Determining Oxidation Numbers

- 1) Each atom in a <u>pure element</u> has an oxidation number = 0.
- 2) For ions consisting of a single atom, the oxidation number is equal to the charge on the ion.
- 3) Fluorine is *always* -1.
- 4) **Chlorine**, **bromine** and **iodine** are *always* -1 *except* when combined with oxygen or fluorine.
- 5) The oxidation number of **hydrogen** is +1 and of **oxygen** is -2. *Exceptions:* hydrides (H⁻¹), peroxides (O⁻¹), OF compounds.
- 6) In <u>neutral compounds</u>, the sum of the oxidation numbers must be zero. In <u>polyatomic ions</u>, the sum of the oxidation numbers must be equal to the ion charge.

Examples:

Cu(s)	Cu: 0	NaCl	Cl: -1 Na: +1
NaF	F: -1 Na: +1	ClO-	Cl: +1 O: -2
Al 3+	A1: +3	Fe_2O_3	Fe: +3 O: -2
H_2O_2	H: +1 O: -1	AlH ₄ -	Al: +3 H: -1
	KMnO ₄ K: +1 N	(n: +7 O: -2	