Chemistry 151: Basic Chemistry

Chemical Equations

Chemical equations are like recipes in cooking: They tell a chemist how to make something ("products") and what you'll need to make it ("reactants")
Having balanced amounts critical in cooking: too much flour can make a cake dry, and too little flour can prevent the cake from forming. Same in chemistry!
We will learn how to create a balanced chemical equation in this chapter, and in the next section, we will explore the quantities needed to actually make the products.

Chemical Equations

Equations depict the kind of reactants and products and their relative amounts in a reaction.

$$
4 \mathbf{A l}(\mathrm{~s})+3 \mathbf{O}_{2}(\mathrm{~g})--->2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

The numbers in the front are called
stoichiometric coefficients
The letters (s), (g), (l) and (aq) are the physical states of compounds:
$\mathrm{s}=$ solid, $\mathrm{g}=\mathrm{gas}, 1=$ liquid,
$\mathrm{aq}=$ solution in water (aqueous)
MAR

Chemical Equations are Balanced

In a balanced chemical reaction:

- atoms are not gained or lost.
- the number of reactant atoms is equal to the number of product atoms.

MAR

Balance Sheet:
$4 \mathrm{P}+12 \mathrm{Br} \longrightarrow 4 \mathrm{P}+12 \mathrm{Br}$

Step 2: Add appropriate coefficients to balance the numbers of atoms of each element.

Step 3: Check the equation to make sure the numbers and kinds of atoms on both sides of the equation are same.

Step 4: Make sure the coefficients are reduced to their lowest whole-number value (ok here).

Balancing Chemical Equations

The following four steps can be used as a guide to balance chemical equations.
Example: Sulfuric acid reacts with sodium hydroxide to create sodium sulfate and water. Balance this chemical reaction.
Step 1: Write an unbalanced equation, using correct formulas for all reactants and products.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O} \quad \text { (Unbalanced) }
$$

MAR

MAR

$$
\begin{aligned}
& \text { Balancing } \\
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \text {----> } \\
& 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
$$

Balancing with Polyatomic Ions

```
Magnesium chloride + sodium phosphate }
```

 magnesium phosphate + sodium chloride
    ```
            magnesium phosphate + sodium chloride
        MgCl}2(aq)+N\mp@subsup{\textrm{Na}}{3}{}\mp@subsup{\textrm{PO}}{4}{}(aq)->\textrm{NaCl}(aq)+M\mp@subsup{\textrm{Mg}}{3}{}(\mp@subsup{\textrm{PO}}{4}{}\mp@subsup{)}{2}{}(s
        MgCl}2(aq)+N\mp@subsup{\textrm{Na}}{3}{}\mp@subsup{\textrm{PO}}{4}{}(aq)->\textrm{NaCl}(aq)+M\mp@subsup{\textrm{Mg}}{3}{}(\mp@subsup{\textrm{PO}}{4}{}\mp@subsup{)}{2}{}(s
    Leave polyatomic ions as "units", don't break up when balancing,
    Leave polyatomic ions as "units", don't break up when balancing,
        usually balance them first before other atoms
        usually balance them first before other atoms
    MgCl}2(aq)+2\mp@subsup{\textrm{Na}}{3}{}\mp@subsup{\textrm{PO}}{4}{}(aq)->\textrm{NaCl}(aq)+M\mp@subsup{\textrm{Mg}}{3}{}(\mp@subsup{\textrm{PO}}{4}{}\mp@subsup{)}{2}{}(s
    MgCl}2(aq)+2\mp@subsup{\textrm{Na}}{3}{}\mp@subsup{\textrm{PO}}{4}{}(aq)->\textrm{NaCl}(aq)+M\mp@subsup{\textrm{Mg}}{3}{}(\mp@subsup{\textrm{PO}}{4}{}\mp@subsup{)}{2}{}(s
    3MgCl}(aq)+2\mp@subsup{\textrm{Na}}{3}{}\mp@subsup{\textrm{PO}}{4}{}(aq)->6\textrm{NaCl}(aq)+\mp@subsup{\textrm{Mg}}{3}{}(\mp@subsup{\textrm{PO}}{4}{}\mp@subsup{)}{2}{}(s
    3MgCl}(aq)+2\mp@subsup{\textrm{Na}}{3}{}\mp@subsup{\textrm{PO}}{4}{}(aq)->6\textrm{NaCl}(aq)+\mp@subsup{\textrm{Mg}}{3}{}(\mp@subsup{\textrm{PO}}{4}{}\mp@subsup{)}{2}{}(s
        2 PO4}\mp@subsup{4}{}{3-}=2\mp@subsup{\textrm{PO}}{4}{3-
        2 PO4}\mp@subsup{4}{}{3-}=2\mp@subsup{\textrm{PO}}{4}{3-
        3 Mg2+ = 3 Mg}\mp@subsup{}{}{2+
        3 Mg2+ = 3 Mg}\mp@subsup{}{}{2+
        6 Na+}=6\mp@subsup{\textrm{Na}}{}{+
        6 Na+}=6\mp@subsup{\textrm{Na}}{}{+
        6 Cl-}=6\mp@subsup{\textrm{Cl}}{}{-
        6 Cl-}=6\mp@subsup{\textrm{Cl}}{}{-
        Balanced!
```

 Balanced!
    ```

\section*{Balancing Equations - Hints}

Balance those atoms which occur in only one compound on each side
Balance the remaining atoms
Reduce coefficients to smallest whole integers
Check your answer
Remember the seven diatomics! HONCl BrIF
    \(M A R\)
    MAR

Balancing Equations
Balance the following:
Calcium + nitrogen \(\rightarrow\) Calcium nitride

MAR

MAR

\section*{Balancing Equations}

Balance the following. To save time, balance polyatomic ions as units (not individual atoms):
\(\mathrm{BaCl}_{2}+\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{NaCl}\)

\section*{Test Yourself}

Balance the following reactions:
\(\mathrm{K}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{KOH}_{(\mathrm{aq})}\)
\(\mathrm{Ba}_{(\mathrm{s})}+\mathrm{H}_{3} \mathrm{AsO}_{4(\mathrm{aq})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Ba}_{3}\left(\mathrm{AsO}_{4}\right)_{2(\mathrm{aq})}\)
\(\mathrm{PCl}_{5(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})}\)
\(\mathrm{KClO}_{3(\mathrm{~s})} \rightarrow \mathrm{KCl}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})}\)

\section*{Types of Reactions}

Most chemical reactions can be grouped into one of these six categories:
1. Combination
\(A+B \rightarrow A B\)
2. Decomposition
3. Single Replacement
\(A B \rightarrow A+B\)
\(A B+C \rightarrow C B+A\) or
\(M Y+X \rightarrow M X+Y\)
(Metals replace metals; nonmetals replace nonmetals)
\begin{tabular}{ll} 
4. Combustion & \(\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}\) \\
5. Acid-Base & \(\mathrm{HX}+\mathrm{MOH} \rightarrow \mathrm{MX}+\mathrm{H}_{2} \mathrm{O}\) \\
6. Precipitation & \(\mathrm{AX}+\mathrm{BY} \rightarrow \mathrm{AY}(\mathrm{s})+\mathrm{BX}\)
\end{tabular}

\section*{Decomposition}

In a decomposition reaction, one substance splits into two or more simpler substances.
\(\left.\begin{array}{lll}\begin{array}{c}\text { A } \\ \text { reactant }\end{array} & \begin{array}{c}\text { splits } \\ \text { into }\end{array} & \begin{array}{c}\text { two or more } \\ \text { products }\end{array} \\ \begin{array}{lll}\mathrm{A} B\end{array} & \longrightarrow & \mathrm{~A}+\mathrm{B}\end{array}\right)\)

\section*{Single Replacement Reactions}

Single replacement reactions:
\[
\begin{aligned}
& A+B C \rightarrow A C+B \\
& X+B Y \rightarrow B X+Y
\end{aligned}
\]

Metal ( A and B ) replace metals;
Non-metals ( X and Y ) replace nonmetals

\section*{Combination (Addition)}

In a combination reaction, two or more reactants form one product or simple compounds combine to form one product.
\begin{tabular}{lll|}
\hline\(A\) & \(B\) & \\
\hline & & A \\
\hline
\end{tabular}

Combination reactions are also known as addition reactions.

MAR

\section*{Learning Check}

Classify the following reactions as combination or decomposition.
\begin{tabular}{llll}
\(\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g)\) & - & \(2 \mathrm{HBr}(l)\) & Combination \\
\(\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}(s)\) & - & \(\mathrm{Al}_{2} \mathrm{O}_{3}(s)+3 \mathrm{CO}_{2}(g)\) \\
\(4 \mathrm{Dl}(\mathrm{g})+3 \mathrm{C}(\mathrm{s})\) & \(\square\) & \(\mathrm{Al}_{4} \mathrm{C}_{3}(\mathrm{~s})\) & Compomposition
\end{tabular}

MAR

\section*{Single Replacement}

In a single replacement reaction, one element takes the place of a different element in a reacting compound.

\section*{Single replacement}

One element replaces another element
\(A+B C \longrightarrow A C+B\)
Metals ( Zn and Ag ) replacing metals:
\[
\mathrm{Zn}(s)+2 \mathrm{AgCl}(a q) \quad \mathrm{ZnCl}_{2}(a q)+2 \mathrm{Ag}(s)
\]

Nonmetals ( Br and Cl ) replacing nonmetals:
\(\mathrm{Br}_{2}(g)+2 \mathrm{NaCl}(a q) \longrightarrow 2 \mathrm{NaBr}(a q)+\mathrm{Cl}_{2}(g)\)

\section*{Learning Check}

Complete and balance the following single replacement equation:

Metals replace metals:
zinc + silver nitrate \(\rightarrow\)

Non-metals replace non-metals:
chlorine + sodium iodide \(\rightarrow\)

\section*{Acid-Base Reactions}

\section*{MAR}

Acid-Base Reactions

In an acid-base reaction, an acid (H listed first) reacts with a base (metal hydroxide) to create water and a "salt" Double replacement
replace
Two elements each other

acid base water salt
Acid-Base reactions are also a type of double displacement or exchange reactions

\section*{Combustion Reactions}

In a combustion reaction, a hydrocarbon (containing \(\mathrm{C}, \mathrm{H}\) and/or O ) reacts with oxygen \(\left(\mathrm{O}_{2}\right)\) to make carbon dioxide and water. These are very common in organic chemistry (and in your combustion gasoline car!)
\[
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{CO}_{2}(\mathrm{~g}) \\
& \mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{~g})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& 2 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
\]

MAR

\section*{Acid-Base Reactions}

When equal amounts (moles) of acids \(\left(\mathrm{H}^{+}\right)\)and bases \(\left(\mathrm{OH}^{-}\right)\)are mixed together, both acidic and basic properties disappear because of a neutralization reaction. The neutralization reaction produces water and a salt.
\[
\text { Example: } \underset{\text { acid }}{\mathrm{HCl}_{(\mathrm{aq})}}+\underset{\text { base }}{\mathrm{NaOH}_{(\mathrm{aq})}} \rightarrow \underset{\text { water }}{\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}}+\underset{\text { salt }}{\mathrm{NaCl}_{(\mathrm{aq})}}
\]

MAR

\section*{Precipitation Reactions}

In a precipitation reaction, reactants exchange cations, and at least one of the products is a solid (a precipitate)


Precipitation reactions are also a type of double displacement or exchange reactions

\section*{Precipitation Reactions}

Solubility: The amount of a compound that will dissolve in a given amount of solvent at a given temperature.
When solubility exceeded, precipitates form

\section*{Test Yourself}

Balance and classify the following reactions: \(\mathrm{C}_{5} \mathrm{H}_{12}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow\)
\(\mathrm{HCl}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \quad \mathrm{PbCl}_{2}(\mathrm{~s})\) is a product
\(\mathrm{HI}(\mathrm{aq})+\mathrm{LiOH}(\mathrm{aq}) \rightarrow\)

\section*{End of Chapter 4 Part I}
```

