

 $A \rightarrow 10 B$ Z $\rightarrow 5$ B

A mole is the amount of

containing 6.022 x 1023

any substance

particles

MAR

Important Equations, Constants, and Handouts from Chapter 2 Part I:

- · alpha, beta, gamma radiation
- the "gold foil experiment"
- · protons, neutrons, electrons
- · mass number, atomic number isotopes
- · atomic weight and molar mass · Avogadro's number

Periodic table: groups, periods, metals, metalloids, nonmetals, alkali, alkaline earth, halogens, noble gases, transition metals, lanthanides, actinides, how to find the molar mass of an element!

MAR

Important Equations, Constants, and Handouts from Chapter 2 Part 2:

- be able to find the molar mass of any compound using the periodic table
- · be able to convert grams of a compound into moles and/or molecules understand how to calculate empirical formula (EF) and molecular formula (MF) using the molar mass and

mass percentages

MAR

A mole = 6.022 x 10²³

mass (g)

volume (cm3)

 $T(K) = T(^{\circ}C) + 273.15$

Density = _

Nomenclature: Greek prefixes, Roman numbers, nonmetal + nonmetal, fixed charge metal + nonmetal, variable charge metal + nonmetal, polyatomic ions, acids, bases, hydrated compounds, the 7 diatomics, cations, anions, covalent, ionic, the "stairs", Coulomb's Law

Important Equations, Constants, and Handouts from Chapter 4 Part 1:

- be able to find the theoretical yield, actual yield, percent yield
- be able to determine the limiting reactant, excess reactant, excess reactant remaining at end of reaction
- understand how to calculate empirical formula (EF) and molecular formula (MF) using organic compounds containing oxygen

Balancing Equations:

Reactants, Products, states of matter (s, l, g, aq), stoichiometric coefficients, Law of Conservation of Matter ("mass action")

Important Equations, Constants, and Handouts from Chapter 4 Part 2:

- · Know how the solubility guide works
- · Know what makes an acid acidic (and bases basic) and strong or weak; know how to use the pH scale
- · Know how to write and determine net ionic equations and find spectator ions
- Know how to use molarity with solution stoichiometry problems
- Molarity (M) = mol of solute per Liter of solution
- M₁V₁ = M₂V₂

Solutions: Solute, solvent, aqueous, electrolyte (strong, weak, non), solubility (use the Net Ionics solub table), precipitation, types of reactions, molarity (M)

Know the five types of reactions: precipitation, acid-base, gas forming, combustion and redox. Know how to determine if something has been oxidized or reduced (and the oxidizing agent and reducing agent)

MAR

Important Equations, Constants, and Handouts from Chapter 5:

Thermodynamics:

- endothermic & exothermic
- product & reactant favored Law of Conservation of Energy
- units of energy (J, kJ, cal, etc.)
- system & surroundings
- · heat & work

MAR

- enthalpy
 calorimetry
- · heat of reaction and heat of
- formation · standard enthalpy conditions
- Hess's Law

 $\Delta H^{o}_{rxn} = \Sigma n \Delta H_{f^{o}}$ (products) - $\Sigma n \Delta H_{f^{o}}$ (reactants)

 $\Delta \mathbf{E} = \mathbf{q} + \mathbf{w} = \mathbf{0}$

g-1 K-1

 $q = mC \Delta T$ (no phase change)

("mass") (phase change)

memorize Cwater(liquid) = 4.184 J

q = (heat of "something")

Important Equations, Constants, and Handouts from Chapter 6 Part 1:

- know relationship between frequency, wavelength, energy, speed of light, energy per mole
- know the regions and relative energies within the electromagnetic spectrum
- know about sharp line spectra, absorbance and emission spectra
- · know about wave particle duality (including de Broglie)
- quantum numbers: know the origin and meaning of n, l, m
- know "nl" notation (4s, 3d, etc.)
- · know how to find spherical and planar
- nodes, number of orbitals, etc. MAR

c = 2.998 x 10⁸ m/s

- h = 6.626 x 10⁻³⁴ J s
- $\mathbf{E} = \mathbf{h}\nu = \mathbf{h}\mathbf{c}/\mathbf{\lambda} \ (E/M)$
- $\lambda = h / mv$ (particles)

Important Equations, Constants, and Handouts from Chapter 6 Part 2:

- quantum numbers: know the origin and meaning of n, l, m_l, m_s
- understand paramagnetism and diamagnetism for atoms and ions
- know "nl" notation (4s, 3d, etc.) and the "n + l" rule for energy
- know how the Pauli Exclusion Theory and Hund's Rule apply towards electrons in orbitals: know the Aufbau Principle
- · know how to create electron configurations for neutral atoms and also cations and anions using both orbital box and spectroscopic notation
- know the periodic trends for size, ion size, ionization energy and electron affinity