CH 221 Limiting Reactant Example

Hexane (C_6H_{14}) burns in air (O_2) to give CO_2 and H_2O .

- Write a balanced equation for this reaction.
- If 215 g of C_6H_{14} is mixed with 215 g of O_2 , what masses of CO_2 and H_2O are produced in the reaction?
- What mass of excess reactant remains at the end of the reaction?
- If 151.3 g of CO_2 are collected, what is the percent yield of CO_2 ?

 $2 \text{ C}_6\text{H}_{14}(\ell) + 19 \text{ O}_2(g) \rightarrow 12 \text{ CO}_2(g) + 14 \text{ H}_2\text{O}(g)$

215 g C_6H_{14} * (mol/86.18 g) * (12 mol CO_2 / 2 mol C_6H_{14}) * 44.01 g/mol = 658 g CO_2

215 g O_2 * (mol/32.00 g) * (12 mol CO_2 / 19 mol O_2) * 44.01 g/mol = 187 g CO_2 (Theo. yield)

Excess Reactant = C_6H_{14} , Limiting Reactant = O_2 215 g $O_2 * (mol/32.00 \text{ g}) \cdot \frac{12 \text{ mol } \text{CO}_2}{19 \text{ mol } O_2} \cdot \frac{44.01 \text{ g}}{1 \text{ mol } \text{CO}_2} = 187 \text{ g } \text{CO}_2$ 215 g $O_2 * (mol/32.00 \text{ g}) \cdot \frac{14 \text{ mol } \text{H}_2\text{O}}{19 \text{ mol } O_2} \cdot \frac{18.02 \text{ g}}{1 \text{ mol } \text{H}_2\text{O}} = 89.2 \text{ g } \text{H}_2\text{O}$ 215 g $O_2 * (mol/32.00 \text{ g}) \cdot \frac{2 \text{ mol } C_6\text{H}_{14}}{19 \text{ mol } O_2} \cdot \frac{86.18 \text{ g}}{1 \text{ mol } C_6\text{H}_{14}} = 60.9 \text{ g } C_6\text{H}_{14} \text{ used}$ 215 g $C_6\text{H}_{14}$ available - 60.9 g $C_6\text{H}_{14}$ used = 154 g $C_6\text{H}_{14}$ remains

%yield = (151.3 / 187) * 100% = 80.9% CO₂

Try it yourself:

Calcium oxide and ammonium chloride can be combined to give ammonia (NH₃), water and calcium chloride.

- Write a balanced equation for this reaction.
- If 112 g of calcium oxide is mixed with 224 g of ammonium chloride, what mass of NH₃ should be produced in the reaction?
- What mass of excess reactant remains at the end of the reaction?
- If only 16.3 g of NH_3 are collected, what is the percent yield of NH_3 ?

Answers appear on the next page.

CH 221 Limiting Reactant Example - Answers

Calcium oxide and ammonium chloride can be combined to give ammonia (NH₃), water and calcium chloride.

• Write a balanced equation for this reaction.

 $CaO(s) + 2 NH_4Cl(aq) \rightarrow 2 NH_3(g) + H_2O(g) + CaCl_2(s)$

• If 112 g of calcium oxide is mixed with 224 g of ammonium chloride, what mass of NH₃ should be produced in the reaction?

Theoretical yield of $NH_3 = 68.0$ g

• What mass of excess reactant remains at the end of the reaction?

10. g of excess reactant remains at the end of the reaction.

• If only 16.3 g of NH_3 are collected, what is the percent yield of NH_3 ?

Percent yield = 24.0%