Balancing Equations - Practice Problems

Answers follow the problems.

1) Complete and/or balance the following reactions.
a) $\mathrm{FeS}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{SO}_{3}$
b) $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{4}+\mathrm{O}_{2}$
c) $\mathrm{P}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}$
d) $\mathrm{Cl}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CHCl}_{3}+\mathrm{HCl}$
e) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
f) $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
g) $\mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3}$
h) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{3} \mathrm{AsO}_{4} \rightarrow \mathrm{PbHAsO}_{4}+\mathrm{HNO}_{3}$
i) $\mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
j) $\mathrm{Li}+\mathrm{N}_{2} \rightarrow$
k) $\mathrm{C}+\mathrm{Cl}_{2} \rightarrow$
2) $\mathrm{CaCl}_{2}+\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \rightarrow$
m) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+\mathrm{O}_{2} \rightarrow$
n) $\mathrm{CaCl}_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow$
3) Write the formulas for the following compounds
a) Titanium(IV) Chloride
b) Tetraphosphorous decaoxide
c) Sodium Carbonate
d) Calcium Fluoride
e) Iron (III) Nitrate
f) Iodine Pentafluoride
g) Aluminum Hydroxide
4) Provide names for the following compounds
a) $\quad \mathrm{ZrO}_{2}$
b) $\quad\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
c) $\quad \mathrm{Na}_{2} \mathrm{~S}$
d) SeF_{4}
e) $\quad \mathrm{CCl}_{4}$
f) CaCO_{3}
g) $\mathrm{Co}_{2} \mathrm{O}_{3}$
5) Write the product formed and balance each reaction
a) $\quad \mathrm{P}+\mathrm{O}_{2}---->$
b) $\quad \mathrm{Mg}+\mathrm{N}_{2}---->$
c) $\quad \mathrm{Sc}+\mathrm{S}_{8}---->$
d) $\mathrm{Li}+\mathrm{N}_{2}---->$
e) $\mathrm{N}_{2}+\mathrm{H}_{2}---->$
6) Write the net ionic reaction that occurs when the following compounds are mixed.

Barium Nitrate and Ammonium Carbonate
Aluminum Nitrate and Sodium Hydroxide
Lead(II) Acetate and Potassium Iodide
Silver(I) Nitrate and Sodium Dichromate
Mercury(I) Perchlorate and Sodium Chloride

Ammonium Phosphate and Calcium Chloride

Phosphoric acid and Ammonium Hydroxide
6) Complete and balance the following reactions when the each compound is combusted with oxygen.
$\mathrm{Fe}_{2} \mathrm{~S}_{3}$
NH_{3}
NaCN
$\mathrm{CH}_{3} \mathrm{SH}$
$\mathrm{AgCH}_{3} \mathrm{CO}_{2}$
7) When a 10.0 gram sample of an unknown organic acid is subjected to combustion analysis, 21.2 grams of CO_{2} and 3.25 grams of $\mathrm{H}_{2} \mathrm{O}$ are produced. What is the empirical formula of the oxygen-containing compound?
8) An 11.0 gram sample of a solid unknown was burned in oxygen producing 5.00 grams of water and 16.29 grams of carbon dioxide. What is the empirical formula of the oxygencontaining compound?
9) When a 15.0 gram sample of an acid is subjected to combustion analysis, 26.76 grams of carbon dioxide and 10.94 grams of water are formed. What is the empirical formula of the oxygen-containing compound?
10) A 15.25 gram sample of an organic acid was combusted in oxygen and produced 34.71 grams of carbon dioxide and 14.20 grams of water. What is the empirical formula of the oxygencontaining compound?

Balancing Equations - Practice Problems - Answers

1) Complete and/or balance the following reactions,
a) $6 \mathrm{FeS}+13 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{3} \mathrm{O}_{4}+6 \mathrm{SO}_{3}$
b) $\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{4}+2 \mathrm{O}_{2}$
c) $\mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}$
d) $3 \mathrm{Cl}_{2}+\mathrm{CH}_{4} \rightarrow \mathrm{CHCl}_{3}+3 \mathrm{HCl}$
e) $3 \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}$
f) $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
g) $\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3}$
h) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{3} \mathrm{AsO}_{4} \rightarrow \mathrm{PbHAsO}_{4}+2 \mathrm{HNO}_{3}$
i) $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$
j) $3 \mathrm{Li}+2 \mathrm{~N}_{2} \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}$
k) $\mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}$
2) $\mathrm{CaCl}_{2}+\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NH}_{4} \mathrm{Cl}$
m) $2 \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+9 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
n) $3 \mathrm{CaCl}_{2}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{HCl}$
3) Write the formulas for the following compounds
a) Titanium(IV) Chloride
b) Tetraphosphorous decaoxide
c) Sodium Carbonate
d) Calcium Fluoride
e) Iron(III) Nitrate
f) Iodine Pentafluoride
g) Aluminum Hydroxide
TiCl_{4}
$\mathrm{P}_{4} \mathrm{O}_{10}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}$
CaF_{2} $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
IF_{5}
$\mathrm{Al}(\mathrm{OH})_{3}$
4) Provide names for the following compounds.
a) $\quad \mathrm{ZrO}_{2} \quad$ Zirconium(IV) Oxide
b) $\quad\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \quad$ Ammonium Phosphate
c) $\mathrm{Na}_{2} \mathrm{~S} \quad$ Sodium Sulfide
d) $\mathrm{SeF}_{4} \quad$ Selenium Tetrafluoride
e) $\quad \mathrm{CCl}_{4} \quad$ Carbon Tetrachloride
f) $\mathrm{CaCO}_{3} \quad$ Calcium Carbonate
g) $\quad \mathrm{Co}_{2} \mathrm{O}_{3} \quad$ Cobalt(III) Oxide
5) Write the product formed and balance each reaction
a) $4 \mathrm{P}+5 \mathrm{O}_{2}--->2 \mathrm{P}_{2} \mathrm{O}_{5}$
b) $\quad 3 \mathrm{Mg}+\mathrm{N}_{2}---->\mathrm{Mg}_{3} \mathrm{~N}_{2}$
c) $3 \mathrm{Sc}+3 / 8 \mathrm{~S}_{8}--->\mathrm{Sc}_{2} \mathrm{~S}_{3}$
d) $\quad 6 \mathrm{Li}+\quad \mathrm{N}_{2}--->2 \mathrm{Li}_{3} \mathrm{~N}$
e) $\quad \mathrm{N}_{2}+3 \mathrm{H}_{2}--->2 \mathrm{NH}_{3}$
6) Write the net ionic reaction that occurs when the following compounds are mixed.

Barium Nitrate and Ammonium Carbonate	$\mathrm{Ba}^{2+}+\mathrm{CO}_{3}^{2-}---->\mathrm{BaCO}_{3}$
Aluminum Nitrate and Sodium Hydroxide	$\mathrm{Al}^{3+}+3 \mathrm{OH}^{-}--->\mathrm{Al}(\mathrm{OH})_{3}$
Lead(II) Acetate and Potassium Iodide	$\mathrm{Pb}^{2+}+2 \mathrm{I}^{-}--->\mathrm{PbI}_{2}$
Silver(I) Nitrate and Sodium Dichromate	$2 \mathrm{Ag}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}--->\mathrm{Ag}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Mercury(I) Perchlorate and Sodium Chloride	$\mathrm{Hg}_{2}{ }^{2+}+2 \mathrm{Cl}--->\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
Ammonium Phosphate and Calcium Chloride	$3 \mathrm{Ca}^{2+}+2 \mathrm{PO}_{4}^{3-}--->\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
Phosphoric acid and Ammonium Hydroxide	$\mathrm{H}^{+}+\mathrm{OH}^{-}--->\mathrm{H}_{2} \mathrm{O}$

6) Complete and balance the following reactions when the each compound is combusted with oxygen.

$$
\begin{aligned}
& \mathrm{Fe}_{2} \mathrm{~S}_{3}+6 \mathrm{O}_{2}--->\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{SO}_{3} \\
& 2 \mathrm{NH}_{3}+4 \mathrm{O}_{2}--->\mathrm{N}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{NaCN}_{2}+5 \mathrm{O}_{2}--->\mathrm{Na}_{2} \mathrm{O}+2 \mathrm{CO}_{2}+\mathrm{N}_{2} \mathrm{O}_{5} \\
& \mathrm{CH}_{3} \mathrm{SH}+7 / 2 \mathrm{O}_{2}--->\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{3} \\
& 2 \mathrm{AgCH}_{3} \mathrm{CO}_{2}+4 \mathrm{O}_{2}--->\mathrm{Ag}_{2} \mathrm{O}+4 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

7) When a 10.0 gram sample of an unknown organic acid is subjected to combustionanalysis, 21.2 grams of CO_{2} and 3.25 grams of $\mathrm{H}_{2} \mathrm{O}$ are produced. What is the empirical formula of the oxygen-containing compound?

The formula is $\mathrm{C}_{2} \mathrm{H}_{1.5} \mathrm{O}$ but you cannot have a fraction so, $2\left(\mathrm{C}_{2} \mathrm{H}_{1.5} \mathrm{O}\right)=\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2}$
8) An 11.0 gram sample of a solid unknown was burned in oxygen producing 5.00 grams of water and 16.29 grams of carbon dioxide. What is the empirical formula of the oxygencontaining compound?

The formula is $\mathrm{CH}_{1.5} \mathrm{O}$ but you cannot have a fraction so, $2\left(\mathrm{CH}_{1.5} \mathrm{O}\right)=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
9) When a 15.0 gram sample of an acid is subjected to combustion analysis, 26.76 grams of carbon dioxide and 10.94 grams of water are formed. What is the empirical formula of the oxygen-containing compound?

$\frac{26.76 \mathrm{~g} \mathrm{CO}_{2}}{44 \mathrm{~g} / \mathrm{mol}}=0.6082 \mathrm{~mol} \mathrm{CO}_{2}=\Rightarrow 0.6082 \mathrm{~mol} \mathrm{C}$		$0.6082 \mathrm{~mol} \mathrm{C} \mathrm{x} 12 \mathrm{~g} / \mathrm{mol}=7.2984 \mathrm{~g} \mathrm{C}$	
			$60 \mathrm{~mol} \mathrm{H} \mathrm{x} 1 \mathrm{~g} / \mathrm{mol}=1.2160 \mathrm{~g} \mathrm{H}$
			8.5144 g Total
$10.94 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=0.6080 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}==>1.2160 \mathrm{~mol} \mathrm{H}$			$15 \mathrm{~g}-8.5144 \mathrm{~g}=6.4856 \mathrm{~g}$ of oxygen
$18 \mathrm{~g} / \mathrm{mol}$			
$\underline{6.4856 \mathrm{~g} \mathrm{O}}=0.4050 \mathrm{~mol} \mathrm{O}$			
$16 \mathrm{~g} / \mathrm{mol}$			
$\underline{0.6082 \mathrm{~mol} \mathrm{C}=1.5 \mathrm{C}}$	1.2160 mol H	3 H	
0.4050 mol O 1 O	0.4050 mol O	1 C	

The formula is $\mathrm{C}_{1.5} \mathrm{H}_{3} \mathrm{O}$ but you cannot have a fraction so, $2\left(\mathrm{C}_{1.5} \mathrm{H}_{3} \mathrm{O}\right)=\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$
10) A 15.25 gram sample of an organic acid was combusted in oxygen and produced 34.71 grams of carbon dioxide and 14.20 grams of water. What is the empirical formula of the oxygencontaining compound?

$\frac{34.71 \mathrm{~g} \mathrm{CO}_{2}}{44 \mathrm{~g} / \mathrm{mol}}=0.7889 \mathrm{~mol} \mathrm{CO}_{2}=>0.7889 \mathrm{~mol} \mathrm{C}$		0.78
		1.57
$\underline{14.20 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.7889 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}==>1.5778 \mathrm{~mol} \mathrm{H}$		
$18 \mathrm{~g} / \mathrm{mol}$		
$\underline{4.2054 \mathrm{~g} \mathrm{O}}=0.2628 \mathrm{~mol} \mathrm{O}$		
$16 \mathrm{~g} / \mathrm{mol}$		
$\underline{0.7889 \mathrm{~mol} \mathrm{C}=3 \mathrm{C}}$	1.5778 mol H	
0.2628 mol O 1 O	0.2628 mol O	1 C

The formula is $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$.

