

CHEMICAL REACTIVITY

What drives chemical reactions? How do they occur, and how fast?

The first question is answered by

THERMODYNAMICS, and the second question is answered by KINETICS.

MAR

CHEMICAL REACTIVITY

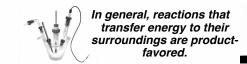
THERMODYNAMICS dictates if the reaction will occur or not.

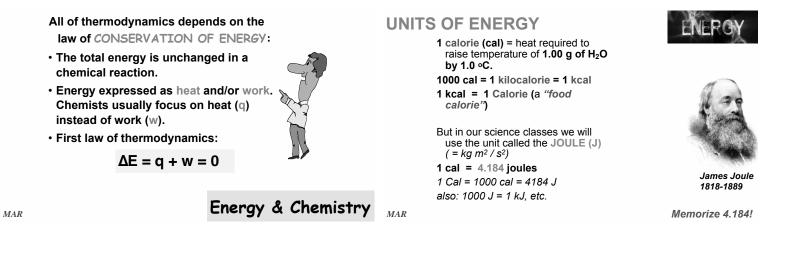
Paper will combine with oxygen to burn

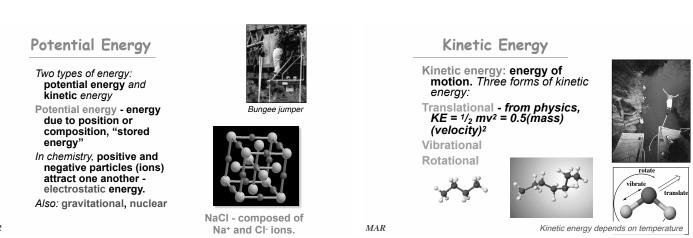
CHEMICAL REACTIVITY

KINETICS dictates how fast the reaction will occur.

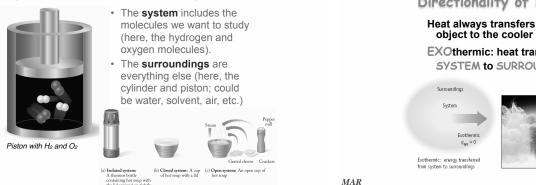
Example: diamond into graphite is thermodynamically favored, but the kinetics

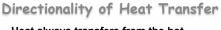

of the reaction is too slow to be of useful




We have already seen a number of "driving forces" for reactions that are PRODUCT-FAVORED.

- formation of a precipitate (precipitation)
- gas formation (gas forming)
- H₂O formation (acid-base)
- electron transfer (redox) i.e. in a battery





System and Surroundings

Heat always transfers from the hot object to the cooler object. EXOthermic: heat transfers from

SYSTEM to SURROUNDINGS.

T(surr) goes up this is what we usually measure

MAR

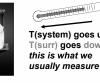
Directionality of Heat Transfer

Heat always transfers from the hot object to the cooler object.

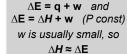
ENDOthermic: heat transfers from SURROUNDINGS to the SYSTEM.

Enthalpy of Reaction

The quantity, ΔH , is called the enthalpy of


usually measured in kJ/mol

reaction (ΔH_{rxn}), or the heat of reaction and is


Endothermic: energy transfer from surroundings to system

MAR

T(system) goes up T(surr) goes down this is what we

- Enthalpy (ΔH)
- Enthalpy (ΔH) is heat (q) transferred at constant pressure (i.e. $\Delta H = q_P$)
- $\Delta H > 0$, Endothermic; $\Delta H < 0$, Exothermic
- Add subscripts to indicate ΔH for specific process i.e., ΔH_{vap} , ΔH_{rxn} , ΔH_{f}

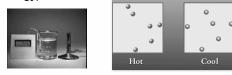
The Truth About Enthalpy

 ΔH for a reaction in the forward direction is equal in size, but opposite in sign, to ΔH for the reverse reaction.

 ΔH for a reaction depends on the state of the products and the state of the reactants.

We cannot know the exact enthalpy of the reactants and products, but we measure ΔH through calorimetry, the measurement of heat flow.

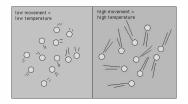
Bomb calorimeter


MAR

Calorimetry

 $2 H_2(g) + O_2(g)$

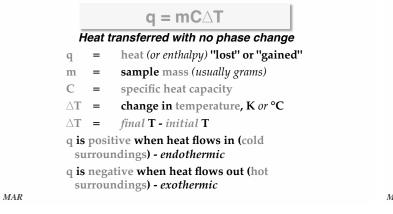
 $\Delta H < 0$


Calorimetry is the measure of heat (energy) transfer

Heat energy is associated with molecular motions (Kinetic Molecular Theory)

Heat transfers until thermal equilibrium is established

Heat & Matter - no change in state



When matter absorbs heat (q, in J), its temperature (ΔT) will rise depending on its mass (m, in g) and specific heat capacity (C):

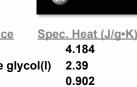
 $\mathbf{q} = \mathbf{m} \mathbf{C} \Delta \mathbf{T}$

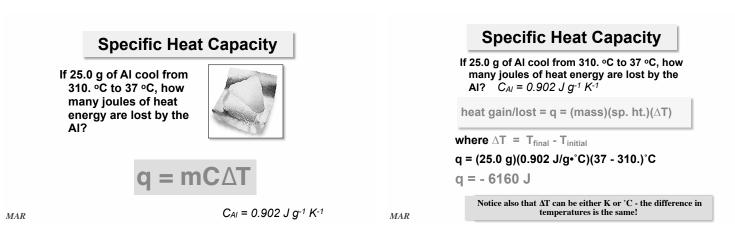
MAR

MAR

Specific Heat Capacity

The heat (J) required to raise 1 g of an object by 1 °C (or K) Memorize 4.184 for water





Aluminum

Substance $H_2O(I)$ Ethylene glycol(l) AI(s) glass(s) 0.84

MAR

A piece of iron (88.5 g) at 77.8 °C is placed in 244 g of water at 18.8 °C. What is the final temperature of the mixture?

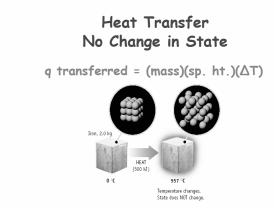
By the law of conservation of energy:

$$q_{hot} + q_{cold} = 0, or$$

 $m_{Fe}C_{Fe}\Delta T_{Fe} + m_{water}C_{water}\Delta T_{water} = 0$ C_{Fe} = 0.449 J g⁻¹ K⁻¹

Final Temperature (warm) same for Fe & H₂O

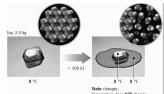
Specific Heat Capacity


Fe (88.5 g, 0.449 J/g•K, 77.8 °C) and water (244 g, 4.184 J/g•K, 18.8 °C); final temperature?

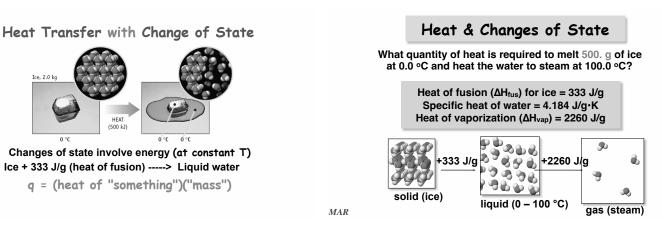
$q_{hot} + q_{cold} = 0$

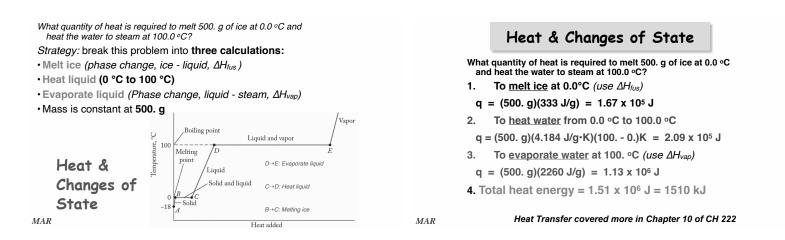
 $m_{Fe}C_{Fe}\Delta T_{Fe}$ + $m_{water}C_{water}\Delta T_{water}$ = 0 88.5 * 0.449 * (T_f - 77.8) + 244 * 4.184 * (T_f - 18.8) = 0 $39.7T_f - 3090 + 1020T_f - 19200 = 0$ $1060T_f = 22300$

Efficient method to determine approximate final temperature of mixture


MAR

MAR


MAR


Heat & Changes of State

When matter absorbs heat, its temperature will rise until it undergoes a *Phase Change* (solid to liquid, liquid to gas, solid to gas)

The matter will continue to absorb energy, however during the phase change its temperature remains constant (no Δ T): Phase changes are "*Isothermal*" processes.

MAR

Most ∆H values are labeled ∆H∘ Measured (°) under standard

conditions P = 1 bar (approx. 1 atm) Concentration = 1 mol/L T = usually 25 °C with all species in standard states i.e., C = graphite and O₂ = gas

s ΔH_X^0 Δ = change in H = heat energy 0 = standard conditions x = type of change **Thermochemical Equations**

Thermochemical equations are regular chemical equations with an energy term.

 $\mathsf{CH}_4(g) + 2 \ \mathsf{O}_2(g) \to \mathsf{CO}_2(g) + 2 \ \mathsf{H}_2\mathsf{O}(g) \qquad \Delta\mathsf{H}^\circ = -802 \ \mathsf{kJ}$

 $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) + 802 \text{ kJ}$

Energy is a product just like CO₂ or H₂O! (Exothermic)

This provides new conversion factors! From the equation:

 $\frac{+802 \text{ kJ of Energy Released}}{1 \text{ mol CH}_4(g) \text{ consumed}}$

 $\frac{+802 \text{ kJ of Energy Released}}{2 \text{ mol H}_2 \text{O (g) produced}}$

Example: How many kJ of energy are released when 128.5 g of methane, $CH_4(g)$, are combusted?

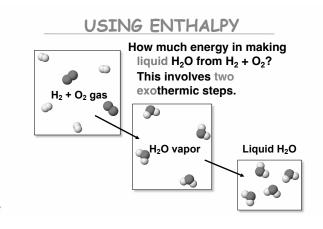
 $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \Delta H^\circ = -802 \text{ kJ}$

g → mols→ J ↑ ↑ molar Reaction mass enthalpy

 $128.5g CH_4 \times \frac{1 \text{ mol } CH_4}{16.04 \text{ g}} \times \frac{1 \text{ mol } rxn}{1 \text{ mol } CH_4} \times \frac{-802 \text{ kJ}}{1 \text{ mol } rxn} = -6.43 \times 10^3 \text{ kJ}$

MAR

MAR


MAR

ΔH values depend on how the reaction is written and on phases of reactants and products

 $\begin{array}{l} H_2(g) + 1/2 \ O_2(g) \dashrightarrow H_2O(g) \\ & \triangle H^\circ_1 = -242 \ kJ \\ 2 \ H_2(g) + O_2(g) \dashrightarrow 2 \ H_2O(g) \\ & \triangle H^\circ_2 = -484 \ kJ = 2^* \ \triangle H^\circ_1 \\ H_2O(g) \dashrightarrow H_2(g) + 1/2 \ O_2(g) \\ & \triangle H^\circ_3 = +242 \ kJ = -(\triangle H^\circ_1) \\ H_2(g) + 1/2 \ O_2(g) \dashrightarrow H_2O(liquid) \\ & \triangle H^\circ_4 = -286 \ kJ \neq \ \Delta H^\circ_1 \end{array}$

MAR

USING ENTHALPY

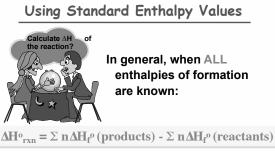
Making H_2O from H_2 involves two steps. $H_2(g) + 1/2 O_2(g) ---> H_2O(g) + 242 kJ$ $H_2Q(g) ---> H_2O(liq) + 44 kJ$

H₂(g) + 1/2 O₂(g) --> H₂O(liq) + 286 kJ Example of HESS'S LAW-

If a rxn. is the sum of 2 or more others, the net ΔH is the sum of the $\Delta H's$ of the other rxns.

Hess's Law ProblemExample: Determine the
$$\Delta H^\circ$$
 for the reaction: $3 H_2(g) + N_2(g) \rightarrow 2 NH_3(g)$ $\Delta H^\circ_3 = ???$ Given the following: $(1 \ 2 H_2(g) + N_2(g) \rightarrow N_2H_4(g)$ $\Delta H^\circ_1 = +95.4 \text{ kJ}$ $(2) \ N_2H_4(g) + H_2(g) \rightarrow 2 NH_3(g)$ $\Delta H^\circ_2 = -187.6 \text{ kJ}$ $AgBr(s) -99.5 C_2H_2(g)$ $+226.7$ Desired equation has no NzH4, so try to remove by adding equations (1) & (2) together: $2 H_2(g) + N_2(g) - 2 NH_3(g) \rightarrow N_2H_4(g) + 2 NH_3(g)$ $AH_f A_g = 1 \text{ standard molar 4enthalpy of } C_2H_6(g)$ $+52.3$ $\Delta H_f A_g = 1 \text{ standard molar 4enthalpy of } C_2H_6(g)$ -84.7 $AH_f A_g = 1 \text{ standard molar 4enthalpy of } C_2H_6(g)$ -84.7 formation $3 H_2(g) + N_2(g) \rightarrow 2 NH_3(g) \ \Delta H^\circ_3$ $AH_{\sigma_1} + \Delta H^\circ_2 = +95.4 \text{ kJ} + (-187.6 \text{ kJ}) = -92.2 \text{ kJ}$ $He = 0 \text{ thalp} \text{ bit not } 0_3 \text{ or } 0_2(h), \text{ etc.}$ -173.1 MR $BaCl_2(s)$ -860.1 $C_2H_5OH(l)$ -277.6

Question: What is the standard molar enthalpy of formation equation for potassium permanganate?


elements compound

$$K(s) + Mn(s) + 2O_2(g) \longrightarrow KMnO_4(s)$$

- salts, metals: solids at standard state conditions. oxygen is a gas
- balance for one mole of the product; reactants elements in their standard states

KMnO4(aq) and KMnO4(s)

Σ = summation sign, or "add up all of the" n = stoichiometric coefficients "Energy gained" - "Energy spent"

Using Standard Enthalpy Values

Example: Find $\triangle H^{\circ}_{rxn}$ for CaCO₃(s) --> CaO(s) + CO₂(g) using:

 $\Delta H^{o}_{rxn} = \Sigma n \Delta H_{f^{o}} (prod) - \Sigma n \Delta H_{f^{o}} (react)$

Answer:

 $\begin{array}{l} \triangle H^o{}_{rxn} = \{ \triangle H_f{}^o\left({CaO} \right) + \triangle H_f{}^o\left({CO}_2 \right) \} - \{ \triangle H_f{}^o\left({CaCO}_3 \right) \} \\ \triangle H^o{}_{rxn} = \{ -635.1 + -393.5 \} - \{ -1206.2 \} \end{array}$

∆Hº_{rxn} = +177.6 kJ

All stoichiometries (n) are one in this example

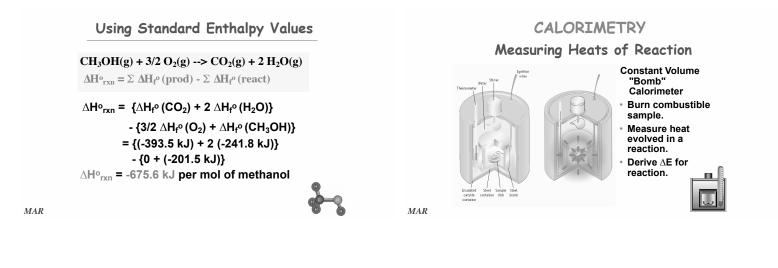
Using Standard Enthalpy Values

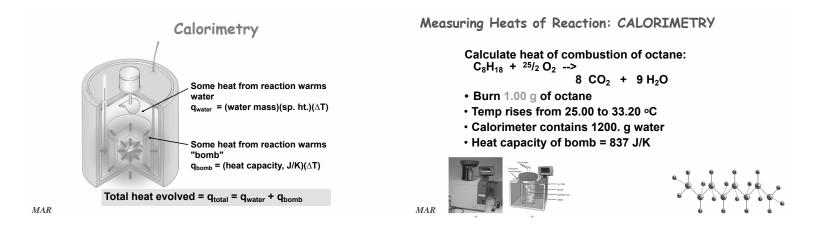
Calculate the heat of combustion of methanol, i.e., ΔH^{o}_{rxn} for

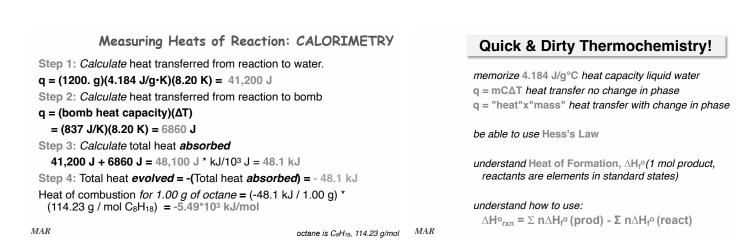
CH₃OH(g) + 3/2 O₂(g) --> CO₂(g) + 2 H₂O(g)

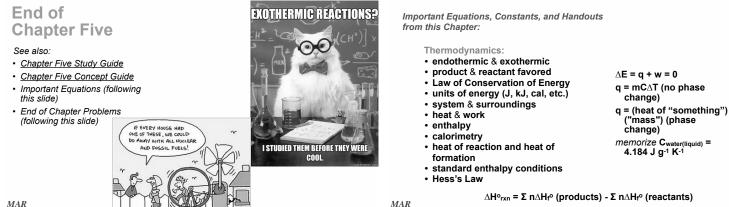
 $\Delta H^{o}_{rxn} = \Sigma n \Delta H_{f^{o}} (prod) - \Sigma n \Delta H_{f^{o}} (react)$

As before, look up ΔH_{f^0} values for reactants and products in your text


Elements in standard states have ${\bigtriangleup H_{f^{0}}}$ = 0


MAR


MAR


MAR

MAR

End of Chapter Problems: Test Yourself

- The initial temperature of a 344 g sample of iron is 18.2 °C. If the sample absorbs 2.25 kJ of heat, what is its final temperature? Cre = 0.449 J/g K
 One beaker contains 156 g of water at 22 °C and a second beaker contains 85.2 g of water at 95 °C. The water in the two beakers is mixed. What is the final water temperature?
 What quantity of heat is required to vaporize 125 g of benzene, CeHe, at its boiling point, 80.1 °C? The heat of vaporization of benzene is 30.8 kJ/ mol
- mol.
- mol. 4. The enthalpy changes for the following reactions can be measured: $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \qquad \Delta H^\circ = -802.4 \text{ kJ}$ $CH_3OH(g) + 3/2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) \qquad \Delta H^\circ = -676 \text{ kJ}$ Use these values and Hess's law to determine the enthalpy change for the reaction: $CH_4(g) + 1/2 O_2(g) \rightarrow CH_3OH(g)$ 5. Write a balanced chemical equation for the formation of $L_2CO_3(s)$ from the pleneate in their standard data.
- the elements in their standard states. Find the value of $\Delta H_{f^{\circ}}$ for Li₂CO₃(s) in a table of values.
- Ca(OH)₂ reacts slowly with CO₂ to give CaCO₃: Ca(OH)₂(s) + CO₂(g) \rightarrow CaCO₃(s) + H₂O(g) Calculate the standard enthalpy change for this 6. reaction.

MAR

End of Chapter Problems: Answers

- $\begin{array}{ll} 1. & 306.0 \text{ K} (32.8 \ ^{\text{O}}\text{C}) \\ 2. & 321 \text{ K} (48 \ ^{\text{O}}\text{C}) \\ 3. & 49.3 \text{ kJ} \\ 4. & -126 \text{ kJ} \\ 5. & 2 \text{ Li}(s) + \text{C}(s) + 3/2 \\ 6. & \Delta \text{H}^{\circ}_{\text{CM}} = -83.1 \text{ kJ} \end{array}$