Chemical Reactions Chapter 4 Part 1 MAR MAR Reactants: Zn + I2 Product: Znl₂ Chemistry 221 **Professor Michael Russell** #### Chemistry as Cooking! - the Chemical Reaction "Recipe" and technique leads to successful creations Must know amounts to add, how much will be produced Haphazard additions can be disastrous! # **Chemical Equations** Depict the kind of reactants and products and their relative amounts in a reaction. $4 \text{ Al(s)} + 3 O_2(g) \longrightarrow 2 \text{ Al}_2O_3(s)$ The numbers in the front are called stoichiometric coefficients The letters (s), (g), (aq) and (l) are the physical states of compounds. ## Reaction of Phosphorus with Cl₂ Notice the stoichiometric coefficients and the physical states of the reactants and products. MAR # Reaction of Iron with Cl₂ Evidence of a chemical reaction: heat change, precipitate formation, gas evolution, color change ## **Chemical Equations** $4 \text{ Al(s)} + 3 O_2(g) \rightarrow 2 \text{ Al}_2O_3(s)$ This equation means: 4 Al atoms + 3 O₂ molecules ---give---> 2 molecules of Al₂O₃ 4 moles of AI + 3 moles of O₂ ---give---> $_{\it MAR}$ 2 moles of Al₂O₃ ### **Chemical Equations** Because the same atoms are present in a reaction at the beginning and at the end, the amount of matter in a system does not change. The Law of the Conservation of Matter Also known as the Law of Mass Action MAR #### Chemical Equations / Lavoisier Because of the principle of the conservation of matter, an equation must be balanced. It must have the same number of atoms of the same kind on both sides. Lavoisier, 1788 **Balancing Equations** 2 Al(s) + 3 Br₂(liq) ---> Al₂Br₆(s) Balancing Equations $C_3H_8(g) + 5 O_2(g)$ ----> $3 CO_2(g) + 4 H_2O(g)$ 2 B₄H₁₀(g) + 11 O₂(g) ----> 4 B₂O₃(g) + 10 H₂O(g) MAR MAR # **Balancing Equations - Hints** Balance those atoms which occur in only one compound on each side last (i.e. O₂ in previous examples) Balance the remaining atoms first Reduce coefficients to smallest whole integers Check your answer if uncertain Helpful but optional: Check that charges are balanced STOICHIOMETRY Stoichiometry is the study of the quantitative aspects of chemical reactions. Stoichiometry rests on the principle of the conservation of matter. MAR MAR MAR ## Stoichiometry #### The balanced chemical equation $4 \text{ Al(s)} + 3 O_2(g) \longrightarrow 2 \text{ Al}_2O_3(s)$ #### implies all of the following ratios: | $\frac{4 \text{ mol Al}}{3 \text{ mol O}_2}$ | $\frac{4 \text{ mol Al}}{2 \text{ mol Al}_2 O_3}$ | $\frac{3 \text{ mol O}_2}{2 \text{ mol Al}_2\text{O}_3}$ | |--|---|--| | $\frac{3 \text{ mol O}_2}{4 \text{ mol Al}}$ | 2 mol Al ₂ O ₃
4 mol Al | $\frac{2 \text{ mol Al}_2O_3}{3 \text{ mol } O_2}$ | These are nothing more than "conversion units" in dimensional analysis! PROBLEM: If 454 g of NH_4NO_3 decomposes, how much N_2O and H_2O are formed? What is the theoretical yield of products? STEP 1 Write the balanced chemical equation NH₄NO₃ ---> N₂O + 2 H₂O 454 g of NH₄NO₃ --> N₂O + 2 H₂O STEP 2 Convert mass reactant (454 g) --> moles $$454 \text{ g} \cdot \frac{1 \text{ mol}}{80.04 \text{ g}} = 5.68 \text{ mol NH}_4 \text{NO}_3$$ MAR 80.04 g/mol = molar mass of NH₄NO₃ MAR 454 g of NH₄NO₃ --> N₂O + 2 H₂O STEP 3 Convert moles reactant --> moles product Relate moles NH₄NO₃ to moles product expected. 1 mol NH₄NO₃ --> 2 mol H₂O Express as a STOICHIOMETRIC FACTOR: 2 mol H₂O produced 1 mol NH₄NO₃ used 454 g of NH₄NO₃ --> N₂O + 2 H₂O STEP 3 Convert moles reactant (5.68 mol) --> moles product $$5.68 \text{ mol NH}_4\text{NO}_3 \bullet \frac{2 \text{ mol H}_2\text{O produced}}{1 \text{ mol NH}_4\text{NO}_3 \text{ used}}$$ = 11.4 mol H₂O produced How many moles of N₂O produced? Answer = 5.68 mol N₂O 454 g of NH₄NO₃ --> N₂O + 2 H₂O STEP 4 Convert moles product (11.4 mol) --> mass product This is called the THEORETICAL YIELD 11.4 mol $$H_2O \cdot \frac{18.02 \text{ g}}{1 \text{ mol}} = 204 \text{ g } H_2O$$ ALWAYS FOLLOW THESE STEPS IN SOLVING STOICHIOMETRY PROBLEMS! MAR MAR #### 454 g of NH₄NO₃ --> N₂O + 2 H₂O STEP 5 How much N₂O is formed? Total mass of reactants = total mass of products 454 g NH_4NO_3 = ___ g N_2O + 204 g H_2O mass of $N_2O = 250$. g law of mass action! could also turn mol NH_4NO_3 into mol N_2O , then grams of N_2O : 5.68 mol N₂O * 44.01 g/mol = 250. g MAR MAR | 454 | a 01 | FNIH | NO. | > | N.O | + 2 | H.O | |-----|------|-------|-----|---|------------------|------------|------------------| | 454 | u oı | IN IT | | > | N ₂ U | T 2 | T ₂ U | | Compound | NH_4NO_3 | N_2O | $\mathrm{H}_2\mathrm{O}$ | |---------------|------------|--------|--------------------------| | Initial (g) | 454 g | 0 | 0 | | Initial (mol) | 5.68mol | 0 | 0 | | Change (mol) | -5.68 | +5.68 | +2(5.68) | | Final (mol) | 0 | 5.68 | 11.4 | | Final (g) | 0 | 250. | 204 | Mass is conserved! #### 454 g of NH₄NO₃ --> N₂O + 2 H₂O STEP 6 Calculate the percent yield We predicted a yield of 250. g of N₂O. If you isolated only 131 g of N₂O, what is the percent yield of N₂O? This compares the **theoretical yield** (250. g) and **actual yield** (131 g) of N_2O . 454 g of NH₄NO₃ --> N₂O + 2 H₂O STEP 6 Calculate the percent yield % yield = $$\frac{\text{actual yield}}{\text{theoretical yield}} \bullet 100\%$$ % yield = $$\frac{131 \text{ g}}{250. \text{ g}} \bullet 100\% = 52.4\%$$ MAR MAR # GENERAL PLAN FOR STOICHIOMETRY CALCULATIONS Molarity in next chapter - See Stoichiometry Guide PROBLEM: Using 5.00 g of H_2O_2 , what mass of O_2 and of H_2O can be obtained? $2 H_2O_2(liq) \longrightarrow 2 H_2O(g) + O_2(g)$ Reaction is catalyzed by MnO₂ PROBLEM: Using 5.00 g of H_2O_2 , what mass of O_2 and of H_2O can be obtained? $2 H_2O_2(liq) \longrightarrow 2 H_2O(g) + O_2(g)$ Reaction is catalyzed by MnO₂ Step 1: moles of H₂O₂ Step 2: use STOICHIOMETRIC FACTOR to calculate moles of O₂ Step 3: mass of O₂ (2.35 g) Step 4: mass of H₂O (2.65 g) Try this problem yourself! MAR # Reactions Involving a LIMITING REACTANT In a given reaction, there is not enough of one reagent to use up the other reagent completely. The reagent in short supply LIMITS the quantity of product that can be formed. MAR #### LIMITING REACTANTS **Products** Reactants $2 NO(g) + O_2(g) - 2 NO_2(g)$ Limiting reactant = Excess reactant = MAR #### LIMITING REACTANTS React solid Zn with 0.100 mol HCI (aq) $Zn_{(s)}$ + 2 $HCI_{(aq)}$ ---> $ZnCI_{2(aq)}$ + $H_{2(g)}$ Left: Balloon inflates fully, some Zn left * More than enough Zn to use up the 0.100 mol HCI Center: Balloon inflates fully, no Zn left * Right amount of each (HCI and Zn) Right: Balloon does not inflate fully, no Zn left. * Not enough Zn to use up 0.100 mol HCl #### LIMITING REACTANTS React solid Zn with 0.100 mol HCl (aq) $Zn_{(s)} + 2 HCI_{(aq)} --->$ $ZnCI_{2(aq)} + H_{2(g)}$ #### 0.100 mol HCl [1 mol Zn/2 mol HCl] = 0.0500 mol Zn mass Zn (g) mol Zn mol HCI mol HCI/mol Zn Lim Reactant Center Right Left 7.00 3.27 1.31 0.050 0.020 0.107 0.100 0.100 0.100 0.93 2.00 5.00 LR = Zn LR = HCI no LR Not enough zir to use MAR #### Reaction to be Studied: PROBLEM: Mix 5.40 g of Al with 8.10 g of Cl₂. How many grams of Al₂Cl₆ can form? Step 1 of the Limiting Reactant problem: Compare actual mole ratio of reactants to theoretical mole ratio. Reactants must be in the mole ratio $$\frac{\text{mol Cl}_2}{\text{mol Al}} = \frac{3}{2}$$ MAR **Deciding on the Limiting Reactant** $$\frac{\text{mol } Cl_2}{\text{mol } Al} > \frac{3}{2}$$ then there is not enough Al to use up all the Cl₂, and the limiting reagent is A **Deciding on the Limiting Reactant** $$\frac{\text{mol Cl}_2}{\text{mol Al}} < \frac{3}{2}$$ then there is not enough Cl2 to use up all the Al, and the limiting reagent is C MAR Step 2 of the Limiting Reactant problem: Calculate moles of each reactant We have 5.40 g of Al and 8.10 g of Cl₂. How much Al₂Cl₆ can form? $$5.40 \text{ g Al} \cdot \frac{1 \text{ mol}}{27.0 \text{ g}} = 0.200 \text{ mol Al}$$ $$8.10 \text{ g Cl}_2 \bullet \frac{1 \text{ mol}}{70.9 \text{ g}} = 0.114 \text{ mol Cl}_2$$ $2AI + 3CI_2 ---> AI_2CI_6$ Step 3 of the Limiting Reactant problem: Compare moles to find limiting reactant $$\frac{\text{mol Cl}_2}{\text{mol Al}} = \frac{0.114 \text{ mol}}{0.200 \text{ mol}} = 0.570$$ This should be 3/2 or 1.5/1 if reactants are present in the exact stoichiometric ratio. Limiting reagent is Cl₂ 2 AI + 3 Cl₂ ---> AI₂CI₆ MAR MAR MAR MAR Page III-4a-6 / Chapter Four Part I Lecture Notes MAR MAR # Mix 5.40 g of Al with 8.10 g of Cl₂. What mass of Al₂Cl₆ can form? CALCULATIONS: calculate mass of Al₂Cl₆ expected using limiting reactant. Step 1: Calculate moles of Al₂Cl₆ expected using chlorine: $$0.114 \text{ mol Cl}_2 \bullet \frac{1 \text{ mol Al}_2\text{Cl}_6}{3 \text{ mol Cl}_2} = 0.0380 \text{ mol Al}_2\text{Cl}_6$$ Step 2: Calculate mass of Al₂Cl₆ expected based on chlorine: $$0.0380 \text{ mol Al}_2\text{Cl}_6 \bullet \frac{266.4 \text{ g Al}_2\text{Cl}_6}{\text{mol}} = 10.1 \text{ g Al}_2\text{Cl}_6$$ ### **Alternate Limiting Reactant Method** Calculate theoretical yield of product based on both reactants. Smaller theoretical yield comes from limiting reactant, greater yield from excess reactant. $$8.10 \text{ g Cl}_2 \cdot \frac{1 \text{ mol}}{70.9 \text{ g}} \cdot \frac{1 \text{ mol Al}_2\text{Cl}_6}{3 \text{ mol Cl}_2} \cdot \frac{266.4 \text{ g}}{1 \text{ mol}} = 10.1 \text{ g Al}_2\text{Cl}_6$$ $$5.40 \text{ g Al} \cdot \frac{1 \text{ mol}}{27.0 \text{ g}} \cdot \frac{1 \text{ mol Al}_2\text{Cl}_6}{2 \text{ mol Al}} \cdot \frac{266.4 \text{ g}}{1 \text{ mol}} = 26.6 \text{ g Al}_2\text{Cl}_6$$ 10.1 g < 26.6 g, so: limiting reactant = Cl_2 , theoretical yield = 10.1 g, excess reactant = Al $2AI + 3CI_2 ---> AI_2CI_6$ How much of which reactant will remain when reaction is complete? Cl₂ was the limiting reactant. Therefore, Al was present in excess. But by how much? First find how much AI was required based on limiting reactant (CI₂). Then find how much Al is in excess. $2AI + 3CI_2 ---> AI_2CI_6$ #### Calculating Excess Al $$8.10 \text{ g Cl}_2 \bullet \frac{1 \text{ mol}}{70.9 \text{ g}} \bullet \frac{2 \text{ mol Al}}{3 \text{ mol Cl}_2} \bullet \frac{26.98 \text{ g}}{1 \text{ mol}} = 2.05 \text{ g Al}$$ Excess AI = AI available - AI required = 5.40 g - 2.05 g = 3.35 g AI unused in reaction $2AI + 3CI_2 ---> AI_2CI_6$ Using Stoichiometry to Determine a Formula Hydrocarbons, C_xH_y , can be burned in oxygen to give CO_2 and H_2O (combustion reaction). The CO₂ and H₂O can be collected to determine the empirical formula of the hydrocarbon. $$C_xH_v + O_2 ---> CO_2 + H_2O$$ MAR MAR MAR #### Using Stoichiometry to Determine a Formula What is the empirical formula of a hydrocarbon, C_xH_v, if burning 0.115 g produces 0.379 g CO₂ and 0.1035 g H₂O? C_xH_y + some O_2 ---> 0.379 g CO_2 + 0.1035 g H_2O #### Using Stoichiometry to Determine a Formula C_xH_v + some oxygen ---> 0.379 g CO₂ + 0.1035 g H₂O First, recognize that all C in CO2 and all H in H2O comes from C_xH_v. 1. Calculate amount of C in CO₂ 8.61 x 10-3 mol CO2 --> 8.61 x 10-3 mol C 1 mol C per 1 mol CO2 2. Calculate amount of H in H2O 5.744 x 10-3 mol H₂O -- >1.149 x 10-2 mol H 2 mol H per 1 mol water! MAR #### Using Stoichiometry to Determine a Formula C_xH_y + some oxygen ---> 0.379 g CO₂ + 0.1035 g H₂O Now find ratio of mol H/mol C to find values of x and y in C_xH_v. 1.149 x 10 -2 mol H/ 8.61 x 10-3 mol C = 1.33 mol H / 1.00 mol C = 4 mol H / 3 mol C Empirical formula = C_3H_4 MAR MAR #### Formulas with C, H and O Caproic acid, the substance responsible for "dirty gym socks" smell, contains C, H and O. Combustion analysis of 0.450 g caproic acid gives 0.418 g H₂O and 1.023 g CO₂, and the molar mass was found to be 116.2 g mol-1. What is the molecular formula of caproic acid? $C_xH_yO_z$ + some oxygen ---> 1.023 g CO_2 + 0.418 g H_2O Careful: oxygen comes from caproic acid and O₂ need special technique MAR #### Formulas with C. H and O Combustion analysis of 0.450 g caproic acid gives 0.418 g $\rm H_2O$ and 1.023 g CO₂, and the molar mass is 116.2 g mol-1. What is the molecular Start with "regular" approach for mol H & mol C: $0.418 \text{ g H}_2\text{O} * (\text{mol}/18.02 \text{ g}) * (2 \text{ mol H/mol H}_2\text{O}) =$ 0.0464 mol H 0.0464 mol H * (1.01 g/mol H) = 0.0469 g H 1.023 g CO₂ * (mol/44.01 g) * (1 mol C/mol CO₂) = 0.02324 mol C 0.02324 mol C * (12.01 g/mol C) = 0.2791 g C Why did we convert to grams? Law of Mass Action! #### Formulas with C. H and O 0.450 g caproic acid: 0.418 g H₂O (0.0464 mol H, 0.0469 g H) and 1.023 g CO₂ (0.02324 mol C, 0.2791 g C), molar mass = 116.2 g/mol. What is the molecular formula? Realize that 0.450 g of caproic acid equals all the g C, g H and g O in the complex. Converting mol H and mol C to grams, then subtracting from 0.450 g, gives g O in caproic 0.450 g - 0.0469 g - 0.2791 g = 0.124 g O caproic acid $\, g \, \text{of} \, H \, \text{in acid} \, g \, \text{of} \, C \, \text{in acid} \, g \, \text{of} \, O \, \text{in acid}$ 0.124 g O * (mol O / 16.00 g) = 0.00775 mol O MAR #### Formulas with C, H and O 0.450 g caproic acid: 0.418 g H₂O (0.0464 mol H) and 1.023 g CO₂ (0.02324 mol C), molar mass = 116.2 g/mol, 0.00775 mol O. What is the Now compare moles: $C_{0.02324}H_{0.0464}O_{0.00775}$ gives C_3H_6O = empirical C₃H₆O has a molar mass of 58.1 g/mol, which is half of the 116.2 g/mol value Molecular Formula = $(C_3H_6O)_2$, or $C_6H_{12}O_2$ You can now find empirical formulas based on combustion analysis (this chapter) and elemental percentages (previous chapter)! #### **End of Chapter 4 Part 1** #### See also: MAR - Chapter Four Part 1 Study Guide - Chapter Four Part 1 Concept Guide - · Important Equations (following this slide) - End of Chapter Problems (following this slide) Important Equations, Constants, and Handouts from this Chapter: - · be able to find the theoretical yield, actual - yield, percent yield · be able to determine the limiting reactant, excess reactant, excess reactant remaining at end of reaction - understand how to calculate empirical formula (EF) and molecular formula (MF) using organic compounds containing oxygen #### **Balancing Equations:** Reactants, Products, states of matter (s, I, g, aq), stoichiometric coefficients, Law of Conservation of Matter ("mass action") End of Chapter Problems: Test Yourself See practice problem set #4 and self quizzes for balancing chemical equations examples and practice - What mass of Br₂, in grams, is required for complete reaction with 2.56 g of Al? What mass of white, solid Al₂Br₆ is expected? The equation: 2 Al(s) + 3 Br₂(l) → Al₂Br₆(s) Aluminum chloride is made by treating aluminum with chlorine: 2 Al(s) + 3 Cl₂(g) → 2 AlCl₃(s) if you begin with 2.70 g of Al and 4.05 g of Cl₂, which reactant is limiting? What mass of AlCl₃ can be produced? What mass of the excess reactant remains when the reaction is completed? CluNH-LySC, is made via; CluS(d(an) +4 Alb(d(an)), CluNH-LySC (an) If - 3. Cu(NH₃)₄SO₄ is made via: CuSO₄(a₀) + 4 NH₃(a₀) → Cu(NH₃)₄SO₄(a₀) if you use 10.0 g of CuSO₄ and excess NH₃, what is the theoretical yield of Cu(NH₃)₄SO₄? If you isolate 12.6 g of Cu(NH₃)₄SO₄, what is the percent yield of Cu(NH₃)₄SO₄? - An unknown compound has the formula C_xH_yO_z. You burn 0.0956 g of the compound and isolate 0.1356 g of CO_2 and 0.0833 g of H_2O . What is the empirical formula of the compound? If the molar mass is 62.1 g/mol, what is the molecular formula? MAR MAR MAR End of Chapter Problems: Answers - 1. 22.7 g Br₂ , 25.3 g Al₂Br₆ 2. Chlorine is limiting; 5.09 g AlCl₃; 1.67 g Al remains 3. 14.3 g Cu(NH₃)₄SO₄, 88.3% - 4. EF = CH₃O, MF = C₂H₆O₂ Be sure to view practice problem set #4 and self quizzes for balancing chemical equations examples and practice