CH 151 Summer 2024: "Nomenclature" (online) Lab - Instructions ### Step One: Watch the lab video for the "Nomenclature" lab, found here: http://mhchem.org/t/h.htm There is no data to record in this lab video. ## Step Two: **Complete pages Ib-3-5 through Ib-3-8** using the "Nomenclature" video and the actual lab instructions on pages Ib-3-3 through Ib-3-4. Include your name on page Ib-3-5! # Step Three: **Submit your lab** (pages Ib-3-5 through Ib-3-8 *only* to avoid a point penalty) **as a single PDF file to the instructor via email (mike.russell@mhcc.edu) on Wednesday, July 3 by 11:59 PM.** I recommend a free program (ex: CamScanner, https://camscanner.com) or a website (ex: CombinePDF, https://combinepdf.com) to convert your work to a PDF file. If you have any questions regarding this assignment, please email (mike.russell@mhcc.edu) the instructor! Good luck on this assignment! # This page left blank for printing purposes # Nomenclature: The Language of Chemistry Systematic chemical names of inorganic compounds were developed by a group of scientists who were part of the International Union of Pure and Applied Chemistry (IUPAC) which first met in 1921. Elements are represented by symbols which are the first, first two, or first and third letters from the name of the element. There are some notable exceptions, where the symbols appear to have no connection to the name of the element. These symbols are derived from early names for these elements. The table below illustrates some of these. | Present Name | Symbol | Former Name | |--------------|--------|-------------| | Antimony | Sb | Stibium | | Copper | Cu | Cuprum | | Gold | Au | Aurum | | Iron | Fe | Ferrum | | Lead | Pb | Plumbum | | Potassium | K | Kalium | | Silver | Ag | Argentum | | Sodium | Na | Natrium | | Tin | Sn | Stanum | | Tungsten | W | Wolfram | The names of inorganic compounds are constructed so that every compound can be named from its formula and each formula has a name unique to that formula. For the purpose of clarity, we will divide the formulas into the following categories: - 1) Binary compounds of nonmetals (covalent molecules) - 2) Binary compounds of a metal and nonmetal (ionic compounds) - 3) Ternary and higher compounds (polyatomic ions and acids) ### I. Binary Covalent Compounds: two nonmetals - 1. Name first element, preceded by Greek prefix for number of atoms. If one, omit mono. - 2. Name the second element, preceded by Greek prefix for number of atoms even if one. The ending of the second element is <u>-ide</u>. | Greek Prefixes: | 1 = mono | 2 = di | 3 = tri | 4 = tetra | 5 = penta | |-----------------|--|--|-----------|-----------|-----------| | | 6 = hexa | 7 = hepta | 8 = octa | 9 = nona | 10 = deca | | Examples: | Formula
PCl ₃
SO ₂
CO
N ₂ O | Name Phosphorous t Sulfur dioxide Carbon monor Dinitrogen mo | e
xide | | | ### II. Ionic Compounds: metal + nonmetal - A. Metal with a fixed charge - 1. Name metal (cation) first only for metals in Groups IA, IIA and the "stairs" - 2. Name nonmetal (anion) with the ending changed to -ide. Charge = group number 8 | <u>Ex:</u> | <u>Formula</u> | <u>Name</u> | Fixed Charge Cations | |------------|----------------|--------------------|---| | | KCl | Potassium chloride | IA = +1 | | | Na_2S | Sodium sulfide | IIA = +2 | | | Al_2S_3 | Aluminum sulfide | IIIA = $+3$ one of the 'stairs' (video) | In ionic compounds, the metal and nonmetal must combine in a ratio to give an overall neutral charge. To write formulas based on name, first write the symbol with the correct charge for the cation and anion. Then determine the lowest ratio for a neutral compound. ### B. Metals with variable charge (transition metals, lanthanides, actinides, etc.) 1. Name metal. In parentheses write the charge of the metal in Roman numerals. The charge is determined based on the fixed charge of the nonmetal. [Fixed charges of nonmetal: VIIA = -1; VIA = -2; VA = -3] 2. Name nonmetal with the ending -ide. Charge = group number - 8 | Examples: | <u>Formula</u> | <u>Name</u> | Old Method – do NOT use! | |-----------|----------------|---------------------|--------------------------| | | CuCl | Copper(I) chloride | Cuprous chloride | | | $CuCl_2$ | Copper(II) chloride | Cupric chloride | | | FeO | Iron(II) oxide | Ferrous oxide | | | Fe_2O_3 | Iron(III) oxide | Ferric oxide | ### III. Polyatomic Anions and Acids When writing names of ionic compounds composed of polyatomic anions or of acids, you must first learn the name, number of oxygens, and charge of the most common polyatomics (listed below). Then add the following rules for naming polyatomics and acids with differing number of oxygens. Notice that as oxygens are added/subtracted, the polyatomic charge remains the same. **Common polyatomic ions** include: | CO_{3}^{-2} | carbonate | ClO ₃ -1 chlorate | OH-1 | hydroxide | |---------------|--------------|----------------------------------|----------------|-------------| | NO_3 -1 | nitrate | BrO ₃ -1 bromate | NH_4^{+1} | ammonium | | PO_{4}^{-3} | phosphate | IO ₃ -1 iodate | HCO_3 -1 | bicarbonate | | SO_{4}^{-2} | sulfate | MnO ₄ -1 permanganate | $Cr_2O_7^{2-}$ | dichromate | | $C_2H_3O_2$ | -1 - acetate | | | | | # Oxygens | Anion | <u>Example</u> | <u>Acid</u> | <u>Example</u> | |-----------|--------------|---------------------------------|-------------|------------------------------------| | +1 Oxygen | per-ate | perchlorate, ClO ₄ - | per-ic | perchloric acid, HClO ₄ | | common | -ate | chlorate, ClO ₃ - | -ic | chloric acid, HClO ₃ | | -1 Oxygen | -ite | chlorite, ClO ₂ - | -ous | chlorous acid, HClO ₂ | | -2 Oxygen | hypo-ite | hypochlorite, ClO | hypo-ous | hypochlorous acid, HClO | | No Oxygen | -ide | chloride, Cl | hydro-ic | hydrochloric acid, HCl | For more polyatomic / acid help, see the "Common Polyatomic Ions and the Corresponding Acids" handout in your lab manual under "Learning Resources" | Nomenc | lature (| (online) |) Lah | |-------------|----------|----------|-------| | 1 101116116 | iatuit | | , Lan | # Name: # 1a. Ionic Compounds (metal + nonmetal) | | FORMULA | CATION | ANION | NAME | |-----|--------------------------------|------------------|------------------|-----------------------| | Ex. | CaBr ₂ | Ca ²⁺ | Br1- | Calcium bromide | | 1 | | | | Magnesium nitride | | 2 | | K+ | S ² - | | | 3 | ZnO | | | | | 4 | | Sn ⁴⁺ | O ² - | | | 5 | Cr ₂ S ₃ | | | | | 6 | | | | Copper(I) phosphide | | 7 | RbI | | | | | 8 | | | | Calcium nitride | | 9 | | | | Titanium(IV) chloride | | 10 | SrS | | | | | 11 | Au ₂ O ₃ | | | | | 12 | | | | Cadmium phosphide | # 1b. Covalent Compounds (nonmetal + nonmetal) | 1. | SF_6 | | |----|--------|-----------------------| | 2. | IBr | | | 3. | |
_ Carbon monoxide | | 4 | | Dinitrogen pentoxid | | a. NaF | |---| | b. PbS | | c. TiO ₂ | | $d. Cr_2O_3$ | | e. Zn_3P_2 | | f. MnO ₂ | | g. PI ₃ | | h. S_2Br_2 | | i. IBr ₅ | | j. XeF ₄ | | | | 3. Write formulas for the following compounds: (See hint above!) | | 3. Write formulas for the following compounds: (See hint above!) a. Barium iodide | | | | a. Barium iodide | | a. Barium iodide b. Palladium(II) bromide | | a. Barium iodideb. Palladium(II) bromidec. Zinc arsenide | | a. Barium iodideb. Palladium(II) bromidec. Zinc arsenided. Gold(III) oxide | | a. Barium iodide b. Palladium(II) bromide c. Zinc arsenide d. Gold(III) oxide e. Lead(IV) oxide | | a. Barium iodide b. Palladium(II) bromide c. Zinc arsenide d. Gold(III) oxide e. Lead(IV) oxide f. Copper(I) sulfide | # Nomenclature (online) Lab Polyatomic Anions and Acids | 4. Write the names for the following compounds. If the compound is an acid, name as an acid and not an ionic compound to receive full credit. | |---| | a. Na ₂ SO ₄ | | b. Ca(ClO) ₂ | | c. Ba(NO ₃) ₂ | | d. Al(OH) ₃ | | e. Fe(NO ₂) ₃ | | f. CuSO ₃ | | g. Cu ₂ CO ₃ | | h. NH ₄ ClO | | i. Ni ₃ (PO ₄) ₂ | | j. Pb(OH) ₂ | | 1. HBrO ₃ | | m. HBrO ₂ | | n. HBrO | | o. HBr | | p. HBrO ₄ | | $q.~H_2SO_4$ | | r. HNO ₃ | | s. H_3PO_3 | | | # 5. Write the chemical formulas for the following compounds. a. sodium phosphate b. iron(II) sulfate c. calcium bromate d. aluminum nitrate e. zinc(II) sulfite f. copper(I) chlorite g. ammonium hydroxide h. silver nitrite i. lead(II) phosphate j. potassium bicarbonate k. iodic acid 1. hypoiodous acid m. periodic acid n. iodous acid o. hydroiodic acid p. sulfurous acid q. nitric acid r. nitrous acid t. acetic acid u. carbonic acid s. phosphoric acid