CH 221 Limiting Reactant Example

Hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}\right)$ burns in air $\left(\mathrm{O}_{2}\right)$ to give CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

- Write a balanced equation for this reaction.
- If 215 g of $\mathrm{C}_{6} \mathrm{H}_{14}$ is mixed with 215 g of O_{2}, what masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are produced in the reaction?
- What mass of excess reactant remains at the end of the reaction?
- If 151.3 g of CO_{2} are collected, what is the percent yield of CO_{2} ?

$$
\begin{aligned}
& 2 \mathrm{C}_{6} \mathrm{H}_{14}(\ell)+19 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+14 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 215 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{14} *(\mathrm{~mol} / 86.18 \mathrm{~g}) *\left(12 \mathrm{~mol} \mathrm{CO}_{2} / 2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{14}\right) * 44.01 \mathrm{~g} / \mathrm{mol}=658 \mathrm{~g} \mathrm{CO}_{2} \\
& 215 \mathrm{~g} \mathrm{O}_{2} *(\mathrm{~mol} / 32.00 \mathrm{~g}) *\left(12 \mathrm{~mol} \mathrm{CO}_{2} / 19 \mathrm{~mol} \mathrm{O}_{2}\right) * 44.01 \mathrm{~g} / \mathrm{mol}=187 \mathrm{~g} \mathrm{CO}_{2} \text { (Theo. yield) } \\
& \text { Excess Reactant }=C_{6} H_{14} \text {, Limiting Reactant }=\boldsymbol{O}_{2} \\
& 215 \mathrm{~g} \mathrm{O}_{2} *(\mathrm{~mol} / 32.00 \mathrm{~g}) \cdot \frac{12 \mathrm{~mol} \mathrm{CO}_{2}}{19 \mathrm{~mol} \mathrm{O}_{2}} \cdot \frac{44.01 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=\mathbf{1 8 7} \mathbf{g ~ C O}_{2} \\
& 215 \mathrm{~g} \mathrm{O}_{2} *(\mathrm{~mol} / 32.00 \mathrm{~g}) \cdot \frac{14 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{19 \mathrm{~mol} \mathrm{O}_{2}} \cdot \frac{18.02 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=\mathbf{8 9 . 2} \mathbf{g ~ H} \mathbf{~ H} \mathbf{O} \\
& 215 \mathrm{~g} \mathrm{O}_{2} *(\mathrm{~mol} / 32.00 \mathrm{~g}) \cdot \frac{2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{14}}{19 \mathrm{~mol} \mathrm{O}_{2}} \cdot \frac{86.18 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{14}}=\mathbf{6 0 . 9} \mathbf{g ~ \mathrm { C } _ { 6 } \mathbf { H } _ { 1 4 } \text { used }} \\
& 215 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{14} \text { available }-60.9 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{14} \text { used }=\mathbf{1 5 4} \mathbf{g ~ C}_{\mathbf{6}} \mathbf{H}_{\mathbf{1 4}} \text { remains } \\
& \text { \%yield }=(151.3 / 187) * 100 \%=\mathbf{8 0 . 9} \% \mathbf{C O}_{\mathbf{2}}
\end{aligned}
$$

Try it yourself:

Calcium oxide and ammonium chloride can be combined to give ammonia $\left(\mathrm{NH}_{3}\right)$, water and calcium chloride.

- Write a balanced equation for this reaction.
- If 112 g of calcium oxide is mixed with 224 g of ammonium chloride, what mass of NH_{3} should be produced in the reaction?
- What mass of excess reactant remains at the end of the reaction?
- If only 16.3 g of NH_{3} are collected, what is the percent yield of NH_{3} ?

Answers appear on the next page.

CH 221 Limiting Reactant Example - Answers

Calcium oxide and ammonium chloride can be combined to give ammonia $\left(\mathrm{NH}_{3}\right)$, water and calcium chloride.

- Write a balanced equation for this reaction.
$\mathrm{CaO}(\mathrm{s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CaCl}_{2}(\mathrm{~s})$
- If 112 g of calcium oxide is mixed with 224 g of ammonium chloride, what mass of NH_{3} should be produced in the reaction?

Theoretical yield of $\mathbf{N H}_{3}=\mathbf{6 8 . 0} \mathbf{g}$

- What mass of excess reactant remains at the end of the reaction?
10.g of excess reactant remains at the end of the reaction.
- If only 16.3 g of NH_{3} are collected, what is the percent yield of NH_{3} ?

Percent yield $=\mathbf{2 4 . 0 \%}$

