CH 221 Practice Problem Set #5

This is a practice problem set and not the actual graded problem set that you will turn in for credit. Answers to each problem can be found at the end of this assignment.

Covering: Chapter Three (3.3-3.4), Chapter Five and Chapter Guide Five

Important Tables/Constants: $C(H_2O) = 4.184 \text{ J g}^{-1} \text{ K}^{-1}$, $\log_{10} x = \ln x / \ln 10$ and the **Thermodynamic Values** found in problem set #5 and here: http://mhchem.org/thermo

- 1. Determine the oxidation number of each element in the following ions or compounds. a. BrO_{3^-} b. $C_2O_{4^{2-}}$ c. F⁻ d. CaH_2 e. H_4SiO_4 f. HSO_{4^-}
- 2. Which two of the following reactions are oxidation-reduction reactions? Explain your answer in each case. Classify the remaining reaction.
 a. Zn(s) + 2 NO₃-1(aq) + 4 H⁺(aq) → Zn²⁺(aq) + 2 NO₂(g) + 2 H₂O(l)
 b. Zn(OH)₂(s) + H₂SO₄(aq) → ZnSO₄(aq) + 2 H₂O(l)
 c. Ca(s) + 2 H₂O(l) → Ca(OH)₂(s) + H₂(g)
- 3. In the following reactions, decide which reactant is oxidized and which is reduced. Designate the oxidizing agent and the reducing agent.
 a. C₂H₄(g) + 3 O₂(g) → 2 CO₂(g) + 2 H₂O(g)
 b. Si(s) + 2 Cl₂(g) → SiCl₄(l)
- 4. Some potassium dichromate ($K_2Cr_2O_7$), 2.335 g, is dissolved in enough water to make exactly 500. mL of solution. What is the molar concentration of the potassium dichromate? What are the molar concentrations of the K⁺ and Cr₂O₇²⁻ ions?
- 5. For each solution, identify the ions that exist in aqueous solution, and specify the concentration of each ion.
 - a. 0.25 M (NH₄)₂SO₄
 - b. 0.123 M Na₂CO₃
 - c. 0.056 M HNO3
- 6. A table wine has a pH of 3.40. What is the hydrogen ion concentration of the wine? Is it acidic or basic?
- 7. What volume of 0.109 M HNO₃, in milliliters, is required to react completely with 2.50 g of Ba(OH)₂?
 2 HNO₃(aq) + Ba(OH)₂(s) → 2 H₂O(l) + Ba(NO₃)₂(aq)
- 8. You have 0.954 g of an unknown acid, H₂A, which reacts with NaOH according to the balanced equation: H₂A(aq) + 2 NaOH(aq) → Na₂A(aq) + 2 H₂O(l) If 36.04 mL of 0.509 M NaOH is required to titrate the acid to the equivalence point, what is the molar mass of the acid?
- 9. `The specific heat capacity of copper is 0.385 J/g·K. What quantity of heat is required to heat 168 g of copper from -12.2 °C to +25.6 °C?
- 10. The initial temperature of a 344 g sample of iron is 18.2 °C. If the sample absorbs 2.25 kJ of heat, what is its final temperature? $C_{Fe} = 0.449 \text{ J/g} \cdot \text{K}$
- 11. One beaker contains 156 g of water at 22 °C and a second beaker contains 85.2 g of water at 95 °C. The water in the two beakers is mixed. What is the final water temperature?
- 12. A 237 g piece of molybdenum, initially at 100.0 °C, is dropped into 244 g of water at 10.0 °C. When the system comes to thermal equilibrium, the temperature is 15.3 °C. What is the specific heat capacity of molybdenum?

- 13. What quantity of heat is required to vaporize 125 g of benzene, C₆H₆, at its boiling point, 80.1 °C? The heat of vaporization of benzene is 30.8 kJ/mol.
- 14. Isooctane (2,2,4-trimethylpentane), one of the many hydrocarbons that make up gasoline, burns in air to give water and carbon dioxide.

 $2 C_8 H_{18}(l) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(l) \Delta H^{\circ}_{rxn} = -10,922 \text{ kJ}$

If you burn 1.00 L of isooctane (density = 0.69 g/mL), what quantity of heat is evolved?

- 15. The enthalpy changes for the following reactions can be measured: CH₄(g) + 2 O₂(g) → CO₂(g) + 2 H₂O(g) ΔH° = -802.4 kJ CH₃OH(g) + ³/₂ O₂(g) → CO₂(g) + 2 H₂O(g) ΔH° = -676 kJ Use these values and Hess's law to determine the enthalpy change for the reaction: CH₄(g) + ¹/₂ O₂(g) → CH₃OH(g) ΔH° = ?
 16. Enthalpy changes for the following reactions can be determined experimentally:
- 16. Enthalpy changes for the following reactions can be determined experimentally $N_2(\alpha) + 3 H_2(\alpha) \rightarrow 2 NH_2(\alpha)$

$$\begin{array}{ll} & \Delta H^{\circ} = -91.8 \text{ KJ} \\ & 4 \text{ NH}_{3}(g) + 5 \text{ O}_{2}(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_{2}\text{O}(g) \\ & \Delta H^{\circ} = -906.2 \text{ kJ} \\ & H_{2}(g) + \frac{1}{2} \text{ O}_{2}(g) \rightarrow \text{ H}_{2}\text{O}(g) \\ \end{array}$$

Use these values to determine the enthalpy change for the formation of NO(g) from the elements (an enthalpy change that cannot be measured directly because the reaction is reactant-favored) of

 $1/2 N_2(g) + 1/2 O_2(g) \rightarrow NO(g)$ $\Delta H^\circ = ?$

- 17. Write a balanced chemical equation for the formation of $\text{Li}_2\text{CO}_3(s)$ from the elements in their standard states. Find the value of ΔH_f° for $\text{Li}_2\text{CO}_3(s)$ in the appendix of your textbook.
- 18. Use standard heats of formation in the appendix of your textbook to calculate standard enthalpy changes for the following:
 - a. 1.0 g of white phosphorus burns, forming $P_4O_{10}(s)$
 - b. 0.20 mol of NO(g) decomposes to $N_2(g)$ and $O_2(g)$
 - c. 2.40 g of NaCl is formed from Na(s) and excess Cl₂(g)
 - d. 250 g of iron is oxidized with oxygen to $Fe_2O_3(s)$
- 19. The Romans used calcium oxide, CaO, to produce a strong mortar to build stone structures. The CaO was mixed with water to give Ca(OH)₂, which reacted slowly with CO₂ in the air to give CaCO₃.
 Ca(OH)₂(s) + CO₂(g) → CaCO₃(s) + H₂O(g)

a. Calculate the standard enthalpy change for this reaction.

b. What quantity of heat is evolved or absorbed if 1.00 kg of $Ca(OH)_2$ reacts with a stoichiometric amount of CO_2 ?

Answers to the Practice Problem Set:

1. Answers:

a. Br is +5 and O is -2 d. Ca is +2 and H is -1

- b. C is +3 and O is -2 e. H is +1, Si is +4, and O is -2
- c. F is -1 f. H is +1, S is +6, and O is -2
- 2. Answers:
 - a. oxidation-reduction reaction
 - Oxidation # of Zn changes from 0 to +2, N changes from +5 to +4
 - b. acid-base reaction
 - c. oxidation-reduction reaction
 - Oxidation number of Ca changes from 0 to +2, H from +1 to 0
- 3. a. C₂H₄ is oxidized / reducing agent; O₂ is reduced / oxidizing agent b. Si is oxidized / reducing agent; Cl₂ is reduced / oxidizing agent
- 4. $[Cr_2O_7^{2-}] = [K_2Cr_2O_7] = 0.0159 \text{ M}, [K^+] = 0.0318 \text{ M}$
- 5. a. 0.50 M NH₄⁺; 0.25 M SO₄^{2–} b. 0.246 M Na⁺; 0.123 M CO₃^{2–} c. 0.056 M H⁺; 0.056 M NO₃⁻
- 6. $[H^+] = 4.0 \times 10^{-4} \text{ M}$, acidic
- 7. 268 mL
- 8. 104 g/mol
- 9. 2440 J
- 10.32.8 °C
- 11.48 °C
- 12.0.27 J/g·K
- 13.49.3 kJ
- 14. 3.3 x 10^4 kJ heat evolved
- 15. -126 kJ
- 16. 90.3 kJ
- 17. 2 Li(s) + C(s) + $\frac{3}{2}$ O₂(g) \rightarrow Li₂CO₃(s)
- 18. a. -24 kJ b. -18 kJ c. -16.9 kJ d. -1800 kJ
- 19. a. -83.1 kJ b. -1120 kJ evolved

 $\Delta H_f^{o} = -1216.04 \text{ kJ}$ (OpenStax)