

Welcome to Chemistry 221!
 http://mhchem.org/221

The Nature of Chemistry

How does Matter Change?

The Art (?) of Chemistry

Chemistry and Art?!?
Dr. Roald Hoffman, 1981 Nobel Prize in Chemistry
Stick to the chemistry, Roald!

MAR

CH 221: Lectures and Labs

Lectures: MWF from 9-9:50 AM in AC 1303 (this room)

- Lectures recorded, available soon afterwards
- Lecture notes to print available (under "Problem Sets and Handouts", mhchem.org/221) and in Chemistry 221 Companion (get it!)

Labs (Section 01): Mondays from 1:10-5 PM

- Start in room AC 1303
- Move to AC 2507 ("the lab") around 3 PM
- For first day, bring a printed copy of the "Eight Bottles" Lab (mhchem.org/221) and your calculator
- Some labs will require safety glasses (Dollar store ok)

The Language of Chemistry
 substances that cannot be decomposed by ordinary means to other substances.

Sodium

MAR
MAR

- ?

The Language of Chemistry
The elements, their names, and symbols are given on the PERIODIC TABLE
Berzelius - first to use letter symbols for atoms
How many elements are there? -
pre-Biblical elements: Au (sun), Ag
(moon), Cu (Venus), Fe (Mars), Sn (Jupiter), Pb (Saturn), Hg (Mercury), S, C

The Periodic Table

Periodic table originally organized by mass, now by atomic number

Dmitri Mendeleev (1834-1907)
Predicted Ga, Ge, Sc and Tc!

Dr. Frank DiSalvo (Cornell University)
"On the importance of the periodic table"

Number of compounds possible is virtually limitless!!!
MAR

CHEMICAL COMPOUNDS are composed of atoms and so can be decomposed to those atoms.

The red compound is
composed of
nickel (Ni) (silver)
carbon (C) (black)
oxygen (0) (red)
nitrogen (N) (blue)
This type of compound is an ionic compound unshared electrons

A MOLECULE is the smallest unit of a compound that retains the chemical characteristics of the compound.
Composition of molecules is given by a MOLECULAR FORMULA

A MOLECULE is the smallest unit of a compound that retains the chemical characteristics of the compound.
Composition of molecules is given by a MOLECULAR FORMULA

MAR

Water and caffeine are
examples of
covalent compound -
examples of
covalent compound shared electrons

STATES OF MATTER

SOLIDS: rigid shape, fixed volume, reasonably well understood.
LIQUIDS: no fixed shape, may not fill a
container completely, not well understood.
also PLASMA more in CH 222!
GASES: expand to fill their container, good theoretical understanding.

KINETIC NATURE OF MATTER

Matter consists of atoms and molecules in motion.

Kinetic Molecular Theory describes solids, liquids and gases
Fest Monkeys? Er, sorry, Student volunteers?!?

Physical Properties

Physical properties can be observed and measured without changing the composition of a substance. They include:

- color
- melting and boiling point
- odor

Some physical changes would be

- boiling of a liquid
- melting of a solid
- dissolving a solid in a liquid to give a homogeneous
mixture - a SOLUTION.

Chemical Properties and Physical Properties

Physical properties do not change the composition of the substance
Chemical properties change the composition of the substance

Chemical Properties and Chemical Change

Burning hydrogen $\left(\mathrm{H}_{2}\right)$ in oxygen $\left(\mathrm{O}_{2}\right)$ gives $\mathrm{H}_{2} \mathrm{O}$.
Chemical change or chemical reaction involves the transformation of one or more atoms or molecules into one or more different molecules.

MAR

Physical Properties

Physical properties useful in separating compounds and elements

- density
- melting and boiling point
- magnetism

Physical and chemical properties require units - need

METRIC SYSTEM!

See the Metric Guide

The Metric System

Density: the ratio of a substance's mass (grams) to its volume ($\mathrm{mL}, \mathrm{cm}^{3}$)

Use handouts, examples in book to learn the metric system

Units of Length $/$ Conversions		
1 kilometer (km)	$=$	10^{3} meters (m)
1 centimeter (cm)	$=$	10^{-2} meters (m)
1 millimeter (mm)	$=$	10^{-3} meters (m)
1 micrometers (mm)	$=$	10^{-6} meters (m)
1 nanometer (nm)	$=$	10^{-9} meters (m)

Know these five metric conversions!

Density Problem
Problem: A piece of copper has a mass of 57.54 g . It is 9.36 cm long, 7.23 cm wide, and 0.95 mm thick. Calculate density ($\mathrm{g} / \mathrm{cm}^{3}$).

Density $=\frac{\text { mass }(\mathrm{g})}{\text { volume }\left(\mathrm{cm}^{3}\right)}$

Sheet of copper

Relative Densities of the Elements

MAR

$$
\begin{aligned}
& \square \text { meats } \\
& 0 \text { Mometals } \\
& \square \text { Nomatats }
\end{aligned}
$$

DENSITY

PROBLEM: Mercury (Hg) has a density of $13.6 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of 95 mL of $\mathrm{Hg} ?(454 \mathrm{~g}=1 \mathrm{lb})$

First, note that $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$
Then, use dimensional analysis to calculate mass.
$95 \mathrm{~cm}^{3} \cdot \frac{13.6 \mathrm{~g}}{1 \mathrm{~cm}^{3}}=1.3 \times 10^{3} \mathrm{~g}$
What is the mass in pounds?
$1.3 \times 103 \mathrm{~g} \cdot \frac{1 \text { pound }}{454 \mathrm{~g}}=2.9 \mathrm{lb}$

Temperature Scales

- Fahrenheit (${ }^{\circ}$ F)
- Celsius (${ }^{\circ} \mathrm{C}$)
- Kelvin (K)

PROBLEM: Mercury (Hg) has a density of $13.6 \mathrm{~g} / \mathrm{cm}^{3}$. What is the mass of 95 mL of Hg ? $(454 \mathrm{~g}=1 \mathrm{lb})$

Solve the problem using DIMENSIONAL ANALYSIS - see the Dimensional Analysis and Factor Label handouts on the Web

MAR

Volume, Liters and Cubed Lengths

Temperature Scales

Notice that 1 Kelvin degree = 1 degree Celsius Difference between Celsius temperatures and Kelvin temperatures the same!

MAR

MAR

Chemistry calculations generally

require temperatures in Kelvins (K)
$\mathrm{T}(\mathrm{K})=\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273.15$
Body temp $=37^{\circ} \mathrm{C}+273=310 . \mathrm{K}$
Liquid nitrogen $=77 \mathrm{~K}-273=-196{ }^{\circ} \mathrm{C}$

UNITS OF MEASUREMENT

We make QUALITATIVE observations of	
reactions - changes in color and	
physical state.	
We also make QUANTITATIVE	
MEASUREMENTS, which involve	
numbers and amount.	
Use SI units - based on the metric system	
length	(meter, m)
mass	(kilogram, kg)
time	(second, s)

Accuracy versus Precision

Accuracy refers to the proximity of a measurement to the true value of a quantity
Accuracy determined by \% error
Precision refers to the proximity (reproducibility) of several measurements to each other. Determined by average deviation or parts per thousand

Measurement and Significant Figures

To indicate the precision, recorded values should use all the digits known with certainty plus one additional estimated digit
Estimated ("doubtful") digit usually considered uncertain by plus or minus $1(\pm 1)$
The total number of digits used to express such a measurement is called the number of significant figures (sig figs).
Ex: 65.07 g - four sig figs, 7 "doubtful"
Ex: $54.70318 \mathbf{g}$ - seven sig figs, 8 "doubtful"

Experimental Error

Average deviation:

Step 1: find the absolute value of the difference between each measurement and the average.
Step 2: find the summation of all the deviations and
divide by the total number of measurements.
Standard deviation (not used in CH 221):
Standard deviation $=\sqrt{\frac{\text { sum of squares of deviations }}{(\# \text { of deviations - 1) }}}$
ppt (parts per thousand):

$$
\text { ppt }=\frac{\text { average deviation }}{\text { average }} \times 1000
$$

Percent error:

MAR

Measurement and Significant Figures

1. Zeroes in the middle of a number are significant. 69.08 has four sig figs.
2. Zeroes at the beginning of a number are not significant. 0.0089 has two sig figs (8 and 9).
3. Zeroes at the end of a number and after the decimal point are significant. 2.50 has three sig figs. 25.00 has four sig figs.
4. Zeroes at the end of a number and before the decimal point will be significant only with a decimal placeholder (period). 1500 has two sig figs, but 1500 . has four sig figs.
5. Exact conversions (Definitions) have infinite sig figs (ex: 60 $\mathrm{s} / 1 \mathrm{~min}, 10 \mathrm{~mm} / 1 \mathrm{~cm})$.
6. STUDY! PRACTICE! IMPORTANT!

MAR

Scientific Notation

Know how your
calculator displays
scientific notation
(and also "regular"
notation!)
Always use proper
scientific notation
when reporting
answers in lab,
quizzes, etc.

See: Scientific Notation Handout \& Scientific Notation Handout \#2

Rules for Rounding off Numbers

Rule 1 (For multiplication and division): The answer cannot have more significant figures than either of the original numbers.

Rules for Rounding off Numbers

Rule 3: Once you decide how many numbers to keep, you may need to round off your answer:

If the first digit you remove is between 0 and 4, drop it and all remaining digits.

If the first digit you remove is between 5 and 9 , round the number up by adding 1 to the digit to the left of the one you drop

Example: 2.4271 becomes 2.4 when rounded to two significant figures

Example: 4.5816 becomes 4.6 when rounded to two significant figures

Use these rules when rounding numbers -

Rounding Numbers with Sig Figs

Calculators produce large numbers in calculations although the number of sig figs is good only to a few numbers, much less than the calculator has produced

In this case the large number must be rounded off to a smaller number keeping only significant figures.

Rules for Rounding off Numbers

Rule 2 (For addition and subtraction): The final number must stop at the largest doubtful digit.

Volume of water at start	3.18: 8 is the "doubtful digit", it stops at the hundredths spot
	0.01315: $\mathbf{5}$ is the "doubtful digit", it stops at the
Final answer is 3.19 L :	hundredth thousandths spot
Answer stops at largest "doubtful digit" (hundredths	
vs. hundredth thousandths)	Actual value: 3.193

Mass Percentages in Chemistry

Often see " 30% lead, 70% oxygen"
This means that in 100 grams of the substance
30 grams will be lead
70 grams will be oxygen

In one gram of the substance,
0.30 grams will be lead
0.70 grams will be oxygen

Mass Percentages in Chemistry

Example: Penicillin F is 53.829\% carbon. How much carbon in 75 g of Penicillin F ?
Solution
75 g Penicillin $\mathrm{F}^{*}(53.829 \mathrm{~g} C / 100 \mathrm{~g}$ Penicillin $F)=$ 40. g carbon (40.37175)

Note that volume percentages occasionally seen, but not often in our class

Important Equations, Constants, and Handouts from this Chapter:

metric prefixes: nano $(\mathrm{n})=10^{-9}$ micro $(\mu)=10^{-6}$	Density $=\frac{\text { mass }(\mathrm{g})}{\text { volume }\left(\mathrm{cm}^{3}\right)}$
milli $(\mathrm{m})=10^{-9}$ centi $(\mathrm{c})=10^{-9}$ kilo $(\mathbf{k})=10^{-9}$	$\mathrm{~T}(\mathrm{~K})=\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+\mathbf{2 7 3 . 1 5}$
$\mathbf{1 \mathrm { cm } ^ { 3 } = 1 \mathrm { mL }}$	
significant figures!!!	
mass percentages	

End of Chapter One

See also:

- Chapter One Study Guide
- Chapter One Concept Guide
- Math ("Chapter Guide Zero") Concept Guide
- Important Equations (following this slide)
- End of Chapter Problems (following this slide)

1. $32.32-23.2=$
2. $32.4 * 37.31=$
3. $4.311 / 0.07=$
4. Convert $37.0 \overline{\mathrm{C} \text { to K }}$
5. Convert 253.6 mL to cm^{3}.
6. Convert $24 \mathrm{~m}^{3}$ to cm^{3}.
7. $235.05+19.6+2=$
8. $58.925-19=$
9. $2.19 \times 4.2=$
10. $4.311 \div 0.07$
11. The platinum-containing cancer drug cisplatin contains 65.0% platinum. If you have 1.53 g of the compound, what mass of platinum (in grams) is contained in this sample?
12. The anesthetic procaine hydrochloride is often used to deaden pain during dental surgery. The compound is packaged as a $10 . \%$ solution (by mass; $\mathrm{d}=1.0 \mathrm{~g} / \mathrm{mL}$) in water. If your dentist injects 0.50 mL of the solution, what mass of procaine hydrochloride (in milligrams) is injected?

MAR

[^0]
[^0]: 2. 9.1
 3. 60
 4. 310.2 K
 . $253.6 \mathrm{~cm}^{3}$
 . $2.4 \times 10^{7} \mathrm{~cm}^{3}$
 5. 257
 6. 40 .
 7. 9.2
 8. 60
 9. 00 g g
 10. $50 . \mathrm{mg}$
