Chemical Reactions Chapter 4 Part 1

Reactants: Zn + I₂

Chemistry 221 Professor Michael Russell

Last update 4/29/24 Chemistry as Cooking! - the Chemical Reaction

"Recipe" and technique leads to successful creations Must know amounts to add, how much will be produced Haphazard additions can be disastrous!

Chemical Equations

Depict the kind of reactants and products and their relative amounts in a reaction.

 $4 AI(s) + 3 O_2(g) ---> 2 AI_2O_3(s)$

The numbers in the front are called

stoichiometric coefficients

The letters (s), (g), (aq) and (l) are the physical states of compounds.

MAR

MAR

Reaction of Phosphorus with Cl₂

Notice the stoichiometric coefficients and the physical states of the reactants and products.

Evidence of a chemical reaction: heat change, precipitate formation, gas evolution, color change

Chemical Equations

4 Al(s) + 3 $O_2(g) \rightarrow 2 Al_2O_3(s)$ This equation means: 4 Al atoms + 3 O_2 molecules ---give---> 2 molecules of Al₂O₃

or 4 moles of Al + 3 moles of O₂ ---give---> _{MAR} 2 moles of Al₂O₃

Chemical Equations

The Law of the Conservation of Matter Also known as the Law

of Mass Action

MAR

Chemical Equations / Lavoisier

Because of the principle of the conservation of matter, an equation must be balanced. It must have the same number of atoms of the same kind on both sides.

Lavoisier, 1788

MAR

2 Al(s) + 3 Br₂(liq) ---> Al₂Br₆(s)

$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\$

MAR

Balancing Equations - Hints

Balance those atoms which occur in only one compound on each side last (i.e. O₂ in previous examples)

Balance the remaining atoms first

Reduce coefficients to smallest whole integers Check your answer *if uncertain*

Helpful but optional: Check that charges are balanced

STOICHIOMETRY

Stoichiometry is the study of the quantitative aspects of chemical reactions. Stoichiometry rests on the principle of the conservation of matter.

MAR

Stoichiometry

The balanced chemical equation $4 \text{Al}(s) + 3 \text{O}_2(g) \implies 2 \text{Al}_2\text{O}_3(s)$ implies *all* of the following ratios:

4 mol Al	4 mol Al	3 mol O ₂
$3 \mod O_2$	2 mol Al_2O_3	2 mol Al_2O_3
$3 \mod O_2$	$2 \text{ mol Al}_2\text{O}_3$	$2 \text{ mol Al}_2\text{O}_3$
4 mol Al	4 mol Al	3 mol O ₂

These are nothing more than "conversion units" in dimensional analysis!

454 g of NH₄NO₃ --> N₂O + 2 H₂O

STEP 2 Convert mass reactant (454 g) --> moles

454 g •
$$\frac{1 \text{ mol}}{80.04 \text{ g}}$$
 = 5.68 mol NH₄NO₃

80.04 g/mol = molar mass of NH₄NO₃

PROBLEM: If 454 g of NH_4NO_3 decomposes, how much N_2O and H_2O are formed? What is the theoretical yield of products?

STEP 1 Write the balanced chemical equation

 $NH_4NO_3 ---> N_2O + 2 H_2O$

454 g of NH₄NO₃ --> N₂O + 2 H₂O

STEP 3 Convert moles reactant --> moles product Relate moles NH₄NO₃ to moles product expected. 1 mol NH₄NO₃ --> 2 mol H₂O

Express as a STOICHIOMETRIC FACTOR:

 $\frac{2 \text{ mol } \text{H}_2\text{O produced}}{1 \text{ mol } \text{NH}_4\text{NO}_3 \text{ used}}$

454 g of NH₄NO₃ --> N₂O + 2 H₂O

STEP 3 Convert moles reactant (5.68 mol) --> moles product

5.68 mol NH₄NO₃ • $\frac{2 \text{ mol H}_2\text{O produced}}{1 \text{ mol NH}_4\text{NO}_3 \text{ used}}$

= 11.4 mol H₂O produced

How many moles of N₂O produced? Answer = **5.68 mol N₂O** 454 g of NH₄NO₃ --> N₂O + 2 H₂O

STEP 4 Convert moles product (11.4 mol) --> mass product This is called the THEORETICAL YIELD

11.4 mol H₂O •
$$\frac{18.02 \text{ g}}{1 \text{ mol}} = 204 \text{ g H}_2\text{O}$$

ALWAYS FOLLOW THESE STEPS IN SOLVING STOICHIOMETRY PROBLEMS!

MAR

MAR

MAR

454 g of NH ₄ NO ₃ > N ₂ O + 2 H ₂ O		454 g of NH ₄ NO ₃ > N ₂ O + 2 H ₂ O			
STEP 5 How much N ₂ O is formed?		Compound	NH ₄ NO ₃	N ₂ O	H ₂ O
Total mass of reactants = total mass of products		Initial (g)	454 g	0	0
454 g NH ₄ NO ₃ = $_{g}$ g N ₂ O + 204 g H ₂ O		Initial (mol)	5.68mol	0	0
mass of $N_2O = 250$. g law of mass action!		Change (mol)	-5.68	+5.68	+2(5.68)
		Final (mol)	0	5.68	11.4
could also turn mol NH₄NO₃ into mol N₂O, then grams of N₂O:		Final (g)	0	250.	204
5.68 mol N ₂ O * 44.01 g/mol = 250. g	MAR			М	ass is cons

454 g of NH₄NO₃ --> N₂O + 2 H₂O

STEP 6 Calculate the percent yield We predicted a yield of 250. g of N₂O. If you isolated only 131 g of N₂O, what is the percent yield of N₂O?

This compares the theoretical yield (250. g) and actual yield (131 g) of N_2O .

454 g of NH₄NO₃ --> N₂O + 2 H₂O

STEP 6 Calculate the percent yield actual yield theoretical yield - • 100% % yield = -

% yield = $\frac{131 \text{ g}}{250. \text{ g}} \cdot 100\% = 52.4\%$

MAR

MAR

PROBLEM: Using 5.00 g of H_2O_2 , what mass of O_2 and of H₂O can be obtained?

2 H₂O₂(liq) ---> 2 H₂O(g) + O₂(g) Reaction is catalyzed by MnO₂

MAR

PROBLEM: Using 5.00 g of H_2O_2 , what mass of O_2 and of H₂O can be obtained?

2 H₂O₂(liq) ---> 2 H₂O(g) + O₂(g) Reaction is catalyzed by MnO₂ Step 1: moles of H₂O₂ Step 2: use STOICHIOMETRIC FACTOR to calculate moles of O₂ Step 3: mass of O₂ (2.35 g) Step 4: mass of H₂O (2.65 g) Try this problem yourself!

Reactions Involving a LIMITING REACTANT

In a given reaction, there is not enough of one reagent to use up the other reagent completely.

The reagent in short supply LIMITS the quantity of product that can be formed.

MAR

* Not enough Zn to use up 0.100 mol HCl

MAR

MAR

LIMITING REACTANTS		LIMITING REACTANTS					
	React solid Zn with 0.100 mol HCI (aq) $Zn_{(s)} + 2 HCI_{(aq)}>$ $ZnCI_{2(aq)} + H_{2(q)}$			React solid Zn with 0.100 mol HCI (aq) Zn _(s) + 2 HCI _(aq) > ZnCl _{2(aq)} + H _{2(g)}			
2.1012(aq) 1.12(g)				0.100 mol HCl [1 mol Zn/2 mol HCl] = 0.0500 mol Zn			
Left: Balloon inflates fu	lly, some Zn left			Left	Center	Right	
* More than enough Zn to use up the 0.100 mol HCI		mass Zn (g)	7.00	3.27	1.31		
Center: Balloon inflates	fully, no Zn left		mol Zn	0.107	0.050	0.020	
* Right amount of e	ach (HCI and Zn)		mol HCI	0.100	0.100	0.100	
Right: Balloon does not inflate fully, no Zn left.			mol HCI/mol Zn	0.93	2.00	5.00	
		MAD	Lim Reactant	LR = HCI	no LR	LR = Zn	

MAR

PROBLEM: Mix 5.40 g of Al with 8.10 g of Cl₂. How many grams of Al₂Cl₆ can form?

MAR

Step 1 of the Limiting Reactant problem: Compare actual mole ratio of reactants to theoretical mole ratio.

Reactants must be in the mole ratio

$$\frac{\text{mol } \text{Cl}_2}{\text{mol } \text{Al}} = \frac{3}{2}$$

MAR

MAR

 $2 \text{ AI} + 3 \text{ CI}_2 ---> \text{ AI}_2 \text{ CI}_6$

mol Cl 3

reagent is A

MAR

$$\frac{\text{mol } \text{Cl}_2}{\text{mol } \text{Al}} > \frac{3}{2}$$

then there is not enough AI to use up all the Cl₂, and the limiting

Deciding on the Limiting Reactant

$$2 \text{ AI} + 3 \text{ CI}_2 ---> \text{ AI}_2 \text{ CI}_6$$

If
$$\frac{\text{mol } \text{Cl}_2}{\text{mol } \text{Al}} < \frac{3}{2}$$

then there is not enough Cl₂ to use up all the AI, and the limiting

reagent is C

Step 2 of the Limiting Reactant problem: Calculate moles of each reactant

We have 5.40 g of Al and 8.10 g of Cl₂. How much Al₂Cl₆ can form?

5.40 g Al •
$$\frac{1 \text{ mol}}{27.0 \text{ g}} = 0.200 \text{ mol Al}$$

8.10 g Cl₂ • $\frac{1 \text{ mol}}{70.9 \text{ g}} = 0.114 \text{ mol Cl}_2$

 $2 AI + 3 CI_2 ---> AI_2 CI_6$

Step 3 of the Limiting Reactant problem: Compare moles to find limiting reactant

MAR

Mix 5.40 g of AI with 8.10 g of Cl₂. What mass of Al₂Cl₆ can form?

CALCULATIONS: calculate mass of Al_2Cl_6 expected using limiting reactant.

Step 1: Calculate moles of Al₂Cl₆ expected using chlorine:

$$0.114 \text{ mol } \text{Cl}_2 \bullet \frac{1 \text{ mol } \text{Al}_2 \text{Cl}_6}{3 \text{ mol } \text{Cl}_2} = 0.0380 \text{ mol } \text{Al}_2 \text{Cl}_6$$

Step 2: Calculate mass of Al₂Cl₆ expected based on chlorine:

$$0.0380 \text{ mol } Al_2Cl_6 \bullet \frac{266.4 \text{ g } Al_2Cl_6}{\text{mol}} = \frac{10.1 \text{ g } Al_2Cl_6}{10.1 \text{ g } Al_2Cl_6}$$

2 AI + 3 CI₂ ---> AI₂CI₆

Using Stoichiometry to Determine a Formula

What is the empirical formula of a hydrocarbon, C_xH_y, if burning 0.115 g produces 0.379 g CO₂ and 0.1035 g H₂O?

C_xH_y + some O₂ ---> 0.379 g CO₂ + 0.1035 g H₂O

Using Stoichiometry to Determine a Formula

C_xH_y + some oxygen ---> 0.379 g CO₂ + 0.1035 g H₂O First, recognize that all C in CO₂ and all H in H₂O comes from C_xH_y. 1. Calculate amount of C in CO₂ 8.61 x 10-3 mol CO2 --> 8.61 x 10-3 mol C 1 mol C per 1 mol CO₂ 2. Calculate amount of H in H₂O 5.744 x 10-3 mol H₂O -- >1.149 x 10-2 mol H 2 mol H per 1 mol water!

Using Stoichiometry to Determine a Formula C_xH_y + some oxygen --->

0.379 g CO₂ + 0.1035 g H₂O Now find ratio of mol H/mol C to find values of x and y in C_xH_y.

1.149 x 10 -2 mol H/ 8.61 x 10-3 mol C

- = 1.33 mol H / 1.00 mol C
- = 4 mol H / 3 mol C

Empirical formula = C_3H_4

MAR

Formulas with C, H and O

Caproic acid, the substance responsible for "dirty gym socks" smell, contains C, H and O.

Combustion analysis of 0.450 g caproic acid gives 0.418 g H₂O and 1.023 g CO₂, and the molar mass was found to be 116.2 g mol-1.

What is the molecular formula of caproic acid?

C_xH_yO_z + some oxygen ---> 1.023 g CO₂ + 0.418 g H₂O

Careful: oxygen comes from caproic acid and O₂, need special technique

MAR

Formulas with C, H and O

Combustion analysis of 0.450 g caproic acid gives 0.418 g $\rm H_2O$ and 1.023 g CO₂, and the molar mass is 116.2 g mol-1. What is the molecular formula?

Start with "regular" approach for mol H & mol C: 0.418 g H₂O * (mol/18.02 g) * (2 mol H/mol H₂O) =

0.0464 mol H

0.0464 mol H * (1.01 g/mol H) = 0.0469 g H

1.023 g CO₂ * (mol/44.01 g) * (1 mol C/mol CO₂) = 0.02324 mol C

0.02324 mol C * (12.01 g/mol C) = 0.2791 g C

Why did we convert to grams? Law of Mass Action!

MAR

Formulas with C, H and O

0.450 g caproic acid: 0.418 g H_2O (0.0464 mol H, 0.0469 g H) and 1.023 g CO2 (0.02324 mol C, 0.2791 g C), molar mass = 116.2 g/mol. What is the molecular formula?

Realize that 0.450 g of caproic acid equals all the g C, g H and g O in the complex.

Converting mol H and mol C to grams, then subtracting from 0.450 g, gives g O in caproic acid:

0.450 g - 0.0469 g - 0.2791 g = 0.124 g O

caproic acid g of H in acid g of C in acid g of O in acid

0.124 g O * (mol O / 16.00 g) = 0.00775 mol O

MAR

Formulas with C, H and O

0.450 g caproic acid: 0.418 g H_2O (0.0464 mol H) and 1.023 g CO_2 (0.02324 mol C), molar mass = 116.2 g/mol, 0.00775 mol O. What is the molecular formula?

Now compare moles:

- C_{0.02324}H_{0.0464}O_{0.00775} gives C₃H₆O = empirical formula
- C₃H₆O has a molar mass of 58.1 g/mol, which is half of the 116.2 g/mol value

Molecular Formula = $(C_3H_6O)_2$, or

 $C_6H_{12}O_2$

You can now find empirical formulas based on combustion analysis (this chapter) and elemental percentages (previous chapter)!

Balancing Equations:

of matter (s, l, g, aq),

Law of Conservation of

Matter ("mass action")

Reactants, Products, states

stoichiometric coefficients,

End of Chapter 4 Part 1

See also:

- Chapter Four Part 1 Study Guide
- Chapter Four Part 1 Concept Guide
- · Important Equations (following this slide)
- · End of Chapter Problems (following this slide)

TOICHIOME-T

End of Chapter Problems: Test Yourself

See practice problem set #4 and self quizzes for balancing chemical equations examples and practice

- What mass of Br₂, in grams, is required for complete reaction with 2.56 g of Al? What mass of white, solid Al₂Br₀ is expected? The equation: 2 Al(s) + 3 Br₂(I) → Al₂Br₀(s)
 Aluminum chloride is made by treating aluminum with chlorine: 2 Al(s) + 3 Cl₂(g) → 2 AlCl₄(s) If you begin with 2.70 g of Al and 4.05 g of Cl₂, which reactant is limiting? What mass of AlCl₃ can be produced? What mass of the excess reactant remains when the reaction is completed?
 C IVINH₂/SC is made via: CuSO(a) + 4 MH₂(a) → Cu(MH₂)SC (an) If
- the excess feature it entering when the reaction is completed? $S \operatorname{Cu}(NH_3)_{4}SO_4$ is matching when $\operatorname{Cu}(NH_3)_{4}SO_4(\operatorname{aq}) + 4 \operatorname{Hs}_4(\operatorname{aq}) \rightarrow \operatorname{Cu}(NH_3)_{4}SO_4(\operatorname{aq})$ if you use 10.0 g of CuSO₄ and excess NH₃, what is the theoretical yield of $\operatorname{Cu}(NH_3)_{4}SO_4$? If you isolate 12.6 g of Cu(NH₃)_{4}SO₄, what is the percent yield of Cu(NH₃)_{4}SO₄?
- An unknown compound has the formula C_xH_yO₇. You burn 0.0956 g of the 4. compound and isolate 0.1356 g of CO_2 and 0.0833 g of H_2O . What is the empirical formula of the compound? If the molar mass is 62.1 g/mol, what is the molecular formula?

MAR

End of Chapter Problems: Answers

22.7 g Br₂, 25.3 g Al₂Br₆
 Chlorine is limiting; 5.09 g AlCl₃; 1.67 g Al remains
 14.3 g Cu(NH₃)₄SO₄, 88.3%

4. EF = CH₃O, MF = C₂H₆O₂

Be sure to view practice problem set #4 and self quizzes for balancing chemical equations examples and practice

Important Equations, Constants, and Handouts from this Chapter:

- · be able to find the theoretical yield, actual yield, percent yield
- · be able to determine the limiting reactant, excess reactant. excess reactant remaining at end of reaction
- understand how to calculate empirical formula (EF) and molecular formula (MF) using organic compounds containing oxygen

MAR