Chemistry 151: Basic Chemistry

Chapter 3 Part II: The Power of the Chemical Formula

The Power of the Chemical Formula

A chemical formula provides a lot of information to the chemist.

We will explore the value of molar mass, Avogadro's number and percent composition in order to find the empirical formula and molecular formula.

HEY LADIES

TAKE MY NUMBER

MAR

Counting Atoms

Mg burns in air $\left(\mathrm{O}_{2}\right)$ to produce white magnesium oxide, MgO .
How can we figure out how much oxide is produced from a given mass of Mg?

MAR

Particles in a Mole

Avogadro's Number (N_{A}), named for Amedeo Avogadro, 1776-1856
$6.02214076 \times 10^{23}$

A mole is the amount of any substance
containing 6.022×10^{23} particles

Chemistry is a quantitative science we need a "counting unit."

The MOLE!

A mole is similar to a dozen - you can have a dozen roses, a dozen donuts - you can also have a mole of roses, or a mole of donuts

1 mol of ${ }^{12} \mathrm{C}$
$=12.00 \mathrm{~g}$ of C
$=6.022 \times 10^{23}$ atoms of C
12.00 g of ${ }^{12} \mathrm{C}$ is its MOLAR MASS

Taking into account all of the isotopes of C , the molar mass of C is $\mathbf{1 2 . 0 1 1} \mathbf{g} / \mathbf{m o l}$
MAR

Molar Mass

MAR

Molar Mass From the Periodic Table

Molar mass is the atomic weight expressed in grams per $\mathrm{mol}(\mathrm{g} / \mathrm{mol})$, and these values come directly from the periodic table

MAR

MAR

One mole Amounts

PROBLEM: What amount of Mg is represented by 0.200 g ? How many atoms?

Mg has a molar mass of $24.3050 \mathrm{~g} / \mathrm{mol}$.
$0.200 \mathrm{~g} \cdot \frac{1 \mathrm{~mol}}{24.31 \mathrm{~g}}=8.23 \times 10^{-3} \mathrm{~mol}$
How many atoms in this piece of Mg ?

$$
\begin{aligned}
8.23 \times 10^{-3} \mathrm{~mol} \cdot \frac{6.022 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}} \\
=4.96 \times 10^{21} \text { atoms } \mathrm{Mg}
\end{aligned}
$$

Atomic Weight: The weighted average mass of an element's atoms in a large sample that includes all naturally occurring isotopes of that atom.

Atomic
Weight
Atomic number and atomic weight displayed in periodic table
Atomic weight (amu) and molar mass ($\mathrm{g} / \mathrm{mol}$): same number, different units!

* Atomic weight for one atom
* Molar mass for grams in a mole (6.022x1023 atoms)

Molecular weight: The sum of atomic weights for all atoms in a molecule
Molar Mass
Example (use a periodic table):

- Carbon: 12.01 amu (the atomic weight)
- Oxygen: 16.00 amu (the atomic weight)
- Carbon monoxide (CO): $28.01 \mathrm{amu}=12.01+16.00$ (28.01 is the molecular weight for $C O$)
- 28.01 is also the molar mass of CO (in $\mathrm{g} / \mathrm{mol}$) - the mass in grams of 6.022×10^{23} molecules of CO)

Molecular weight and molar mass: same number, different units (and uses)

Molecular Weight
MAR

We can convert mol of water to g and g of water to mol using " $18.0 \mathrm{~g} / \mathrm{mol}$ " and dimensional analysis:

$$
\begin{array}{r}
0.25 \mathrm{molH}_{2} \mathrm{O} \times \frac{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{molH}_{2} \mathrm{O}}=4.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \\
27 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0 \mathrm{gH}_{2} \mathrm{O}}=1.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

MAR

Molar Mass

What is the molar mass of Urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$?
Solution:

$$
\begin{array}{ccc}
2 \times N & =2 \times 14.0067 & = \\
1 \times C=1 \times 12.0111= & 28.0134 \\
1 \times 0.0111 \\
4 \times H=4 \times 1.00794= & 4.03176 \\
1 \times O=1 \times 15.9994 & =15.9994 \\
\text { TOTAL } & =10.0556 \mathrm{~g} / \mathrm{mol}
\end{array}
$$

MAR

Test Yourself Part 2

What is the molar mass of potassium dichromate, $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$?

Test Yourself Part 1

How many moles in 35.013 g of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$?

How many molecules of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in 35.013 g ?

MAR

Percent Composition from the Chemical Formula

If you know the chemical formula for a compound, you can calculate its percent composition:

1. Calculate the molar mass of each element in the compound formula unit
a. Assume sample size is one mole
b. Multiply the molar mass of the element by its subscript in the chemical formula
2. Divide the mass of the element by the molar mass of the compound unit and multiply by 100

Determine the percent composition of Sodium Hydrogen Carbonate $\left(\mathrm{NaHCO}_{3}\right)$

First find molar mass ($\mathrm{g} / \mathrm{mol}$)

$\mathrm{Na}=1^{*} 22.99 \mathrm{~g}=22.99 \mathrm{~g} \mathrm{Na}$
$\mathrm{H}=1^{*} 1.01 \mathrm{~g}=\quad 1.01 \mathrm{~g} \mathrm{H}$
$\mathrm{C}=1^{*} 12.01 \mathrm{~g}=12.01 \mathrm{~g} \mathrm{C}$
$\mathrm{O}=3^{*} 16.00 \mathrm{~g}=48.00 \mathrm{~g} \mathrm{O}$ $84.01 \mathrm{~g} / \mathrm{mol} \mathrm{NaHCO}_{3}$

Percent Composition from the Chemical Formula

Example: Find the percent composition of water, $\mathrm{H}_{2} \mathrm{O}$

- Hydrogen $-1.01 \times 2=2.02 \mathrm{~g} \mathrm{H}$ in water Oxygen $-16.00 \times 1=16.00 \mathrm{~g} \mathrm{O}$ in water
Molar mass $=2.02+16.00=18.02 \mathrm{~g} / \mathrm{mol}$ of $\mathrm{H}_{2} \mathrm{O}$
- \% of H: $2.02 \mathrm{~g} \mathrm{H} \times 100 \%=\mathbf{1 1 . 2} \% \mathrm{H}$ in Water $18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
\% of O: $16.00 \mathrm{~g} \mathrm{O} \times 100 \%=88.79 \% \mathrm{O}$ in Water $18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$

Water is 11.2% H and $88.79 \% O$
Check: $11.2+88.8=99.99 \%:)$

Percent Composition from the Chemical Formula

MAR

Sodium: $\frac{22.99 \mathrm{~g} \mathrm{Na}}{84.01 \mathrm{~g} \mathrm{NaHCO}} \times 100 \%=27.37 \% \mathrm{Na}$

$$
0
$$

Hydrogen: 1.01 g H $\times 100 \%=1.20 \% \mathrm{H}$ $84.01 \mathrm{~g} \mathrm{NaHCO}_{3}$
Carbon: $12.01 \mathrm{~g} \mathrm{C} \times 100 \%=14.30 \% \mathrm{C}$
$84.01 \mathrm{~g} \mathrm{NaHCO}_{3}$
Oxygen: $\frac{48.00 \mathrm{~g} \mathrm{O}^{8}}{84.01 \mathrm{~g} \mathrm{NaHCO}_{3}} \times 100 \%=57.14 \% \mathrm{O}$

MAR
check: $27.37 \%+1.20 \%+14.30 \%+57.14 \%=100.01 \%$

Empirical Formula (EF) and
 Molecular Formula (MF)

Finding the molecular formula (MF) is a "holy grail" for chemists. If they can determine the MF, they know what the compound is, etc.

To find the MF, chemists first have to find the empirical formula (EF), then compare the EF to the molar mass.

Molecular formula: the true number of atoms of each element in the formula of a compound.

Empirical formula: the lowest whole number ratio of atoms in a compound.

```
molecular formula = (empirical formula)
molecular formula = C6 H
empirical formula = CH
```


Empirical Formula (EF) and Molecular Formula (MF)

Formulas for ionic compounds are ALWAYS empirical (lowest whole number ratio).
Examples:

NaCl	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
MgCl_{2}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$

MAR

Empirical Formula (EF) and Molecular Formula (MF)

Molecular Formula	Empirical Formula
$\mathrm{N}_{2} \mathrm{O}$	$\mathrm{N}_{2} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	$\mathrm{CH}_{2} \mathrm{O}$
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$	$\mathrm{CH}_{3} \mathrm{O}$
$\mathrm{N}_{2} \mathrm{O}_{4}$	NO_{2}

Notice:

1. The molecular formula and the empirical formula can be identical
2. You scale up from the empirical formula to the molecular formula by a whole number factor

Empirical Formula (EF) and Molecular Formula (MF)

Formulas for molecular compounds MIGHT be empirical (lowest whole number ratio).

MAR

Empirical Formula via Mass Percentages

To find the Empirical Formula from mass percentages:

1. Assume 100 grams of the substance and convert $\%$ into grams.
2. Convert grams to moles by dividing the amount in grams by the molar mass of that element.
3. Select the SMALLEST mole value and divide ALL mole values by this smallest one.
4. The results of Step 3 will either be VERY close to whole numbers or will be recognizable mixed number fractions If any result from Step 3 is a decimal mixed number, you must multiply ALL values by some number to make it a whole number. Ex: $1.33 \times 3,2.25$ $\mathrm{x} 4,2.50 \times 2$, etc.

Empirical Formula via Mass Percentages

Example: The percent composition of a sulfur oxide is 40.05% S and 59.95% O. Find the empirical formula.

Step 1: Convert \% to grams (assume 100 g), then find moles of each element

$$
\begin{aligned}
& \frac{40.05 \mathrm{~g} \mathrm{~S}}{32.07 \mathrm{~g} / \mathrm{mol} \mathrm{~S}}=1.249 \mathrm{~mol} \mathrm{~S} \\
& \frac{59.95 \mathrm{~g} \mathrm{O}}{16.00 \mathrm{~g} / \mathrm{mol} \mathrm{O}}=3.747 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Empirical Formula via Mass Percentages

Example: The percent composition of a sulfur oxide is $40.05 \% \mathrm{~S}$ and 59.95% O. Find the empirical formula.

Step 2: Divide the mole values by the value of the element with the smallest number of moles (sulfur).

$$
\begin{aligned}
& \frac{1.249 \mathrm{~mol} \mathrm{~S}}{1.249}=1 \mathrm{~mol} \mathrm{~S} \\
& \frac{3.747 \mathrm{~mol} \mathrm{O}}{1.249}=3 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

Empirical Formula $=\mathrm{SO}_{3}$

MAR

Empirical Formula via Mass Percentages

In this example, the simplest whole number mole ratio of S atoms to O atoms is $1: 3$. The empirical formula for the oxide of sulfur is SO_{3}
Note that the calculated mole values may not always be whole numbers.

In these cases all the mole values must be multiplied by the smallest factor that will make them whole numbers

MAR

Molecular Formulas

Two or more substances with distinctly different properties can have the same percent composition and the same empirical formula
Example: NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$: same EF, different compounds

Example: $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{4} \mathrm{H}_{8}$: same EF, different compounds

Empirical formulas do not always indicate the actual moles in the compound! Chemists need a molecular formula to fully describe a compound.

Practice Problem

Butene is hydrocarbon, a compound composed only of carbon and hydrogen. It is 85.63% carbon and 14.37% hydrogen. What is the empirical formula?

Assume 100 g total.
$85.63 \mathrm{~g} \mathrm{C} *(\mathrm{~mol} \mathrm{C} / 12.01 \mathrm{~g} \mathrm{C})=7.130 \mathrm{~mol} \mathrm{C}$
$14.37 \mathrm{~g} \mathrm{H}^{*}(\mathrm{~mol} \mathrm{C} / 1.008 \mathrm{~g} \mathrm{H})=14.26 \mathrm{~mol} \mathrm{H}$
$14.26 / 7.130=2.000 \mathrm{~mol} \mathrm{H}$
$7.130 / 7.130=1.000 \mathrm{~mol} \mathrm{C}$
MAR

Determining Molecular Formulas

A molecular formula specifies the actual number of atoms of each element in one molecule or formula unit of the substance

The molar mass must be determined through a separate experiment (mass spectrometer) and compared with the empirical formula to find the molecular formula.

Determining Molecular Formulas

Test Yourself!

Example: The molar mass of a compound is $181.50 \mathrm{~g} / \mathrm{mol}$ and the empirical formula is $\mathrm{C}_{2} \mathrm{HCl}$. What is the molecular formula?

First, find molar mass of empirical formula $\left(\mathrm{C}_{2} \mathrm{HCl}\right)$:

$$
\begin{aligned}
& 2 * \mathrm{C}+1 * \mathrm{H}+1 * \mathrm{Cl}=2 * 12.01+1 * 1.01+1 * 35.45 \\
& \quad=60.48 \mathrm{~g} / \mathrm{mol} \text { for } \mathrm{C}_{2} \mathrm{HCl}
\end{aligned}
$$

Now compare molar mass of compound (181.50) to molar mass of EF (60.48) - should always get a whole number!
$181.50 / 60.48=3.001$ which is essentially 3
Multiply this ratio by the EF to get the MF:

$$
\text { Molecular Formula }=\left(\mathrm{C}_{2} \mathrm{HCl}\right)_{3}=\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}
$$

MAR

Test Yourself!

Test Yourself!

Analysis of a weak acid finds a chemical composition of $49.32 \% C, 6.85 \% H$, and $43.84 \% O$. The molar mass is $146 \mathrm{~g} / \mathrm{mol}$. Determine the empirical and molecular formulas.
$49.32 \% \mathrm{C}=49.32 \mathrm{~g}$ of C , etc. Turn to moles:
$49.32 \mathrm{~g} \mathrm{C} *(\mathrm{~mol} \mathrm{C} / 12.01 \mathrm{~g} \mathrm{C})=4.107 \mathrm{~mol} \mathrm{C}$
$6.85 \mathrm{~g} \mathrm{H} *(\mathrm{~mol} \mathrm{H} / 1.01 \mathrm{~g} \mathrm{H})=6.78 \mathrm{~mol} \mathrm{H}$
$43.84 \mathrm{~g} \mathrm{O} *(\mathrm{~mol} \mathrm{C} / 16.00 \mathrm{~g} \mathrm{O})=2.740 \mathrm{~mol} \mathrm{O}$
2.740 is smallest, so find EF :
$\mathrm{C}(4.107 / 2.740) \mathrm{H}(6.78 / 2.740) \mathrm{O}(2.740 / 2.740)$
$\mathrm{C}(1.499) \mathrm{H}(2.47) \mathrm{O}(1.000) \approx \mathrm{C}_{1.5} \mathrm{H}_{2.5} \mathrm{O}_{1}$
Multiply by 2 to eliminate fraction:
$\left(\mathrm{C}_{1.5} \mathrm{H}_{2.5} \mathrm{O}_{1}\right)_{2}=\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}=$ Empirical Formula

Test Yourself!

A colorless liquid composed of 46.68% nitrogen and 53.32% oxygen has a molar mass of $60.01 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula?

$$
\text { Answers: } \mathrm{EF}=\mathrm{NO}, \mathrm{MF}=\mathrm{N}_{2} \mathrm{O}_{2}
$$

