CH 221 Practice Problem Set #5

This is a **practice problem set** and not the actual graded problem set that you will turn in for credit. Answers to each problem can be found at the end of this assignment.

Covering: Chapter Five and Chapter Guide Five

Important Tables and/or Constants: "MO Diagram for B₂, C₂, and N₂" (*Handout*), "MO Diagram for O₂, F₂, and Ne₂" (*Handout*), "Geometry and Polarity Guide" (*Handout or here:* https://mhchem.org/geopo)

- 1. Draw the Lewis structure for chloroform, CHCl₃. What are its electron-pair and molecular geometries? What orbitals on C, H, and Cl overlap to form bonds involving these elements?
- Specify the electron-pair and molecular geometry for each of the following. Describe the hybrid orbital set used by the central atom in each molecule or ion.
 a. BBr₃ b. CO₂ c. CH₂Cl₂ d. CO₃²⁻
- 3. Draw the Lewis structure and then specify the electron- pair and molecular geometries for each of the following molecules or ions. Identify the hybridization of the central atom. a. $SiF_{6^{2-}}$ b. SeF_4 c. $ClF_{2^{1-}}$ d. XeF_4
- 4. The hydrogen molecular ion, H₂⁺, can be detected spectroscopically. Write the electron configuration of the ion in molecular orbital terms. What is the bond order of the ion? Is the hydrogen–hydrogen bond stronger or weaker in H₂⁺ than in H₂?
- 5. Calcium carbide, CaC₂, contains the acetylide ion, $C_{2^{2-}}$. Sketch the molecular orbital energy level diagram for the ion. How many net σ and π bonds does the ion have? What is the carbon–carbon bond order? How has the bond order changed on adding electrons to C_2 to obtain $C_{2^{2-}}$? Is the $C_{2^{2-}}$ ion paramagnetic?
- 6. The simple valence bond picture of O_2 does not agree with the molecular orbital view. Compare these two theories with regard to the peroxide ion, O_2^{2-} .

(a) Draw an electron dot structure for O_2^{2-} . What is the bond order of the ion?

(b) Write the molecular orbital electron configuration for O_2^{2-} . What is the bond order based on this approach?

(c) Do the two theories of bonding lead to the same magnetic character and bond order for $O_2^{2-?}$

- 7. Which of the homonuclear, diatomic molecules of the second-period elements (from Li₂ to Ne₂) are paramagnetic? Which have a bond order of 1? Which have a bond order of 2? Which diatomic molecule has the highest bond order?
- 8. Consider the three fluorides BF_{4-1} , SiF_{4} , and SF_{4} .
 - a. Identify a molecule that is isoelectronic with $BF_{4^{1-}}$.
 - b. Are SiF₄ and SF₄ isoelectronic?
 - c. What is the hybridization of the central atom in each of these species?
- 9. When is it desirable to use MO theory rather than valence bond theory?
- 10. Antimony pentafluoride reacts with HF according to the equation:

 $2 \text{ HF} + \text{SbF}_5 \rightarrow [\text{H}_2\text{F}]^+[\text{SbF}_6]^-$

a. What is the hybridization of the Sb atom in the reactant and product?

b. Draw a Lewis structure for H_2F . What is the geometry of H_2F +? What is the hybridization of F in H_2F +?

11. The CN molecule has been found in interstellar space. Using the appropriate molecular orbital energy level diagram, answer the following questions.

a. What is the highest energy occupied molecular orbital (HOMO) to which an electron (or electrons) is (are) assigned?

- b. What is the bond order of the molecule?
- c. How many net σ bonds are there? How many net π bonds?
- d. Is the molecule paramagnetic or diamagnetic?
- 12. Draw the Lewis structure for ClF₃. What are its electron- pair and molecular geometries? What is the hybridization of the chlorine atom? What orbitals on Cl and F overlap to form bonds between these elements?
- 13. Hydroxyproline is an unusual amino acid with the structure shown to the right.
 - a. What are the approximate values for the bond angles for 1, 2, 3, 4 and 5?
 - b. Describe the hybridization around the central atom for 1, 2, 3, 4 and 5.
- 14. Iodine and oxygen form a complex series of ions, among them IO₄-1 and IO₅-3. Draw the Lewis structures for these ions and specify their electron pair and molecular geometries. What is the hybridization of the I atom in these ions?

Hydroxyproline

15. Which of the following molecules or ions should be paramagnetic? What is the highest occupied molecular orbital (HOMO) in each one?

Note that if an O, F or Ne is present in the molecule, you should use the molecular orbital diagram for O_2 , F_2 and Ne₂ to construct the molecule.

- a. NO
- b. OF-1
- c. O₂²⁻
- d. $Ne_{2^{+1}}$
- e. CN

Answers to the Practice Problem Set:

- 1. The electron-pair and molecular geometries are tetrahedral. The C atom is sp^3 hybridized. Three of these hybrid orbitals each overlap with a chlorine 3p orbital to form three C—Cl sigma bonds. One hybrid orbital overlaps with a hydrogen 1s orbital to from a C—H sigma bond.
- 2. Answers:

(a) BBr ₃	trigonal planar trigonal planar		sp^2
(b) CO ₂	linear	linear	sp
(c) CH ₂ Cl	2 tetrahedral	tetrahedral	sp^3
(d) CO ₃ ^{2–} trigonal planar trigonal planar			sp^2

- 3. a) octahedral, octahedral, sp^3d^2 b) trigonal bipyramid, see-saw, sp^3d c) trigonal bipyramid, linear, sp^3d d) octahedral, square planar, sp^3d^2
- 4. H_{2^+} : $(\sigma_{1s})^1$ Bond order = 1/2(1 0) = 1/2, weaker H—H bond H_2 : $(\sigma_{1s})^2$ Bond order = 1/2(2 0) = 1, stronger H—H bond
- 5. $C_{2^{2-}}: (\sigma_{1s})^2(\sigma_{2s}^*)^2(\sigma_{2s}^*)^2(\sigma_{2p}^*)^2(\sigma_{2p}^*)^2 = C_{2^{2-}}$ ion has a bond order of 1/2(8-2) = 3 (one σ bond and two π bonds). The C₂ molecule has two fewer electrons and a bond order of 1/2(6-2) = 2. The C_{2²⁻} ion is diamagnetic.
- 6. (a) bond order = 1 (b) [core electrons] $(\sigma_{2s})^2(\sigma_{2s})^2(\sigma_{2p})^2(\pi_{2p})^4(\pi_{2p})^4$ bond order = 1/2(8-6)= 1 (c) The theories agree here.
- 7. B₂ and O₂ are paramagnetic, Li₂, B₂, and F₂ have a bond order of 1, C₂ and O₂ have a bond order of 2, and N₂ has the highest bond order, 3.
- 8. (a) CF_4 is isoelectronic with BF_4^- (32 valence electrons)
 - (b) SiF_4 (32 valence electrons) and SF_4 (34 valence electrons) are not isoelectronic

(c)
$$BF_4$$
: sp^3 SiF_4 : sp^3 SF_4 : sp^3d

- 9. Molecular orbital theory correctly predicts the electronic structures for odd-electron molecules and other molecules such as O_2 that do not follow the electron-pairing assumptions of the Lewis dot structure approach.
- 10. (a) $sp^{3}d$ in SbF₅, $sp^{3}d^{2}$ in SbF₆-

(b)
$$\begin{bmatrix} H - F - H \end{bmatrix}^+$$
 The geometry of H₂F⁺ is bent, and the F atom is *sp*³ hybridized.

- 11. CN [core electrons] $(\sigma_{2s})^2(\sigma_{2s})^2(\pi_{2p})^4(\sigma_{2p})^1$
 - (a) The HOMO is σ_{2p}
 - (b) Bond order = 1/2(7-2) = 2 1/2
 - (c) One-half net σ bond and two net π bonds
 - (d) paramagnetic

: F:

12. $F \xrightarrow{Cl} F$: The electron-pair geometry is trigonal bipyramidal, and the molecular

geometry is T-shaped. The Cl atom is sp^3d hybridized. Three of these hybrid orbitals each overlap a fluorine 2p orbital to form three Cl—F sigma bonds.

- 13. a all angles 109° except angle $2 = 120^\circ$. b all sp^3 except C(2) = sp^2
- 14. $IO_{4^{-1}}$ = tetrahedral (EPG & MG), sp^3 IO₅-3 = trigonal bipyramid (EPG & MG), sp^3d

(a) NO	paramagnetic	$\pi^*{}_{2p}$	11
(b) OF-	diamagnetic	$\pi^*{}_{2p}$	14
(c) O_2^{2-}	diamagnetic	$\pi^* 2p$	14
(d) $Ne_{2^{+}}$	paramagnetic	σ^*_{2p}	15
(e) CN	paramagnetic	σ_{2p}	9

15.