

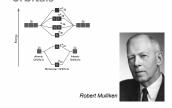
Two Theories of Bonding

VALENCE BOND (VB) THEORY -Linus Pauling

valence electrons

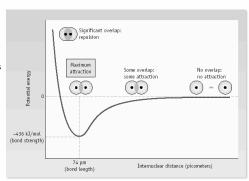
valence electrons are localized between atoms (or are lone pairs) half-filled atomic orbitals overlap to

electrons stabilized by 2 nuclei



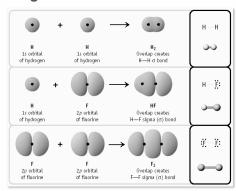
form bonds.

MOLECULAR ORBITAL (MO) THEORY - Robert Mulliken


valence electrons are delocalized over entire molecule in molecular orbitals

Sigma Bonds

For both theories, consider the 'overlap' between orbitals to make a sigma (σ) bond This diagram is for two 1s orbitals (H₂)


Other Types of Sigma Bonds

Two s
orbitals
overlap

One s &
one p
overlap

Two p
orbitals
overlap

MAR

5.2 - Hybrid Atomic Orbitals

Bonding in BF₃

Boron configuration

F: B

Boron configuration

Trigonal

angle =


We can use BF₃ to discus Valence Bond Theory.

The question:

How to account for 3 bonds 120° apart using a spherical s orbital and p orbitals that are 90° apart?

trigonal planar angle = 120°

Valence Bond Theory: Bonding in BF₃

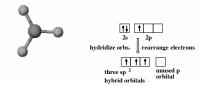
Pauling said to modify Valence Bonds with Orbital Hybridization

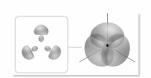
Mix available atomic orbitals to form a new set of orbitals - Hybrid Orbitals - that will give the maximum overlap in the correct geometry.

one s and 2 p atomic orbitals gives 3 sp² orbitals

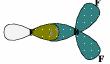
Valence Bond Theory: Bonding in BF₃

The three hybrid orbitals are made from 1 s orbital and 2 p orbitals create 3 sp² hybrid orbitals

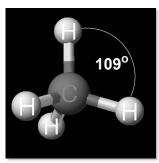



Now we have 3, half-filled HYBRID orbitals that can be used to form *planar* B-F sigma bonds.

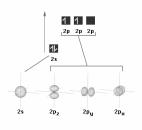
MAR


MAR

Valence Bond Theory: Bonding in BF₃


An atomic orbital from each F overlaps one of the sp² hybrids to form a B-F σ bond.

Valence Bond Theory: Bonding in CH₄


How do we account for 4 C-H sigma bonds 109° apart?

Need to use 4 atomic orbitals - s, p_x , p_y , and p_z - to form 4 new hybrid orbitals pointing in the correct direction.

MAR

Bonding in a Tetrahedron - Formation of Hybrid Atomic Orbitals

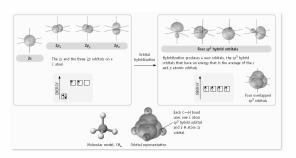
4 C atom orbitals hybridize to form four equivalent sp³ hybrid atomic orbitals.

one s and 3 p atomic orbitals gives 4 sp³ orbitals

Bonding in a Tetrahedron - Formation of Hybrid Atomic Orbitals

4 C atom orbitals hybridize to form four equivalent sp³ hybrid atomic orbitals.

Four electron pairs sp³



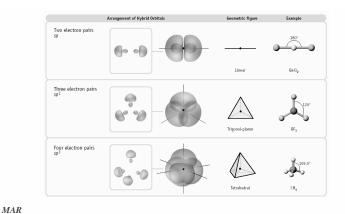
MAR

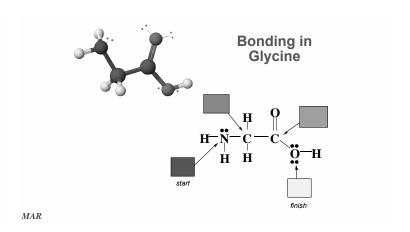
Bonding in CH₄

MAR

Valence Bond Theory: Summary

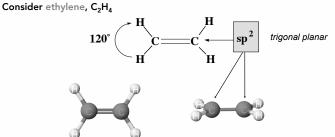
To form a covalent bond, an atom must have an unpaired electron.


Number of bonds formed by an atom is determined by the number of unpaired electrons.

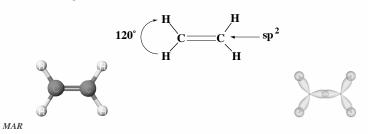

VB works well for explaining the bonding in diatomic molecules and for explaining the lack of bonding by the noble gases.

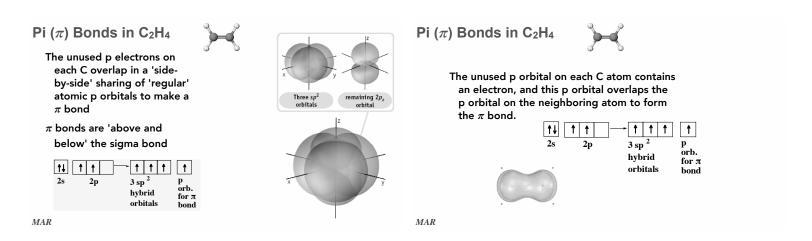
Bond 2	s <i>EPG</i> linear	Hybrid R sp	emaining p orbs? 2 p
3	trigonal planar	sp²	1 p
4	tetrahedral	sp ³	none
5	trigonal bipyramid	sp³d	
6	octahedral	sp^3d^2	

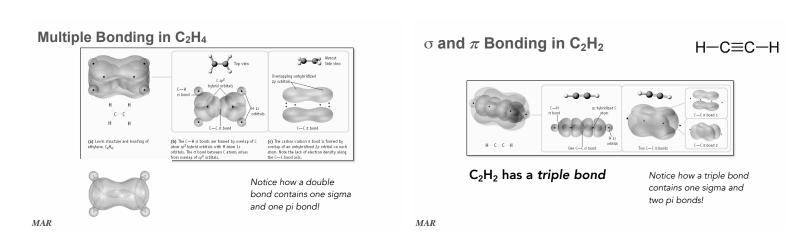
All tetrahedral EPG = sp^3 hybridized, etc.

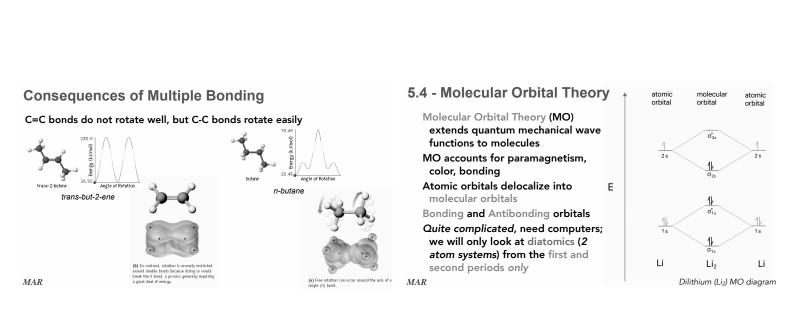

MAR

5.3 - Multiple Bonds

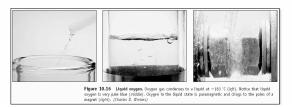

How to multiple bonds work with valence bond theory?




Sigma Bonds in C₂H₄


Sigma bonds ('single bonds') operate through 'head to head' overlap of singly occupied orbitals in each atom

Ethylene has sigma bonds between the C and H atoms as well as a sigma bond between the two C atoms



Advantages of MO Theory

Dioxygen should be electron paired (diamagnetic) by VB Theory, but dioxygen is actually paramagnetic. MO Theory accounts for paramagnetism of O_2

Four Principles of MO Theory

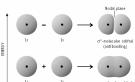
Principle #1:

Number of Molecular Orbitals = Number of Atomic Orbitals

Two 1s orbitals from two hydrogen atoms create two molecular orbitals in H_2

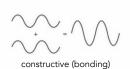
Two 1s orbitals and two 2s orbitals from two lithium atoms create four molecular orbitals in ${\rm Li}_2$

MAR


MO Theory and Waves


When two atomic 1s H orbitals combine, a **bonding** (σ) and **antibonding** (σ *) molecular orbital forms

MAR


MAR

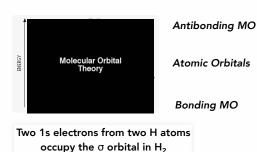
MAR

antibonding σ*

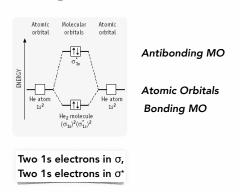
destructive (antibonding)

Principles #2 and #3 of MO Theory

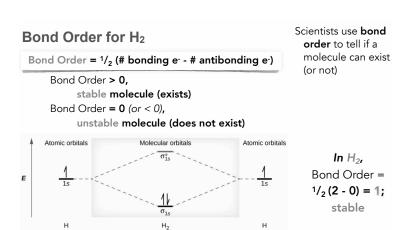
Principle #2:

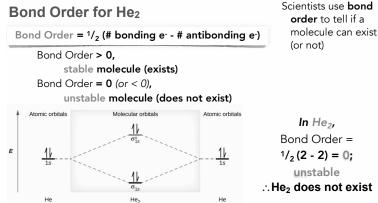

Bonding MO lower in energy than the parent orbital
Antibonding MO higher in energy
than the parent orbital

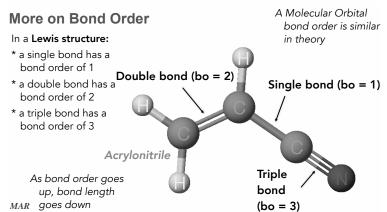
Principle #3:

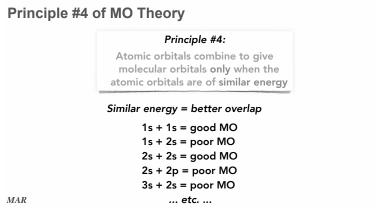

Electrons of molecule assigned to successively higher MOs

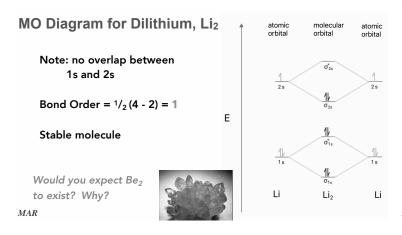
Use Pauli Exclusion Principle and Hund's Rule when assigning electrons

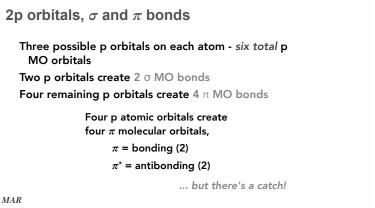

MO Diagram for H₂

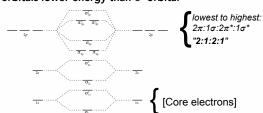



MO Diagram for He₂

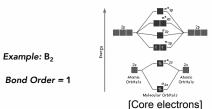



MAR



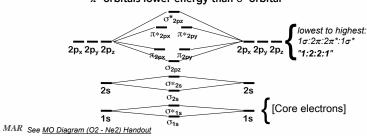


2p orbitals, σ and π bonds for "NBC"

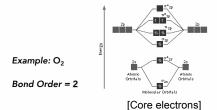

For B, C and N ("NBC"), π orbitals lower energy than σ orbital π^* orbitals lower energy than σ^* orbital

MAR See MO Diagram (B₂ - N₂) Handout

2p orbitals, σ and π bonds for "NBC"


For B, C and N ("NBC"), π orbitals lower energy than σ orbital π^* orbitals lower energy than σ^* orbital

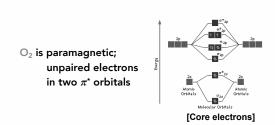
MAR See MO Diagram (B₂ - N₂) Handout


2p orbitals, σ and π bonds for "FONe"

For F, O and Ne ("FONe"), σ orbital lower energy than π orbitals π^* orbitals lower energy than σ^* orbital

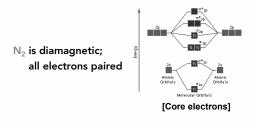
2p orbitals, σ and π bonds for "FONe"

For F, O and Ne ("FONe"), σ orbital lower energy than π orbitals π^* orbitals lower energy than σ^* orbital



MAR See MO Diagram (O2 - Ne2) Handout

Paramagnetism

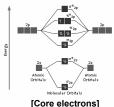

MAR

Paramagnetism exists when unpaired electrons found in MO diagram

Paramagnetism

Paramagnetism exists when unpaired electrons found in MO diagram

Ionic Diatomic Molecules


Predicting Ionic Diatomic MO diagrams simple: start with neutral molecule, then add or subtract electrons as necessary

Use Hund's rule and Pauli exclusion principle; re-check magnetism, bond order, etc.

lisiri, boria oraer, etc

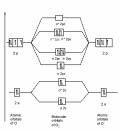
Example: O_2^{1+} Remove electron from π^*_{2p} orbital

bond order = 2.5, paramagnetic

MAR

Electrons are removed from the Highest Occupied Molecular Orbital (HOMO) in the molecule

Ionic Diatomic Molecules

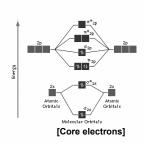

Predicting Ionic Diatomic MO diagrams simple: start with neutral molecule, then add or subtract electrons as necessary

Use Hund's rule and Pauli exclusion principle; recheck magnetism, bond order, etc.

Example: O₂1-

Add electron to π^{\star}_{2p} orbital

bond order = 1.5, paramagnetic


[Core electrons]

MAR

Electrons are added from the Lowest Unoccupied Molecular Orbital (LUMO) in the molecule

Molecular Orbital Shorthand Notation

Used to abbreviate the MO diagrams

- Ignore core electrons (all 1s interactions only) by writing [core electrons]
- combine π_{2px} and π_{2py} into one π_{2p} parentheses (same with antibonding)
- · Write in order of increasing energy

For N₂:

[core electrons] $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p})^4(\sigma_{2p})^2$

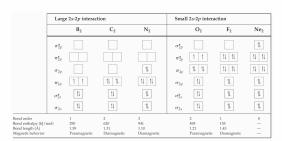
Sigma and Pi Bonds

Determine sigma and pi bonds using:

σ bonds = 1/2 (# σ bonding e⁻ - # σ antibonding e⁻) # π bonds = 1/2 (# π bonding e⁻ - # π antibonding e⁻)

and

bond order = # σ bonds + # π bonds


For N₂: [core electrons] $(\sigma_{2s})^2(\sigma_{2s}^*)^2(\pi_{2p})^4(\sigma_{2p})^2$

σ bonds = $1/_2(4 - 2) = 1 \sigma$ bond # π bonds = $1/_2(4 - 0) = 2 \pi$ bonds

Molecular Orbitals

MAR bond order = $\frac{1}{2}(8 - 2) = 3 = 1 \sigma + 2 \pi$ bonds

MO Diagram for Diatomics

Note: all should have [core electrons]

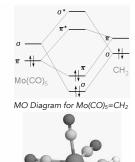
MAR

MAR

Changes in MO diagrams due to s-p mixing and/or electron repulsion

MO Application: Vision

Molecular Orbital Theory helps to describe the process of vision - photochemistry


MAR

End of Chapter 5

See:

- Chapter Five Study Guide
- Chapter Five Concept Guide
- Important Equations (following this
- End of Chapter Problems (following this slide)

MAR

Important Equations, Constants, and Handouts from this Chapter:

- · the bond order, bond energy and bond length relationships
- know the advantages and disadvantages of the Valence Bond and Molecular Orbital theories
- see the Geometry and Polarity Guide and the two Molecular Orbital Theory diagrams (NBC and FONe) (handouts)

Valence Bond / Hybridization Theory: types of hybridization (sp, sp^2 , etc.), sigma and pi bonds

Molecular Orbital Theory:

bonding and antibonding orbitals, sigma bonds and pi bonds, paramagnetic and diamagnetic, the "NBC" vs. "FONe" diagrams

bond order (MO theory) = $\frac{1}{2}$ (# bonding e^- - # antibonding e^-)

End of Chapter Problems: Test Yourself

- Specify the electron-pair and molecular geometry for each of the following. Describe the hybrid orbital set used by the central atom in each molecule or ion.
 BBr₃ b. CO₂ c. CH₂Cl₂ d. XeF₄
- a. BBr₃ b. CO₂ c. CH₂Cl₂ d. XeF₄
 2. Use MO theory to tell which has the largest bond order: C₂ or F₂. Are either species paramagnetic?
 3. Use MO theory to speculate on the existence of dilithium.
 4. Which compound is stronger by MO theory: Be₂ or B₂*1.
 5. Describe the hybridization change on carbon as methane (CH₄) is burned to create carbon dioxide.

- to create carbon dioxide.

End of Chapter Problems: Answers

- a. trigonal planar, trigonal planar, sp². b. linear, linear, sp. c. tetrahedral, tetrahedral, sp³. d. octahedral, square planar, sp³d²
 BO(C₂) = 2, diamagnetic. BO(F₂) = 1, diamagnetic.
 By MO theory, dilithium (Li₂) should exist (BO = 1, diamagnetic.)
 MO theory would predict that B₂*1(bond order = 0.5, paramagnetic) is

- stronger than Be₂ (bond order = 0, this should not exist at all.)
 5. sp³ to sp

MAR