) and

strong or weak; know how to

equations and find spectator

Know how to use molarity

with solution stoichiometry

Molarity (M) = mol of solute

guide works

use the pH scale

Know how to write and

determine net ionic

per Liter of solution

from this Chapter:

ions

problems

• $M_1V_1 = M_2V_2$

•

MAR

- 268 mL acidic; [H+] = 4.0 × 10-4 M
- 6. acidic; [H+] 7. 0.00169 M