CH 221 Practice Problem Set #6

This is a **practice problem set** and not the actual graded problem set that you will turn in for credit. Answers to each problem can be found at the end of this assignment.

Covering: Chapter Six and Chapter Seven (7.1-7.2 *only*) and Chapter Guide Six *Important Tables and/or Constants:* 1 mol = 6.022 x 10²³, "Have No Fear Of Ice Clear Brew" (7 Diatomics), **Solubility Table** (in the "Net Ionics" lab or here: https://mhchem.org/sol), 1000 mL = 1L

- 1. Calculate the weight percent of lead in PbS, lead(II) sulfide. What mass of lead (in grams) is present in 10.0 g of PbS?
- 2. Succinic acid occurs in fungi and lichens. Its empirical formula is C₂H₃O₂ and its molar mass is 118.1 g/mol. What is its molecular formula?
- 3. A large family of boron-hydrogen compounds has the general formula B_xH_y. One member of this family contains 88.5% B; the remainder is hydrogen. Which of the following is its empirical formula: BH₂, BH₃, B₂H₅, B₅H₇, or B₅H₁₁?
- 4. A new compound containing xenon and fluorine was isolated by shining sunlight on a mixture of Xe (0.526 g) and F₂ gas. If you isolate 0.678 g of the new compound, what is its empirical formula?
- 5. The "alum" used in cooking is potassium aluminum sulfate hydrate, $KAl(SO_4)_2 * x H_2O$. To find the value of *x*, you can heat a sample of the compound to drive off all of the water and leave only $KAl(SO_4)_2$. Assume you heat 4.74 g of the hydrated compound and that the sample loses 2.16 g of water. What is the value of *x*?
- 6. Direct reaction of iodine (I₂) and chlorine (Cl₂) produces an iodine chloride, I_xCl_y, a bright yellow solid. If you completely used up 0.678 g of iodine and produced 1.246 g of I_xCl_y, what is the empirical formula of the compound? A later experiment showed that the molar mass of I_xCl_y was 467 g/mol. What is the molecular formula of the compound?
- 7. Some potassium dichromate ($K_2Cr_2O_7$), 2.335 g, is dissolved in enough water to make exactly 500. mL of solution. What is the molar concentration of the potassium dichromate? What are the molar concentrations of the K⁺ and Cr₂O₇²⁻ ions?
- 8. For each solution, identify the ions that exist in aqueous solution, and specify the concentration of each ion.

a. 0.25 M (NH4)₂SO₄ b. 0.123 M Na₂CO₃

c. 0.056 M HNO₃

- 9. What volume of 0.109 M HNO₃, in milliliters, is required to react completely with 2.50 g of Ba(OH)₂?
 2 HNO₃(aq) + Ba(OH)₂(s) → 2 H₂O(l) + Ba(NO₃)₂(aq)
- 10. You have 0.954 g of an unknown acid, H₂A, which reacts with NaOH according to the balanced equation: H₂A(aq) + 2 NaOH(aq) → Na₂A(aq) + 2 H₂O(l) If 36.04 mL of 0.509 M NaOH is required to titrate the acid to the equivalence point, what is the molar mass of the acid?
- 11. Balance the following equations:
 - a. $Cr(s) + O_2(g) \rightarrow Cr_2O_3(s)$
 - b. $Cu_2S(s) + O_2(g) \rightarrow Cu(s) + SO_2(g)$
 - c. $C_6H_5CH_3(l) + O_2(g) \rightarrow H_2O(l) + CO_2(g)$

12. Balance the following equations and name each reactant and product:

a. $Fe_2O_3(s) + Mg(s) \rightarrow MgO(s) + Fe(s)$

- b. $AlCl_3(s) + NaOH(aq) \rightarrow Al(OH)_3(s) + NaCl(aq)$
- c. NaNO₃(s) + H₂SO₄(l) \rightarrow Na₂SO₄(s) + HNO₃(l)
- d. NiCO₃(s) + HNO₃(aq) \rightarrow Ni(NO₃)₂(aq) + CO₂(g) + H₂O(l)
- 13. Which compound or compounds in each of the following groups is (are) expected to be soluble in water?
 - a. CuO, CuCl₂, FeCO₃
 - b. AgI, Ag₃PO₄, AgNO₃
 - c. K₂CO₃, KI, KMnO₄
- 14. The following compounds are water-soluble. What ions are produced by each compound in aqueous solution?
 - a. KOH
 - b. LiNO3
 - $c. K_2 SO_4$
 - d. $(NH_4)_2SO_4$
- 15. Decide whether each of the following is water-soluble. If soluble, tell what ions are produced.
 - a. Na₂CO₃
 - b. NiS
 - c. CuSO₄
 - $d. \ BaBr_2$
- 16. Predict the products of each precipitation reaction. Balance the completed equation, and then write the net ionic equation.
 - a. NiCl₂(aq) + (NH₄)₂S(aq) \rightarrow
 - b. $Mn(NO_3)_2(aq) + Na_3PO_4(aq) \rightarrow$
- 17. Balance the following equations, and then write the net ionic equation.
 - a. $(NH_4)_2CO_3(aq) + Cu(NO_3)_2(aq) \rightarrow CuCO_3(s) + NH_4NO_3(aq)$
 - b. $Pb(OH)_2(s) + HCl(aq) \rightarrow PbCl_2(s) + H_2O(l)$
 - c. BaCO₃(s) + HCl(aq) \rightarrow BaCl₂(aq) + H₂O(l) + CO₂(g)
- 18. Determine the oxidation number of each element in the following ions or compounds. a. BrO_{3^-} b. $C_2O_{4^{2-}}$ c. F⁻ d. CaH_2 e. H_4SiO_4 f. HSO_{4^-}
- 19. Which two of the following reactions are oxidation-reduction reactions? Explain your answer in each case. Classify the remaining reaction.
 - a. $Zn(s) + 2 NO_3 1(aq) + 4 H^+(aq) \rightarrow Zn^{2+}(aq) + 2 NO_2(g) + 2 H_2O(l)$
 - b. $Zn(OH)_2(s) + H_2SO_4(aq) \rightarrow ZnSO_4(aq) + 2 H_2O(l)$

c. Ca(s) + 2 H₂O(l) \rightarrow Ca(OH)₂(s) + H₂(g)

- 20. In the following reactions, decide which reactant is oxidized and which is reduced. Designate the oxidizing agent and the reducing agent.
 - a. $C_2H_4(g) + 3 O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(g)$ b. $Si(g) + 2 Ch_2(g) \rightarrow SiCh_2(g)$
 - b. $Si(s) + 2 Cl_2(g) \rightarrow SiCl_4(l)$

Answers to the Practice Problem Set:

- 1. 86.59%, 8.66 g
- 2. C₄H₆O₄
- 3. B₅H₇
- 4. XeF_2
- 5. x = 12
- $6. \ I_2 Cl_6$
- 7. $[Cr_2O_7^{2-}] = [K_2Cr_2O_7] = 0.0159 \text{ M}, [K^+] = 0.0318 \text{ M}$
- 8. a. 0.50 M NH₄⁺; 0.25 M SO₄^{2–} b. 0.246 M Na⁺; 0.123 M CO₃^{2–} c. 0.056 M H⁺; 0.056 M NO₃⁻
- 9. 268 mL
- 10. 104 g/mol
- 11. Answers:
 - a. 4 $Cr(s) + 3 O_2(g) \rightarrow 2 Cr_2O_3(s)$
 - b. $Cu_2S(s) + O_2(g) \rightarrow 2 Cu(s) + SO_2(g)$
 - c. $C_6H_5CH_3(\ell) + 9 O_2(g) \rightarrow 4 H_2O(\ell) + 7 CO_2(g)$
- 12. Answers:
 - a. $Fe_2O_3(s) + 3 Mg(s) \rightarrow 3 MgO(s) + 2 Fe(s)$

iron(III) oxide, magnesium, magnesium oxide, iron

b. AlCl₃(s) + 3 NaOH(aq) \rightarrow Al(OH)₃(s) + 3 NaCl(aq)

aluminum chloride, sodium hydroxide, aluminum hydroxide, sodium chloride

c. 2 NaNO₃(s) + H₂SO₄(ℓ) \rightarrow Na₂SO₄(s) + 2 HNO₃(ℓ)

sodium nitrate, hydrogen sulfate (sulfuric acid), sodium sulfate, hydrogen nitrate (nitric acid)

d. NiCO₃(s) + 2 HNO₃(aq) \rightarrow Ni(NO₃)₂(aq) + CO₂(g) + H₂O(ℓ)

nickel(II) carbonate, hydrogen nitrate (nitric acid), nickel(II) nitrate, carbon dioxide, water 13. a. CuCl₂ b. AgNO₃ c. all three compounds

- 14. a. K⁺ and OH⁻ ions b. Li⁺ and NO₃⁻ ions c. K⁺ and SO₄²⁻ ions d. NH₄⁺ and SO₄²⁻ ions
- 15. a. soluble, Na⁺ and CO₃²⁻ ions b. insoluble c. soluble, Cu²⁺ and SO₄²⁻ ions d. soluble, Ba²⁺ and Br⁻ ions
- 16. Answers:
 - a. NiCl₂(aq) + (NH₄)₂S(aq) \rightarrow NiS(s) + 2 NH₄Cl(aq) Ni²⁺(aq) + S²⁻(aq) \rightarrow NiS(s)
 - b. $3 \text{ Mn}(\text{NO}_3)_2(\text{aq}) + 2 \text{ Na}_3\text{PO}_4(\text{aq}) \rightarrow \text{Mn}_3(\text{PO}_4)_2(\text{s}) + 6 \text{ Na}(\text{NO}_3(\text{aq}))$ $3 \text{ Mn}^{2+}(\text{aq}) + 2 \text{ PO}_4^{3-}(\text{aq}) \rightarrow \text{Mn}_3(\text{PO}_4)_2(\text{s})$

17. Answers:

- a. $(NH_4)_2CO_3(aq) + Cu(NO_3)_2 \rightarrow CuCO_3(s) + 2 NH_4NO_3(aq)$ $CO_3^{2-}(aq) + Cu^{2+}(aq) \rightarrow CuCO_3(s)$
- b. $Pb(OH)_2(s) + 2 HCl(aq) \rightarrow PbCl_2(s) + 2 H_2O(\ell)$ $Pb(OH)_2(s) + 2 H^+(aq) + 2 Cl^-(aq) \rightarrow PbCl_2(s) + 2 H_2O(\ell)$
- c. $BaCO_3(s) + 2 HCl(aq) \rightarrow BaCl_2(aq) + H_2O(\ell) + CO_2(g)$

$$BaCO_3(s) + 2 H^+(aq) \rightarrow Ba^{2+}(aq) + H_2O(\ell) + CO_2(g)$$

18. Answers:

 a. Br is +5 and O is -2
 d. Ca is +2 and H is -1

 b. C is +3 and O is -2
 e. H is +1, Si is +4, and O is -2

 c. F is -1
 f. H is +1, S is +6, and O is -2

- 19. Answers:
 - a. oxidation-reduction reaction
 - Oxidation # of Zn changes from 0 to +2, N changes from +5 to +4
 - b. acid-base reaction
 - c. oxidation-reduction reaction
 - Oxidation number of Ca changes from 0 to +2, H from +1 to 0
- 20. a. C₂H₄ is oxidized / reducing agent; O₂ is reduced / oxidizing agent b. Si is oxidized / reducing agent; Cl₂ is reduced / oxidizing agent