\qquad
\qquad
Be sure to show all work, use the correct number of significant figures, circle final answers and use correct units in all problems.

1. What mass of oxygen, O_{2}, is required to react completely with 37.1 grams of pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$? (4 points)

$\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{~g})+8 \mathrm{O}_{\mathbf{2}}(\mathrm{g}) \rightarrow \mathbf{5} \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

2. The reaction of $20.0 \mathrm{~g} \mathrm{H}_{2}$ with $30.0 \mathrm{~g} \mathrm{O}_{2}$ yields $12.4 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. What is the limiting reactant? What is the theoretical yield in grams? What is the percent yield of this reaction? (6 points) $\mathbf{2} \mathbf{H}_{\mathbf{2}(\mathrm{g})}+\mathbf{O}_{\mathbf{2 (g)}} \rightarrow \mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}_{(\mathrm{g})}$
3. A mass of 2.052 g of a metal carbonate, MCO_{3}, is heated to give the metal oxide and $0.4576 \mathrm{~g} \mathrm{CO}_{2}$. $\mathrm{MCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{MO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
What is the identity of the metal? (4 points)
4. Fill in the missing stoichiometric coefficients. Blank entries will be considered to be zero. All stoichiometric coefficients must be whole numbers. (6 points)
\qquad $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+$ \qquad $\operatorname{LiCl}(\mathrm{aq}) \rightarrow$ \qquad $\mathrm{PbCl}_{2}(\mathrm{~s})+$ \qquad $\mathrm{LiNO}_{3}(\mathrm{aq})$
\qquad $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+$ \qquad $\mathrm{O}_{2}(\mathrm{~g})$ \qquad $\mathrm{CO}_{2}(\mathrm{~g})+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
\qquad $\mathrm{N}_{2}(\mathrm{~g})+$ \qquad $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow$ \qquad $\mathrm{NH}_{3}(\mathrm{~g})$
