CH 151 Summer 2025: **Problem Set #1** *Instructions*

Step One:

- Learn the material for Problem Set #1 by reading Chapter 1 of the textbook and/or by watching the videos found on the website (https://mhchem.org/151)
- Try the problems for Problem Set #1 found on the next pages on your own first. Write out the answers (and show your work) by hand (on a tablet or paper); do not type your answers (and work) to avoid a point penalty. If you write the answers on the problem set itself, you will receive fewer points. Include your name on your problem set!
- If you get stuck on a particular problem, you can watch the recitation video for Problem Set #1, found using this link: http://mhchem.org/t/n.htm

Step Two:

We will go over Problem Set #1 during recitation. *Self correct all problems* of your problem set before turning it in at the end of recitation.

Problem Set #1 will be due on Wednesday, June 25 at 8 AM.

If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment!

CH 151 Problem Set #1 - Chapter 1

* Complete problem set on separate pieces of paper showing all work, circling final answers, etc.

* Self correct problem set during recitation (June 25, 8 AM) before turning in to the instructor

Important Tables and/or Constants: 1 cm³ = 1 mL; k = 10³; c = 10⁻²; m = 10⁻³; μ = 10⁻⁶; n = 10⁻⁹; **273.15**, periodic table (http://mhchem.org/pertab)

- 1. Determine the number of significant figures in each of the following measured values:
 - a. 0.1111010
 - b. 0.0000007
 - c. 4000
 - d. 4000.
 - e. 0.0040
 - f. 67,000,100
- 2. Round off each of the following numbers to the number of significant figures indicated in parentheses.
 - a. 3883 (two)
 - b. 0.00003011 (two)
 - c. 4.4050 (three)
 - d. 2.1000 (three)
- 3. Carry out the following mathematical operations, expressing your answers to the correct number of significant figures. Assume that all numbers are measured quantities.
 - a. 3.33 x 3.03 x 0.0333
 - b. 300,003 x 20,000 x 1.33333
 - c. (2.322 + 4.00) / (3.200 + 6.73)
 - d. 7.403 / (3.220 x 5.000)
 - e. (5600 x 300) / (22 x 97.1)
- 4. Carry out the following mathematical operations, expressing your answers to the correct number of significant figures. Assume that all numbers are measured quantities.
 - a. 237 + 37 + 7
 - b. 3.111 + 3.11 + 3.1
 - c. 235.45 + 37 + 36.4
 - d. 4.72 3.908
 - e. 46,230 + 325 + 45

5. Express the following numbers in scientific notation.

- a. 787.6
- b. 0.01798
- c. 40.0
- d. 675,000
- 6. Identify the metric prefixes corresponding to each of the following powers of ten, or vice versa.
 - a. 10⁻³ b. 10⁻⁹ c. 10³ d. micro e. centi

Problem Set #1 continues on the next page

- 7. Calculate the volume of each of the following objects, each of which has a regular geometrical shape.
 - a. a cube of steel whose edge is 3.5175 mm ($V = s^3$)
 - b. a spherical marble with a radius of 1.212 cm ($V = \frac{4}{3}\pi r^3$)
 - c. a bar of iron 6.0 m long, 0.10 m wide and 0.20 m high (V = l * w * h)
 - d. a cylindrical rod of copper with radius = 3.2 mm and length = 62 mm ($V = \pi r^2 L$)
- 8. A piece of metal weighing 187.6 g is placed in a graduated cylinder containing 225.2 mL of water. The combined volume of solid and liquid is 250.3 mL. What is the volume (in cm³) and density (in grams per milliliter) of the metal?
- 9. A pediatric dosage of a certain analgesic is 225 mg/kg of body weight per day. How much analgesic, in milligrams per day, should be administered to a child who weighs 12.3 kg?
- 10. A 2004 US penny (zinc plated with a thin layer of copper) with a mass of 2.552 g contains 2.448 g of zinc. What is the mass percentage in the penny of copper? of zinc?
- 11. Carry out the following temperature scale conversions. $T(K) = T(^{\circ}C) + 273.15$
 - a. Mercury freezes at 234.3 K. What is this temperature in degrees Celsius?
 - b. Normal body temperature for a chickadee is 41.0 °C. What is this temperature in Kelvin?
 - c. A recommended temperature setting for household hot water heaters is 60. °C. What is this temperature in degrees Fahrenheit? $T(^{\circ}F) = 1.8*T(^{\circ}C) + 32$
- 12. What should the recorded uncertainty be $(\pm 0.1 \text{ unit}, \pm 0.01 \text{ unit}, \text{etc.})$ for measurements made using the following measuring device scales?
 - a. a graduated cylinder scale with markings in 10 mL intervals
 - b. a meter stick scale with markings in 1 cm intervals
 - c. a buret (a volumetric device) scale with markings in 0.1 mL intervals
 - d. a double pan mass balance scale with markings in 100 g intervals
- 13. With a high grade measuring device, the length of an object is determined to be 13.452 mm. Three students are asked to determine the length of the same object using a lower grade measuring device. How do you evaluate the following work of the three students with regard to accuracy and precision?

Trial	Student A	Student B	Student C
1	13.6 mm	13.4 mm	13.9 mm
2	13.9 mm	13.5 mm	13.9 mm
3	13.3 mm	13.5 mm	14.0 mm
4	13.6 mm	13.4 mm	14.1 mm

14. The accepted value for the normal boiling point of benzaldehyde, a substance used as an almond flavoring, is 178 °C. In a laboratory setting, three students are asked to experimentally determine the normal boiling point of benzaldehyde. Their results are: Student 1: 175 °C Student 2: 190. °C Student 3: 181 °C

Calculate the percent error associated with each student's reported boiling point. *Helpful*

formula: % error = absolute value l(difference)l / (accepted) * 100%

Problem Set #1 continues on the next page

Problem Set #1, Continued from previous page

- 15. The following are properties of the metal beryllium. Classify them as **physical** or **chemical**.
 - a. In powdered form, it burns brilliantly on ignition.
 - b. Bulk metal melts at 1287 °C
 - c. It has a density of 1.85 g/cm^3 at 20 °C.
 - d. It is a relatively soft silvery white metal.
- 16. Consider the following classifications of matter: heterogeneous mixture, homogeneous mixture and pure substance
 - a. In which of these classifications must the composition be constant?
 - b. In which of these classifications is separation into simpler substances using physical means possible?
- 17. Based on the information given, classify each of the pure substances A through D as **elements** or **compounds**, or indicate that no such classification is possible because of insufficient information.
 - a. Substance A cannot be broken down into simpler substances by chemical means
 - b. Substance B cannot be broken down into simpler substances by physical means
 - c. Substance C readily dissolves in water
 - d. Substance D readily reacts with the element chlorine
- 18. Indicate whether each of the following statements is **true** or **false**.
 - a. Compounds can be separated into their constituent elements using chemical means.
 - b. Elements can be separated into their constituent compounds using physical means.
 - c. A compound must contain at least two elements.
 - d. A compound is a physical mixture of different elements
- 19. Give the name of the element associated with each of the following chemical symbols, or vice versa.
 - a. Li
 - b. He
 - c. F
 - d. Zn
 - e. mercury
 - f. chlorine
 - g. gold
 - h. selenium

20. Write the chemical symbol for each member of the following pairs of elements:

- a. copper and cobalt
- b. potassium and phosphorus
- c. iron and iodine
- d. silicon and silver