1. What mass of oxygen, O₂, is required to react completely with 37.1 grams of pentane, C₅H₁₂? (4 points) $C_5H_{12}(g) + 8 O_2(g) \rightarrow 5 CO_2(g) + 6 H_2O(g)$

$132 \; g \; O_2$

2. The reaction of 20.0 g H₂ with 30.0 g O₂ yields 12.4 g H₂O. What is the limiting reactant? What is the theoretical yield in grams? What is the percent yield of this reaction? (6 points) $2 H_{2(g)} \rightarrow 2 H_2O_{(g)}$

LR = O₂ TY = 33.8 g % yield = 36.7%

 A mass of 2.052 g of a metal carbonate, MCO₃, is heated to give the metal oxide and 0.4576 g CO₂. MCO₃(s) → MO(s) + CO₂(g) What is the identity of the metal? (4 points)

M = Barium

- 4. Fill in the missing stoichiometric coefficients. **Blank entries** will be **considered** to be **zero**. All stoichiometric coefficients must be whole numbers. (6 points)
 - 1, 2, 1, 2 2, 15, 12, 6 1, 3, 2