Chemical Reactions
 Chapter 4 Part 1

Reactants: $\mathrm{Zn}+\mathrm{I}_{\mathbf{2}}$
mistry 221
Professor Michael Russell

Chemical Equations

Depict the kind of reactants and products and their relative amounts in a reaction.
$4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})-->2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
The numbers in the front are called
stoichiometric coefficients
The letters (s), (g), (aq) and (I) are the physical states of compounds.

Chemistry as Cooking! - the Chemical Reaction

"Recipe" and technique leads to successful creations
Must know amounts to add, how much will be produced
Haphazard additions can be disastrous!

Last update:
4/10/23

Evidence of a chemical reaction: heat change, precipitate formation, gas evolution, color change

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

This equation means:

4 Al atoms $+3 \mathrm{O}_{2}$ molecules ---give--->
2 molecules of $\mathrm{Al}_{2} \mathrm{O}_{3}$
Or
4 moles of $\mathrm{Al}+3$ moles of O_{2} ---give--->
MAR 2 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$

Chemical Equations

Also known as the Law of Mass Action

Chemical Equations / Lavoisier

MAR

MAR

Balancing Equations

$$
2 \mathrm{Al}(\mathbf{s})+3 \mathrm{Br}_{2}(\mathrm{liq})--->\mathrm{Al}_{2} \mathrm{Br}_{6}(\mathbf{s})
$$

Balancing Equations - Hints

Balance those atoms which occur in only one compound on each side last (i.e. O_{2} in previous examples)
Balance the remaining atoms first
Reduce coefficients to smallest whole integers
Check your answer if uncertain
Helpful but optional: Check that charges are balanced

MAR

STOICHIOMETRY

Stoichiometry is the study of the quantitative aspects of chemical reactions.
Stoichiometry rests on the principle of the conservation of matter.

Stoichiometry

The balanced chemical equation $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$---> $2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
implies all of the following ratios:

$$
\begin{array}{ccc}
\frac{4 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{O}_{2}} & \frac{4 \mathrm{~mol} \mathrm{Al}}{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}} & \frac{3 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}} \\
\frac{3 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} \mathrm{Al}} & \frac{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{4 \mathrm{~mol} \mathrm{Al}} & \frac{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{3 \mathrm{~mol} \mathrm{O}_{2}}
\end{array}
$$

These are nothing more than "conversion units" in dimensional analysis!

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}-->\mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
STEP 2 Convert mass reactant
(454 g) --> moles
$454 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{80.04 \mathrm{~g}}=5.68 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}$

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
STEP 3 Convert moles reactant (5.68 mol) --> moles product
$5.68 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3} \cdot \frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \text { produced }}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3} \text { used }}$
$=11.4 \mathrm{~mol} \mathrm{H} \mathbf{H}_{2} \mathbf{O}$ produced
How many moles of $\mathrm{N}_{2} \mathrm{O}$ produced?
Answer $=\mathbf{5 . 6 8} \mathbf{~ m o l ~} \mathrm{N}_{2} \mathrm{O}$

PROBLEM: If 454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ decomposes, how much $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ are formed? What is the theoretical yield of products?

STEP 1
Write the balanced chemical equation
$\mathrm{NH}_{4} \mathrm{NO}_{3}--->$
$\mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}-->\mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
STEP 3 Convert moles reactant --> moles product
Relate moles $\mathrm{NH}_{4} \mathrm{NO}_{3}$ to moles product expected.
$1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3}-->2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$
Express as a STOICHIOMETRIC FACTOR:
$\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \text { produced }}{1 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NO}_{3} \text { used }}$

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}-->\mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
STEP 4 Convert moles product (11.4
mol) --> mass product
This is called the THEORETICAL YIELD
$11.4 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \cdot \frac{18.02 \mathrm{~g}}{1 \mathrm{~mol}}=204 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
ALWAYS FOLLOW THESE STEPS IN SOLVING STOICHIOMETRY PROBLEMS!

```
    454 g of NH4}\mp@subsup{N}{}{NO
STEP }5\mathrm{ How much }\mp@subsup{\mathbf{N}}{2}{}\mathbf{O}\mathrm{ is formed?
Total mass of reactants =
    total mass of products
454 g NH4NO
```

\qquad

``` g \(\mathrm{N}_{2} \mathrm{O}+204 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\)
mass of N}\mp@subsup{\textrm{N}}{2}{}\textrm{O}=250.g\mathrm{ law of mass action!
could also turn mol NH4NO- into mol N2O, then grams
    of N2O
        5.68 mol N2O * 44.01 g/mol = 250. g
```

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow$	$\mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$		
Compound	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\mathrm{~N}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$
Initial (g)	454 g	0	0
Initial (mol)	5.68 mol	0	0
Change (mol)	-5.68	+5.68	$+2(5.68)$
Final (mol)	0	5.68	11.4
Final (g)	0	250.	204

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$--> $\mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
STEP 6 Calculate the percent yield
We predicted a yield of $\mathbf{2 5 0}$. g of $\mathrm{N}_{2} \mathrm{O}$. If you isolated only 131 g of $\mathrm{N}_{2} \mathrm{O}$, what is the percent yield of $\mathrm{N}_{2} \mathrm{O}$?

This compares the theoretical yield (250.g) and actual yield (131 g) of $\mathrm{N}_{2} \mathrm{O}$.

454 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}-->\mathrm{N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
STEP 6 Calculate the percent yield
$\%$ yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \cdot 100 \%$
$\%$ yield $=\frac{131 \mathrm{~g}}{250 . \mathrm{g}} \cdot 100 \%=52.4 \%$

GENERAL PLAN FOR STOICHIOMETRY CALCULATIONS

PROBLEM: Using 5.00 g of
$\mathrm{H}_{2} \mathrm{O}_{2}$, what mass of O_{2} and of $\mathrm{H}_{2} \mathrm{O}$ can be obtained?

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{liq}) \text {---> } 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Reaction is catalyzed by MnO_{2}

PROBLEM: Using 5.00 g of $\mathrm{H}_{2} \mathrm{O}_{2}$, what mass of O_{2} and of $\mathrm{H}_{2} \mathrm{O}$ can be obtained?

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{liq})-->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Reaction is catalyzed by MnO_{2}
Step 1: moles of $\mathrm{H}_{2} \mathrm{O}_{2}$
Step 2: use STOICHIOMETRIC FACTOR to calculate moles of O_{2}
Step 3: mass of $\mathrm{O}_{2}(2.35 \mathrm{~g})$
Step 4: mass of $\mathrm{H}_{2} \mathrm{O}(2.65 \mathrm{~g})$
Try this problem yourself!

LIMITING REACTANTS

React solid Zn with 0.100 mol HCl (aq)
$\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq)}}--->$
$\mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$

Left: Balloon inflates fully, some Zn left

* More than enough Zn to use up the $\mathbf{0 . 1 0 0} \mathbf{~ m o l ~ H C l}$

Center: Balloon inflates fully, no $\mathbf{Z n}$ left

* Right amount of each (HCl and Zn)

Right: Balloon does not inflate fully, no Zn left.

* Not enough $\mathbf{Z n}$ to use up 0.100 mol HCl

LIMITING REACTANTS

Reactions Involving a LIMITING REACTANT

In a given reaction, there is not enough of one reagent to use up the other reagent completely.
The reagent in short supply LIMITS the quantity of product that can be formed.

LIMITING REACTANTS

Reaction to be Studied:
$2 \mathrm{Al}+3 \mathrm{Cl}_{2}$--> $\mathrm{Al}_{2} \mathrm{Cl}_{6}$

PROBLEM: Mix 5.40 g of Al with 8.10 g of Cl_{2}. How many grams of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ can form?

Deciding on the Limiting Reactant
$2 \mathrm{Al}+3 \mathrm{Cl}_{2}$---> $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
If $\frac{\mathrm{mol} \mathrm{Cl}_{2}}{\mathrm{~mol} \mathrm{Al}}>\frac{3}{2}$
then there is not enough Al to use up all the Cl_{2}, and the limiting
reagent is

Step 2 of the Limiting Reactant problem:
Calculate moles of each reactant

We have 5.40 g of Al and 8.10 g of Cl_{2}. How much $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ can form?

$$
\begin{aligned}
& 5.40 \mathrm{~g} \mathrm{Al} \cdot \frac{1 \mathrm{~mol}}{27.0 \mathrm{~g}}=0.200 \mathrm{~mol} \mathrm{Al} \\
& 8.10 \mathrm{~g} \mathrm{Cl}_{2} \cdot \frac{1 \mathrm{~mol}}{70.9 \mathrm{~g}}=0.114 \mathrm{~mol} \mathrm{Cl}_{2}
\end{aligned}
$$

Step 1 of the Limiting Reactant problem: Compare actual mole ratio of reactants to theoretical mole ratio.

$$
2 \mathrm{Al}+3 \mathrm{Cl}_{2}--->\mathrm{Al}_{2} \mathrm{Cl}_{6}
$$

Reactants must be in the mole ratio

$$
\frac{\mathrm{mol} \mathrm{Cl}_{2}}{\mathrm{~mol} \mathrm{Al}}=\frac{3}{2}
$$

Deciding on the Limiting Reactant
$2 \mathrm{Al}+3 \mathrm{Cl}_{2}$---> $\mathrm{Al}_{2} \mathrm{Cl}_{6}$
If $\frac{\mathrm{mol} \mathrm{Cl}_{2}}{\mathrm{~mol} \mathrm{Al}}<\frac{3}{2}$
then there is not enough Cl_{2} to use up all the Al , and the limiting
reagent is

MAR

Step 3 of the Limiting Reactant problem:
Compare moles to find limiting reactant

$$
\begin{aligned}
& \frac{\mathrm{mol} \mathrm{Cl}_{2}}{\mathrm{~mol} \mathrm{Al}}=\frac{0.114 \mathrm{~mol}}{0.200 \mathrm{~mol}}=0.570 \\
& \begin{array}{l}
\text { This } \overline{\text { should be } 3 / 2 \text { or } 1.5 / 1 \text { if }} \begin{array}{l}
\text { reactants are present in the } \\
\text { exact stoichiometric ratio. }
\end{array} \\
\text { Limiting reagent is } \mathrm{Cl} \mathrm{Cl}_{2} \\
2 \mathrm{Al}+3 \mathrm{Cl}_{2}
\end{array} \quad \mathrm{AI}_{2} \mathrm{Cl}_{6}
\end{aligned}
$$

Mix 5.40 g of Al with 8.10 g of Cl_{2}. What mass of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ can form?

$$
\begin{gathered}
\text { Alternate Limiting Reactant Method } \\
\hline \begin{array}{c}
\text { Calculate theoretical yield of product based on } \\
\text { both reactants. }
\end{array} \\
\begin{array}{c}
\text { Smaller theoretical yield comes from limiting } \\
\text { reactant, greater yield from excess reactant. } \\
8.10 \mathrm{~g} \mathrm{Cl}_{2} \cdot \frac{1 \mathrm{~mol}}{70.9 \mathrm{~g}} \cdot \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{Cl}_{6}}{3 \mathrm{~mol} \mathrm{Cl}_{2}} \cdot \frac{266.4 \mathrm{~g}}{1 \mathrm{~mol}}=10.1 \mathrm{~g} \mathrm{Al}_{2} \mathrm{Cl}_{6} \\
5.40 \mathrm{~g} \mathrm{Al} \cdot \frac{1 \mathrm{~mol}}{27.0 \mathrm{~g}} \cdot \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{Cl}_{6}}{2 \mathrm{~mol} \mathrm{Al}^{2}} \cdot \frac{266.4 \mathrm{~g}}{1 \mathrm{~mol}}=26.6 \mathrm{~g} \mathrm{Al}_{2} \mathrm{Cl}_{6} \\
\mathbf{1 0 . 1} \mathbf{g ~ < ~ \mathbf { 2 6 . 6 } \mathbf { ~ g } , \mathbf { s o } : ~ l i m i t i n g ~ r e a c t a n t ~}=\mathrm{Cl}_{2},
\end{array} \\
\text { theoretical yield =10.1 g, excess reactant = AI }
\end{gathered}
$$

$$
2 \mathrm{AI}+3 \mathrm{CI}_{2}-\ldots \mathrm{AI}_{2} \mathrm{CI}_{6}
$$

Excess $A I=A I$ available $-A I$ required
$=5.40 \mathrm{~g}-2.05 \mathrm{~g}$

$$
=3.35 \mathrm{~g} \mathrm{Al} \text { unused in reaction }
$$

$$
2 A I+3 C I_{2}-->A I_{2} C l_{6}
$$

CALCULATIONS: calculate mass of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ expected using limiting reactant.

Step 1: Calculate moles of $\mathrm{Al}_{2} \mathbf{C l}_{6}$ expected using chlorine:
$0.114 \mathrm{~mol} \mathrm{Cl}_{2} \cdot \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{Cl}_{6}}{3 \mathrm{~mol} \mathrm{Cl}_{2}}=0.0380 \mathrm{~mol} \mathrm{Al} \mathrm{Cl}_{6}$
Step 2: Calculate mass of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ expected based on chlorine:
$0.0380 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{Cl}_{6} \cdot \frac{266.4 \mathrm{~g} \mathrm{Al}_{2} \mathrm{Cl}_{6}}{\mathrm{~mol}}=10.1 \mathrm{~g} \mathrm{Al}_{2} \mathrm{Cl}_{6}$
$2 \mathrm{Al}+3 \mathrm{Cl}_{2}$---> $\mathrm{Al}_{2} \mathrm{Cl}_{6}$

How much of which reactant will remain when reaction is complete?
Cl_{2} was the limiting reactant. Therefore, Al was present in excess. But by how much?

First find how much Al was required based on limiting reactant ($\mathbf{C l}_{2}$).
Then find how much Al is in excess.

$$
2 \mathrm{AI}+3 \mathrm{Cl}_{2}--->A I_{2} \mathrm{Cl}_{6}
$$

Using Stoichiometry to Determine a Formula

Hydrocarbons, $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$, can be burned in oxygen to give CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ (combustion reaction).
The CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ can be collected to determine the empirical formula of the hydrocarbon.

$$
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2}--->\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Using Stoichiometry to
 Determine a Formula

What is the empirical formula of a hydrocarbon, $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$, if burning 0.115 g produces $0.379 \mathrm{~g} \mathrm{CO}_{2}$ and $0.1035 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$?

$$
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\text { some } \mathrm{O}_{2}--->0.379 \mathrm{~g} \mathrm{CO}_{2}+0.1035 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

Using Stoichiometry to

Determine a Formula
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+$ some oxygen -..->
$0.379 \mathrm{~g} \mathrm{CO}_{2}+0.1035 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
Now find ratio of $\mathrm{mol} \mathrm{H} / \mathrm{mol} \mathrm{C}$ to find values of x and y in $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$.
$1.149 \times 10^{-2} \mathrm{~mol} \mathrm{H} / 8.61 \times 10^{-3} \mathrm{~mol} \mathrm{C}$
$=1.33 \mathrm{~mol} \mathrm{H} / 1.00 \mathrm{~mol} \mathrm{C}$
$=4 \mathrm{molH} / 3 \mathrm{~mol} \mathrm{C}$
Empirical formula $=\mathrm{C}_{3} \mathrm{H}_{4}$

MAR

\author{

Using Stoichiometry to Determine a Formula

 \section*{$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+$ some oxygen -.->} $0.379 \mathrm{~g} \mathrm{CO}_{2}+0.1035 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
 First, recognize that all C in CO_{2} and all H in $\mathrm{H}_{2} \mathrm{O}$ comes from $\mathrm{C}_{x} \mathrm{H}_{\mathrm{y}}$.
 1. Calculate amount of C in CO_{2}
 $8.61 \times 10^{-3} \mathrm{~mol} \mathrm{CO}_{2}-->8.61 \times 10^{-3} \mathrm{~mol} \mathrm{C}$
 $1 \mathrm{~mol} C$ per $1 \mathrm{~mol} \mathrm{CO}_{2}$
 2. Calculate amount of H in $\mathrm{H}_{2} \mathrm{O}$
 $5.744 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}-->1.149 \times 10^{-2} \mathrm{~mol} \mathrm{H}$
 2 mol H per 1 mol water! 2}

Formulas with C, H and O

Caproic acid, the substance responsible for "dirty gym socks" smell, contains C, H and O .
Combustion analysis of 0.450 g caproic acid gives $0.418 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ and $1.023 \mathrm{~g} \mathrm{CO}_{2}$, and the molar mass was found to be $116.2 \mathrm{~g} \mathrm{~mol}^{-1}$.
What is the molecular formula of caproic acid?

$$
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}+\text { some oxygen ---> } 1.023 \mathrm{~g} \mathrm{CO}_{2}+0.418 \mathrm{~g}
$$ $\mathrm{H}_{2} \mathrm{O}$

Careful: oxygen comes from caproic acid and O_{2}, need special technique

MAR

Formulas with C, H and O
Combustion analysis of 0.450 g caproic acid gives $0.418 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ and 1.023 $\mathrm{g} \mathrm{CO}_{2}$, and the molar mass is $116.2 \mathrm{~g} \mathrm{~mol}^{-1}$. What is the molecular formula?
Start with "regular" approach for mol H \& mol C:
$0.418 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ * $(\mathrm{mol} / 18.02 \mathrm{~g}) *\left(2 \mathrm{~mol} \mathrm{H} / \mathrm{mol} \mathrm{H}_{2} \mathrm{O}\right)=$ 0.0464 mol H
$0.0464 \mathrm{~mol} \mathrm{H}^{*}(1.01 \mathrm{~g} / \mathrm{mol} \mathrm{H})=0.0469 \mathrm{~g} \mathrm{H}$
$1.023 \mathrm{~g} \mathrm{CO}_{2}{ }^{*}(\mathrm{~mol} / 44.01 \mathrm{~g}) *\left(1 \mathrm{~mol} \mathrm{C} / \mathrm{mol} \mathrm{CO}_{2}\right)=$ 0.02324 mol C
0.02324 mol C * $(12.01 \mathrm{~g} / \mathrm{mol} \mathrm{C})=0.2791 \mathrm{~g} \mathrm{C}$

Why did we convert to grams? Law of Mass

Formulas with C, H and O

0.450 g caproic acid: $0.418 \mathrm{~g} \mathrm{H}_{\mathbf{2}} \mathrm{O}(0.0464 \mathrm{~mol} \mathrm{H}, 0.0469 \mathrm{~g} \mathrm{H})$ and 1.023 g $\mathrm{CO}_{2}(0.02324 \mathrm{~mol} \mathrm{C}, 0.2791 \mathrm{~g} \mathrm{C})$, molar mass $=116.2 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula?
Realize that 0.450 g of caproic acid equals all the g C, gH and $\mathrm{g} O$ in the complex.
Converting mol H and mol C to grams, then subtracting from 0.450 g , gives g O in caproic acid:
$0.450 \mathrm{~g}-0.0469 \mathrm{~g}-0.2791 \mathrm{~g}=0.124 \mathrm{~g} \mathrm{O}$
caproic acid g of H in acid g of C in acid g of O in acid
0.124 g O * $(\mathrm{mol} \mathrm{O} / 16.00 \mathrm{~g})=0.00775 \mathrm{~mol} \mathrm{O}$

Formulas with C, H and O
0.450 g caproic acid: $0.418 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(0.0464 \mathrm{~mol} \mathrm{H})$ and $1.023 \mathrm{~g} \mathrm{CO}_{2}$ $(0.02324 \mathrm{~mol} \mathrm{C})$, molar mass $=116.2 \mathrm{~g} / \mathrm{mol}, 0.00775 \mathrm{~mol} \mathrm{O}$. What is the molecular formula?

Now compare moles:

$\mathrm{C}_{0.02324} \mathrm{H}_{0.0464} \mathrm{O}_{0.00775}$ gives $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}=$ empirical formula
$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ has a molar mass of $58.1 \mathrm{~g} / \mathrm{mol}$, which is half of the $116.2 \mathrm{~g} / \mathrm{mol}$ value
Molecular Formula $=\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)_{2}$, or
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$
You can now find empirical formulas based on combustion analysis (this chapter) and elemental percentages (previous chapter)!
Important Equations, Constants, and Handouts from this Chapter:

- be able to find the theoretical yield, actual yield, percent yield
- be able to determine the limiting reactant, excess reactant, excess reactant remaining at end of reaction
- understand how to calculate empirical formula (EF) and
molecular formula (MF)
using organic compounds
Balancing Equations:
Reactants, Products, states
of matter ($\mathrm{s}, \mathrm{l}, \mathrm{g}, \mathrm{aq}$),
stoichiometric coefficients,
Law of Conservation of
Matter ("mass action")
containing oxygen

End of Chapter 4 Part 1

See also:

- Chapter Four Part 1 Study Guide
- Chapter Four Part 1 Concept Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

End of Chapter Problems: Test Yourself
$\begin{gathered}\text { See practice problem set \#4 and self quizzes for } \\ \text { balancing chemical equations examples and practice }\end{gathered}$

1. What mass of Br_{2}, in grams, is required for complete reaction with 2.56 g of Al? What mass of white, solid $\mathrm{Al}_{2} \mathrm{Br}_{6}$ is expected? The equation: 2 $\mathrm{Al}(\mathrm{s})+3 \mathrm{Br}_{2}(\mathrm{I}) \rightarrow \mathrm{Al}_{2} \mathrm{Br}_{6}(\mathrm{~s})$
2. Aluminum chloride is made by treating aluminum with chlorine: $\mathbf{2 ~ A l}(\mathbf{s})+\mathbf{3}$ $\mathbf{C l}_{\mathbf{2}}(\mathbf{g}) \rightarrow \mathbf{2} \mathbf{A I C l}_{3}(\mathbf{s})$ If you begin with 2.70 g of Al and $4.05 \mathrm{~g} \mathrm{of} \mathrm{Cl}_{2}$, which reactant is limiting? What mass of AlCl_{3} can be produced? What mass of the excess reactant remains when the reaction is completed?
3. $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}$ is made via: $\mathrm{CuSO}_{4}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}(\mathrm{aq})$ If you use 10.0 g of CuSO_{4} and excess NH_{3}, what is the theoretical yield of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}$? If you isolate 12.6 g of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}$, what is the percent yield of $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4}$?
4. An unknown compound has the formula $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}$. You burn 0.0956 g of the compound and isolate 0.1356 g of CO_{2} and 0.0833 g of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound? If the molar mass is $62.1 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula?
[^0]```
1. 22.7 g Br 2, 25.3 g Al2Br6
2. Chlorine is limiting; 5.09 g AICl3;1.67 g Al remains
3. 14.3 g Cu(NH3)4SO4, 88.3%
4. EF = CH3O,MF = C C2H6OO
```

Be sure to view practice problem set \#4 and self quizzes for balancing chemical equations examples and practice


[^0]:    End of Chapter Problems: Answers

