Chemistry 151: Basic Chemistry
Chapter 6: Understanding Electrons

Electrons in Atoms

From previous sections, we know that protons and neutrons are in the nucleus... but what about the electrons?
Most of chemical reactions involve transferring electrons from reactant(s) to product(s), so knowledge of their location is critical.
Quantum physics delivers us answers... but they might make you think twice about the nature of our reality!

MAR

The Plum Pudding Model of the Atom

JJ Thomson (discoverer of the electron) proposed the "plum pudding" model for the atom (and electrons) in 1904.

Large volume, negative "spheres" in a positive "cloud" of low density

Rutherford's Gold Foil Experiment proposed the correct (current) model for the nucleus
MAR

The Bohr Model of the Atom
Niels Bohr proposed electrons exist in "orbits" - shells around an atom
Electrons want to have the lowest energy possible, thus will occupy orbits closest to the nucleus (the ground state) - unless energy is added to the atom.

Ground state (lowest energy electronic configuration) for the Hydrogen atom.

Limitations of the Bohr Model

Electronic Structure of Atoms

Quantum mechanical model of atomic structure gives info on electrons
Electrons restricted to moving within a certain region of space in atom - not free to "move about".
Position depends on the amount of energy the electron has.

Electronic Structure of Atoms

Energies of electrons are quantized, or restricted to having only certain values.
This means that electrons in an atom are grouped around the nucleus into shells.
Within the shells, electrons are further grouped into subshells of four different types, identified as s, p, d, and f, in order of increasing energy

MAR
The floors represent different subdivisions of energy within The floors represent different subdivisions of energy within

The number of subshells is equal to the shell number (ex: shell number 3 has 3 subshells)
Within each subshell, electrons are further grouped into orbitals, regions of space within an atom where the electrons are likely to be found. Each orbital holds two electrons.
There are different numbers of orbitals within the various subshells:

MAR

The overall electron distribution within an atom:

Shell number:	1	2		3					
Subshell designation:	s	s, p	s,	p,	d	s,	p,	d,	f
Number of orbitals:	1	13	1			1	3	5	7
Number of electrons:	2	26	2	6	10	2	6	10	
Total electron capacity:	2	8		18					

MAR
Subshell designation: $s \overbrace{s, p}^{2} \overbrace{s, p, d}^{3} \overbrace{s, p, d, f}^{4}$

From quantum mechanics we find:

- The first shell has only a s subshell
- The second shell has a s and p subshell
- The third shell has a s, p and d subshell.
- The fourth shell has a s, p, d, and f subshell.

MAR

Shapes of Orbitals

Orbitals have different shapes:

- Orbitals in s subshells are spherical (a, below)
- Orbitals in p subshells are roughly dumbbell / infinity shaped (b, below)

Electron Configurations

Electron Configuration: The exact arrangement of electrons in atom's shells and subshells. Rules to predict electron configurations:

- Electrons occupy the lowest-energy orbitals available, beginning with 1 s and continuing in order shown on the next slide
- Each orbital holds only two electrons which must have opposite spin ("up" and "down")
- If two or more orbitals with the same energy: each orbital gets one electron before any orbital gets two.
MAR

Notice order of electron filling... important!
Each orbital holds only two electrons

Electron Configurations - Overview

Ground State Electron Configurations

Fill electrons into the lowest energy sublevels first.
1s $<\mathbf{2 s}<\mathbf{2 p}<\mathbf{3 s}<\mathbf{3 p}<\mathbf{4}$ Relative energy of sublevels:
Procedure:
Start with a bare nucleus and fill electrons into the lowest energy sublevel first (1s), then moving on when each sublevel reaches its maximum number of electrons. Stop when you run out of electrons.
Each s subshell holds 2 electrons; each p subshell holds 6, d holds 10, f holds 14, etc.

This means that $1 s, 2 s, 3 s, 4 s$, etc. - each of them holds only 2 electrons! Likewise $2 p, 3 p, 4 p$, etc. holds 6 electrons, etc.

Magnesium ($Z=12$) has 12 protons and 12 electrons

Electronic configuration of Boron:
Boron ($Z=5$) has 5 protons and 5 electrons
B $1 s^{2} 2 s^{2} 2 p^{1}$ or $\frac{\uparrow \downarrow}{1 s^{2}} \frac{\uparrow \downarrow}{2 s^{2}} \underbrace{\uparrow-}_{2 p^{1}}$

The Aufbau Diagram

Aufbau diagram shows electron filling order (start at 1s and move down by arrow)
Each s orbital holds 2 electrons
Each p orbital holds 6 electrons
Each d orbital holds 10 electrons
Each f orbital holds 14 electrons

Orbital Box Notation

Boron is paramagnetic (one unpaired single electron in 2 p subshell)
B $1 s^{2} 2 s^{2} 2 p^{1}$ or $\frac{\uparrow \downarrow}{1 s^{2}} \frac{\uparrow \downarrow}{2 s^{2}} \underbrace{\uparrow--}_{2 p^{1}}$
Magnesium is diamagnetic (every "up" electron has a "down" electron, no unpaired electrons)

Paramagnetic species affected by magnetic fields, more reactive

C $1 s^{2} 2 s^{2} 2 p^{2}$ or $\frac{\uparrow \downarrow}{1 s^{2}} \frac{\uparrow \downarrow}{2 s^{2}} \underbrace{\uparrow \uparrow \uparrow}_{2 p^{2}}$

Electron Configurations and the Periodic Table

The periodic table can be divided into four regions or blocks of elements according to the shells and subshells as shown on next slide:

H: 1s ${ }^{1}$
$\mathrm{He}: 1 \mathrm{~s}^{2}$
Li: $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1}$
$\mathrm{Be}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$
B:

C:
N :
O:
F:
Ne :

MAR

For Sodium:
Group 1A
Atomic number $=11$
$\mathbf{1 s} \mathbf{s}^{2} \mathbf{s s}^{2} \mathbf{2 p}{ }^{6} \mathbf{3 s}{ }^{1}$ or
"neon core" + 3s ${ }^{1}$

[$\mathrm{Ne} \mathrm{]} \mathbf{3} \mathbf{s}^{1}$ (uses noble gas notation)
All Group 1 A elements have [core] ns ${ }^{1}$ configurations:

- K: [Ar] 4s ${ }^{1}$
- Rb: [Kr] 5s ${ }^{1}$
- Cs: [Xe] 6s ${ }^{1}$

MAR
Electron configurations and the periodic table

Valence Shell and Electrons

Valence Shell: Outermost shell of an atom.
Valence electrons: Electrons in the outermost shell of an atom. These electrons are loosely held and are most important in determining an element's properties and reactivities. Example:

P has five valence electrons $\left(3 s^{2} 3 p^{3}\right)$ in the 3 rd valence shell

Atomic Radius Within A Group

MAR

MAR

Valence Electrons

Valence electrons are those in the outermost energy level (the highest main energy level) in an atom. These are the most reactive elements in an atom!

Shortcut: the number of valence electrons = the group number

Ex: Carbon - Group IV - 4 valence electrons
Ex: Bromine - Group VII - 7 valence electrons

Periodic Properties: Atomic Size
Periodic Properties: properties of elements that repeat in a regular fashion as atomic number increases.

Atomic Radius Across a Period

Going across a period left to right,

- an increase in number of protons increases attraction for valence electrons.
- atomic radius decreases.

Test Yourself

Which neutral atom is larger: calcium or bromine?

Which neutral atom is larger: calcium or radium?

End of Chapter 6

