Atoms, Molecules and lons

Chapter 2 and Chapter 3 (3.1, 3.2) "Chapter 2 Part 2

Chemistry 221 **Professor Michael Russell**

MAR Last update: 4/29/24

Early chemists describe the first dirt molecule

Auntie Jane fed Baby Nell What she thought was calomel What the baby really ate was Corrosive Sublimate Not much difference, I confess. Just one chlorine more and one baby less! **calomel = HgCl** (for dysentery) **Corrosive Sublimate = HgCl**₂ MAR

Poor Auntie Jane!

Compounds and Molecules

COMPOUNDS are a combination of 2 or more elements in definite ratios by mass.

The character of each element is lost when forming a compound.

MOLECULES are the smallest unit of a compound that retains the characteristics of the compound.

MAR

Formula for glycine is C₂H₅NO₂ In one molecule there are 2 C atoms 5 H atoms 1 N atom 2 O atoms

Writing Formulas

Can also write glycine formula (C₂H₅NO₂) as H₂NCH₂COOH to show atom ordering or in the form of a Structural formula

H H O H-N-C-C-O-H

Ĥ

structural formulas also called "condensed" formulas

MAR

MAR

Comparison of Formula Types

Compound	Molecular	Empirical	Structural
Water	H ₂ O	H ₂ O	НОН
Hydrogen Peroxide	H_2O_2	но	ноон
Ethylene	C_2H_4	CH ₂	H ₂ CCH ₂
Ethane	C_2H_6	CH ₃	H ₃ CCH ₃
Ethanol	C ₂ H ₆ O	C ₂ H ₆ O	H ₃ CCH ₂ OH
Dimethyl ether	C ₂ H ₆ O	C ₂ H ₆ O	H ₃ COCH ₃

MAR

.....

MAK

Buckyball (C₆₀) or Buckminsterfullerene

Allotropes of Elements

Most elements exist as individual atoms - *monotomic*

Allotropes are different versions of the same element

Carbon *exists naturally as* **graphite**, **diamond and buckyballs**.

Seven elements exist as diatomics (next slide)

Also carbon graphene

IONS AND IONIC COMPOUNDS

IONS are atoms or groups of atoms with a positive

or negative charge.

Taking away electron(s) creates a CATION with a positive charge

Adding electron(s) creates an ANION with a

IONS AND IONIC COMPOUNDS

CATIONS have protons > electrons ANIONS have electrons > protons

Remember: **CATS** have **PAWS**

CATions are PAWSitive

Charges on Metals Formation of Cations and Fixed charge metals include: Anions *Groups IA, IIA & "stairs" (next slide) Cation Anion *charge = group number (mostly) Na+ sodium ion **AI**³ Mg²⁺ magnesium ion Ga 31 Zn²⁺ 30 AI³⁺ aluminum ion Mg 12 protons, 12 electron Cd In 49 Ag 47 silver ion Ag+ the stairs F + e- --> F-Mg --> Mg²⁺ + 2 e-A cation forms An anion forms All other metals ("variable charge" metals) --> use when an atom when an atom Roman number to represent charge on metal gains one or loses one or Fe²⁺ iron(II) ion more electrons. more electrons Fe³⁺ iron(III) ion No ferrous or ferric nomenclature! MAR **V**3+ vanadium(III) ion

MAI

"fixed charge metals", and we always

know their ionic charge

MAR

MAR

A "Quick and Dirty" Guide to Ionic Charges

Groups IA, IIA or "the stairs": fixed charge metals Charge = positive Magnitude = group # mostly!

Groups VA, VIA or VIIA: fixed charge nonmetals Charge = negative Charge = group # - 8

All Other Metals: Difficult to predict, use Roman number to represent positive charge, these are the "Variable Charge metals"

MAR

Formulas a	and Names of Some Commo	on Polyatomic I	ons
Formula	Name	Formula	Name
CATION: Positive Ion			
NH ₄ ⁺	ammonium ion		
ANIONS: Negative Ions			
Based on a Group 4A element		Based on a G	oup 7A element
CN-	cyanide ion	CIO-	, hypochlorite ion
CH3C02-	acetate ion	CLO2-	chlorite ion
C03 ²⁻	carbonate ion	CIO3	chlorate ion
HCO _a -	hydrogen carbonate ion (or bicarbonate ion)	Cl04-	perchlorate ion
Based on a Group 5A element		Based on a transition metal	
N0,2	nitrite ion	Cr04 ²⁻	chromate ion
N0 _a -	nitrate ion	Cr20,2-	dichromate ion
P04 ³	phosphate ion	Mn04	permanganate ion
HPO ₄ ² -	hydrogen phosphate ion	, ,	1 5
H ₂ PO ₄ -	dihydrogen phosphate ion	Note: ma	any O
Based on a Group 6A element		containi	nd anions
011-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	oomanni	ig uniono

have names ending in -ate (or -ite).

hydroxide ion sulfite ion sulfate ion hydrogen sulfate ion (or bisulfate ion)

MAR

Nick the Camel

<u>Crepes</u> = chromate

0H⁻⁻ S0₃²⁻⁻ S0₄²⁻⁻ HS0₄⁻

POLYATOMIC IONS

Groups of atoms with a charge. **MEMORIZE** the names and formulas in your text and the "Nomenclature" lab.

Charge	Formula	Name	Formula	Name
1-	H_	Hydride ion	CH3COO ⁻ (or C3H3O3 ⁻)	Acetate ion
	F-	Fluoride ion	CIO3	Chlorate ion
	CI	Chloride ion	ClO ₄	Perchlorate ion
	Br ⁻	Bromide ion	NO ₃	Nitrate ion
	1	Iodide ion	MnO ₄	Permanganate io
	CN ⁻	Cyanide ion		
	OH-	Hydroxide ion		
2-	O ²⁻	Oxide ion	CO12-	Carbonate ion
	O22-	Peroxide ion	CrO42-	Chromate ion
	S ²⁻	Sulfide ion	Cr2O72-	Dichromate ion
			SO42-	Sulfate ion
3-	N ³	Nitride ion	PO4 ³⁻	Phosphate ion

MAR

MAR

Introducing: Nick the Camel!

Nick the Camel Brat ate Icky Clam for Supper in Phoenix

NO₃-

Many polyatomic ions related by a hydrogen ion (H+) to an acid Potassium nitrate somewhat common!

nitrate ion

Some Common Polyatomic Ions Nic e Camel

HNO₃

nitric acid

	<u>Oxygen</u>	Charge	Ion
Nick = Nitrate	3	-1	NO3 -
<u>Camel</u> = Carbonate	3	-2	CO3 2-
<u>Br</u> at = Bromate	3	-1	BrO3 -
<u>I</u> cky = Iodate	3	-1	IO3 -
<u>Cl</u> am = Chlorate	3	-1	CIO3 -
<u>Supper</u> = Sulfate	4	-2	504 ²⁻
<u>Ph</u> oenix = Phosphate	e 4	-3	PO4 3-
Di	d Nick have	Crepes for desse	rt too? :)

4

-2

CrO₄ ²⁻

Consonants = Vowels =

MAR

Nick the Camel Brat ate Icky Clam for Supper in Phoenix Polyatomic

MAR

COMPOUNDS FORMED **FROM IONS** (ionic bonding)

CATION + ANION \rightarrow COMPOUND

 Zn^{+2} + S⁻² \rightarrow ZnS

A neutral compound requires equal number of positive and negative charges.

CATION + ANION \rightarrow COMPOUND

Na⁺ + Cl⁻ → NaCl

IONIC COMPOUNDS

ammonium chloride, NH₄CI

MAR

MAR

Properties of Ionic Compounds Forming NaCl from Na and Cl₂

A metal atom can transfer an electron to a nonmetal. The resulting cation and anion are attracted to each other by electrostatic forces.

The oppositely charged ions in ionic compounds are attracted to one another by **ELECTROSTATIC FORCES**.

These forces are governed by COULOMB'S LAW.

As ion charge increases, the attractive force

As the distance between ions increases, the attractive force _____.

This idea is important and will come up many times in future discussions - see handout

Importance of Coulomb's Law

NaCl, Na⁺ and Cl[.], m.p. 804 °C

MgO, Mg²⁺ and O²⁻ m.p. 2800 °C

Naming Molecular (Covalent) Compounds

BCI₃

boron trichloride

CH₄ methane

Covalent compounds formed from two or more nonmetals; use Greek prefixes

Ionic compounds generally involve a metal and nonmetal (NaCl) - do not use Greek prefixes with metals!

Greek Prefixes

MAR

1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona 📕
5	penta	10	deca

Three Types of Compound Naming

Fixed charge metal + nonmetal (in Al ₂ O ₃ - aluminum oxide	onic) _{No Greek prefixes or Roman numbers}
Variable charge metal + nonmeta Fe ₂ O ₂ - iron(III) oxide	I (ionic) Use Roman numbers
Watch variable charge: FeO	= iron(II) oxide, etc.
Nonmetal + nonmetal (covalent)	Use Greek prefixes
P ₂ O ₃ - diphosphorus trioxid	de

Also P_2O_5 , = diphosphorus pentoxide, etc.

MAR

Hydrated Compounds

When prepared in water and isolated as solids, many ionic compounds have water molecules trapped in the lattice.

"Waters of hydration" result in beautiful colors

 $\begin{array}{rll} \text{CuSO}_{4}\text{\cdot}5\text{ H}_{2}\text{O}_{(s)} & + \text{ heat} \\ & \rightarrow & \text{CuSO}_{4(s)} & + 5\text{ H}_{2}\text{O}_{(g)} \end{array}$

Hydrated Compounds

Nomenclature: use Greek prefix + "hydrate" after regular name

CuSO₄:5 H₂O = copper(II) sulfate pentahydrate MgSO₄·7 H₂O = magnesium sulfate heptahydrate NiCl₂·6 H₂O = nickel(II) chloride hexahydrate CuSO₄ without water called "anhydrous" copper(II) sulfate

MAR

MOLECULAR WEIGHT AND MOLAR MASS

Molecular weight is the sum of the atomic weights of all atoms in the molecule.

Molar mass = molecular weight in grams

MAR

ATOMS OVERWHELMING YOU?

Molar Mass

How to Determine a Formula?

Mass spectrometer

MAR

MAR

How many moles of alcohol (ethanol) are present in a "standard" can of beer if there are 21.3 g of C_2H_6O ?

- (a) Molar mass of $C_2H_6O = 46.08$ g/mol
- (b) Calc. moles of alcohol

21.3 g •
$$\frac{1 \text{ mol}}{46.08 \text{ g}} = 0.462 \text{ mol}$$

MAR

We know there are 2.78 x 10²³ molecules. Each molecule contains 2 C atoms. Therefore, the number of C atoms is

2.78 x
$$10^{23}$$
 molecules • $\frac{2 \text{ C atoms}}{1 \text{ molecule}}$
= 5.56 x 10²³ C atoms

2.78 *10²³ * 9 = 2.50 x 10²⁴ atoms in the 21.3 g of ethanol!

Empirical and Molecular Formulas

A pure compound always consists of the same elements combined in the same proportions by weight. Therefore, we can express molecular

composition as PERCENT BY WEIGHT

Ethanol, C₂H₀O 52.13% C, 13.15% H, 34.72% O

Percent Composition

Consider the nitrogen-oxygen family of compounds: NO₂, nitrogen dioxide, and NO, nitrogen monoxide (or *nitric oxide*)

Chemistry of NO, nitrogen monoxide

MAR

Percent Composition

Consider NO₂, Molar mass = ? What is the weight percent of N and of O?

To find the weight percent of an element in a compound:

Wt. % X =
$$\frac{\text{g of X in compound}}{\text{molar mass of compound}} \cdot 100\%$$

In water (H_2O) :

Wt. % O =
$$\frac{16.00 \text{ g O}}{18.02 \text{ g H}_2\text{O}} \bullet 100\% = 88.79\%$$

%H = 100 - 88.79 = 11.21%

Percent Composition

Consider NO₂, Molar mass = ? What is the weight percent of N and of O?

Wt. % N =
$$\frac{14.01 \text{ g N}}{46.01 \text{ g NO}_2} \cdot 100\% = 30.45\%$$

Wt. % O = $\frac{2(16.00 \text{ g O})}{46.01 \text{ g NO}_2} \bullet 100\% = 69.55\%$

Test yourself: What are the weight percentages of N and O in N_2O_4 ?

Determining Formulas

In chemical analysis we first determine the % by weight of each element in a given amount of pure compound and derive the EMPIRICAL or SIMPLEST formula.

Weight percentages lead to empirical formulas (but not molecular formulas!)

Calculate the number of moles of each element in 100.0 g of sample.

81.10 g B •
$$\frac{1 \text{ mol}}{10.81 \text{ g}} = 7.502 \text{ mol B}$$

18.90 g H • $\frac{1 \text{ mol}}{1.008 \text{ g}} = 18.75 \text{ mol H}$

Page III-2b-10 / Chapter Two Part II Lecture Notes

A compound of B and H is 81.10% B. What is its empirical formula?

Take the ratio of moles of B and H. Always divide by the smaller number.

18.75 mol H	2.499 mol H	2.5 mol H
7.502 mol B	1.000 mol B	1.0 mol B

But we need a whole number ratio. 2.5 mol H/1.0 mol B = 5 mol H to 2 mol B **EMPIRICAL FORMULA = B_2H_5**

The compound has an empirical formula of B₂H₅. What is its molecular formula?

Is the molecular formula B₂H₅, B₄H₁₀, B₆H₁₅, B₈H₂₀, etc.?

 B_2H_6 is one example of this class of compounds.

MAR

The compound has an empirical formula (EF) of B₂H₅. What is its molecular formula?

To solve, need the molar mass of the compound using a mass spectrometer (a separate experiment)

Next, determine molar mass of the empirical formula

Compare molar mass of the compound to the molar mass of the empirical formula to get a whole number ratio of empirical formula units in the molecular formula

The compound has an empirical formula (EF) of B₂H₅. What is its molecular formula?

Example:

A compound has an empirical formula of CH₂ and a molar mass of 28.1 g mol⁻¹. Find the molecular formula. Molar mass compound (28.1 g mol⁻¹) given via outside experiment.

Molar mass empirical formula (CH₂) =

12.01 + 2*1.01 = 14.03 g mol⁻¹

Now compare molar mass compound to molar mass of empirical formula: $\frac{28.1 \text{ g/mol}}{14.03 \text{ g/mol of CH}_2} = \frac{2 \text{ units of CH}_2}{1 \text{ mol}}$

Molecular formula = $(CH_2)_2 = C_2H_4$

The compound has an empirical formula (EF) of B₂H₅. What is its molecular formula?

In the boron problem,

Molar mass of compound (from mass spectrometer, a separate experiment) = 53.3 g/mol

Molar mass of empirical formula (B₂H₅) = 26.67 g/mol

(2*10.81 + 5*1.01 = 26.67 g/mol of EF)

Now find ratio of these masses.

 $\frac{53.3 \text{ g/mol}}{26.67 \text{ g/mol of } B_2 H_5} = \frac{2 \text{ units of } B_2 H_5}{1 \text{ mol}}$

Molecular formula = $(B_2H_5)_2 = B_4H_{10}$

Determining a Molecular Formula: Overview

First, convert percent by mass element values into moles (assume 100 g), then compare the moles to get the empirical formula (EF)

 $\frac{18.75 \text{ mol H}}{7.502 \text{ mol B}} = \frac{2.499 \text{ mol H}}{1.000 \text{ mol B}} = \frac{2.5 \text{ mol H}}{1.0 \text{ mol B}}$ 2.5 mol H/1.0 mol B = 5 H to 2 B = B_2H_5 Next, find the molar mass (MM) of the compound, then compare MM of compound to MM of EF $\frac{53.3 \text{ g/mol}}{26.67 \text{ g/mol of } B_2 H_5} = \frac{2 \text{ units of } B_2 H_5}{1 \text{ mol}}$ Molecular formula = $(B_2H_5)_2 = B_4H_{10}$

MAR

MAR

Determine the formula of a compound of Sn and I using the following data.

Mass of Sn in the beginning = 1.056 g Mass of iodine (I₂) used = 1.947 g Mass of Sn remaining = 0.601 g

Tin and lodine Compound

Find the mass of Sn that combined with 1.947 g I₂.

Mass of Sn initially =1.056 gMass of Sn recovered =0.601 gMass of Sn used =0.455 gFind moles of Sn used:

$$0.455 \text{ g Sn} \bullet \frac{1 \text{ mol}}{118.7 \text{ g}} = 3.83 \text{ x } 10^{-3} \text{ mol Sn}$$

Tin and Iodine Compound

Now find the number of moles of I_2 that combined with 3.83 x 10⁻³ mol Sn

Mass of I_2 used = 1.947 g

1.947 g I₂ •
$$\frac{1 \text{ mol}}{253.81 \text{ g}} = 7.671 \text{ x } 10^{-3} \text{ mol } \text{I}_2$$

But we need mol of I for formula, not I2, so convert:

7.671 x 10⁻³ mol I₂ •
$$\frac{2 \text{ mol I}}{1 \text{ mol I}_2} = 1.534 \text{ x } 10^{-2} \text{ mol I}$$

So 1.534 x 10⁻² mol of iodine atoms were used in this reaction

Tin and Iodine Compound

Now find the ratio of number of moles of moles of I and Sn that combined.

 $\frac{1.534 \text{ x } 10^{-2} \text{ mol I}}{3.83 \text{ x } 10^{-3} \text{ mol Sn}} = \frac{4.01 \text{ mol I}}{1.00 \text{ mol Sn}}$

Empirical formula is Snl₄ tin(IV) iodide

Important Equations, Constants, and Handouts from this Chapter:

- be able to find the molar mass of any compound using the periodic table
- be able to convert grams of a compound into moles and/or molecules
- understand how to calculate empirical formula (EF) and molecular formula (MF) using the molar mass and mass percentages

A mole = 6.022 x 10²³

Nomenclature: Greek prefixes, Roman numbers, nonmetal + nonmetal, fixed charge metal + nonmetal, variable charge metal + nonmetal, polyatomic ions, acids, bases, hydrated compounds, the 7 diatomics, cations, anions, covalent, ionic, the "stairs", Coulomb's Law

MAR

End of Chapter Problems: Test Yourself

- See practice problem set #3 and self quizzes for
- nomenclature examples and practice 1. Determine the molar mass for aluminum chloride, iron(III) oxide and

- Determine the molar mass for aluminum chloride, iron(III) oxide and phosphorus tribromide.
 How many grams in 0.0255 mol of propanol (C₃H₇OH)? How many molecules? How many atoms of C?
 Calculate the weight percent of lead in PbS, lead(II) sulfide. What mass of lead (in grams) is present in 10.0 g of PbS?
 Succinic acid has an empirical formula is C₂H₃O₂ and a molar mass is 118.1 g/mol. What is its molecular formula?
 A new compound containing xenon and fluorine was isolated by shining sunlight on a mixture of Xe (0.526 g) and F₂ gas. If you isolate 0.678 g of the new compound, what is its empirical formula?
 Direct reaction of iodine (l₂) and chlorine (Cl₂) produces an iodine chloride, I₂Cl₄, a brink vellow solid. If you completely used up 0.678 g of
- Chorder, ICQ, a bright yellow solid. If you completely used up 0.678 g of iodine and produced 1.246 g of I_xCl_y, what is the **empirical formula** of the compound? A later experiment showed that the molar mass of I_xCl_y was 467 g/mol. What is the **molecular formula** of the compound?

End of Chapter Problems: Answers

- 1. 133 g/mol, 160. g/mol, 271 g/mol 2. 1.53 g C₂H₇OH, 1.54 x 10²² molecules, 4.62 x 10²² atoms C 3. 86.59%, 8.66 g Pb 4. C₄H₆O₄ 5. XeF₂ 6. ICl₃ , I₂Cl₆

Be sure to view practice problem set #3 and self quizzes for nomenclature examples and practice