\qquad
\qquad

1. What mass of oxygen, O_{2}, is required to react completely with 37.1 grams of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$? (4 points)

$$
\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 5 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$132 \mathrm{~g} \mathrm{O}_{2}$
2. The reaction of $20.0 \mathrm{~g} \mathrm{H}_{2}$ with $30.0 \mathrm{~g} \mathrm{O}_{2}$ yields $12.4 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. What is the limiting reactant? What is the theoretical yield in grams? What is the percent yield of this reaction? (6 points) $\mathbf{2} \mathbf{H}_{2(\mathrm{~g})}+\mathbf{O}_{\mathbf{2}(\mathrm{g})} \rightarrow \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}_{(\mathrm{g})}$
$\mathbf{L R}=\mathrm{O}_{2}$
$\mathrm{TY}=33.8 \mathrm{~g}$
\% yield = 36.7\%
3. A mass of 2.052 g of a metal carbonate, MCO_{3}, is heated to give the metal oxide and $0.4576 \mathrm{~g} \mathrm{CO}_{2}$.

$$
\mathrm{MCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

What is the identity of the metal? (4 points)
$\mathbf{M}=$ Barium
4. Fill in the missing stoichiometric coefficients. Blank entries will be considered to be zero. All stoichiometric coefficients must be whole numbers. (6 points)

1, 2, 1, 2
2,15, 12, 6
1, 3, 2

