

Chemistry Chemistry

化学

Michael A. Russell, Ph.D.

Professor of Chemistry

Mt. Hood Community

College

What Do I Need For CH 223?

- A Textbook (*OpenStax*, free download, also as app "**OpenStax** + **SE**")
- *The* Chemistry 223 Companion (*Bookstore or website*)
- 4-5 **Scantrons** (100 questions total, 50 questions per side)
- Scientific Calculator (*Exp* or *EE*, *log*, *ln*), *no* cell phones as calculators

Bound Lab Notebook

- Safety Glasses for select labs
- iClicker 2 (optional, for lecture)

What Is In the Companion?

- All of the CH 223 Lab Experiments
- All of the CH 223 Problem Sets
- Lecture ("PowerPoint") Notes

• *A plethora of* Study Guides *including* Handouts, Concept Guides, Practice Problem Sets and Quizzes - *more*!

• Purchase from MHCC Bookstore or Download & Print from CH 223 website (mhchem.org/223)

<page-header>

k (h m 9 🖁

Registering an iClicker

• *Go to* iClicker.com/register-a-remote

• *Select* iClicker Classic (formerly iClicker 7) *and* My institution does not use an LMS

• Press Click here then follow the instructions using your MHCC ID for the "Student ID" field

•Ask me if questions arise! *See:* http://mhchem.org/ic

The Chemistry 223

Companion

Lab Manual, Problem Sets.

Lecture Slides and Learning Resources

"Normal" Lab Period

* Turn in last week's lab

* Put problem on chalk board, get stamp, self correct problem set, then turn in - use "check" system for grade, problem sets in Companion

* *Take a* **quiz** - *no make up quizzes, drop lowest quiz, no cell phones as calculators*

Complete lab in AC 2507, get stamp **Exams** - two midterms, need scantrons, no problem sets or quizzes

Sick? Must <u>call</u> and complete <u>within</u> <u>one week</u>

The Problem Sets

Problem sets found in the CH 221 Companion... complete problem set before coming to class

- First: put a problem on the chalk board
- Second: get a stamp from me (on time!)
- *Next:* self-correct *each* problem set problem (both right and wrong), then turn it in

• Check plus = 5 points, check = 3 points, check minus = 1 point

Common selfcorrect symbols for correct problems

The Labs (AC 2507)

Labs in CH 223 Companion, need bound lab notebook, safety glasses

Notebook: Have me stamp before leaving lab;

notebook reviewed for completeness by me at end of term

Lab reports: *due the following week* in recitation; most must be typed to avoid point penalty. No email submissions of labs.

Late labs: one point off by end of next day, one point each day thereafter

Turn in all 8 labs, receive Lab Completion Bonus (20 pts) at end of term

Key Items:

Title Your Name Partner(s) name(s) Purpose Data / Results Conclusion Postlab questions

No procedure required

Use individual flair

Ask me to preview during first week

Labs must be printed (no electronic versions accepted)

Identification of an Unknown Metal Density	
Michael A. Russell Lab partner: Joyce Sherpa September 26, 2018	Class P
Purpose: Why you are performing the experiment	Topic
We wish to identify the unknown density value (in grams / cm ²) for unknown metal sample X. We will perform multiple measurements on unknown sample X in order to determine its correct value with high precision.	Ιορια
Data / Results: Include all information to answer the purpose	
Unknown metal: X Always include the unknown identifier! Include all data values collected in lab (grams, mL, temperatures, etc.) Tables are wonderful!	
mass (p) volume (ca ²) density (p(ca ²)) priat 82 23.34 11.02 2.713 priat 82 23.32 11.93 2.709 exaut 83 23.42 11.93 2.709 exaut 84 23.42 11.93 2.709	
include sample calculation(s) in your lab report	
average density: 2.713 g/cm ³ average deviation: 0.003 parts per thousand: 1.1	
Conclusion: Answer the question presented in the Purpose	
We successfully determined the density of unknown metal X to be 2.713 g/cm ³ . Our measurements included a high level of precision due to our parts per thousand value of 1.1.	
Post-Lab Questions: Complete sentences, show all calculations for full credit	And
 Objects that are dipped in water will have an increase in their recorded mass. An analytical scale will record masses with a greater precision than a top loading balance. To find the mass of the object, subtract the empty beaker mass first. 114.1318 = 22.563 gr = 81.768 g 	- A

Presentations

c: Something in Science That Interests You

Everyone: 5 minute presentation and paper on a unique topic Step 1: Reserve a unique topic (Week 2 - next Friday!) Step 2: Class Presentations Rough Draft Paper (Week 4) Step 3: Give Class Presentation, submit final Class Presentation Paper (week 6) More info: Class Presentations FAQ

(syllabus and online)

The Web Site: http://mhchem.org/223

Purpose:

This example is

in the Companion

under "Lah Notes"

Access in libraries, coffee shops, at MHCC, wherever

Resources: Answers to quizzes, Web Lectures, Chemistry Links, Handouts, Labs, Announcements, extra credit, syllabus, Web Quests, much more - Explore!

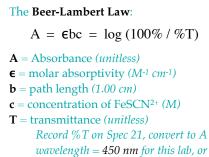
Grades posted after second week (use ID number)

I Need Help!

Tutoring center (LSC/AVID) above library, also online Office Hours (**M** 8, 10 & 11 **W** 10 AM & noon) Email mike.russell@mhcc.edu Phone messages Post questions to mhchem Talk to me if feeling stressed!

 $r = \sqrt{R^2} = 0.94297$

Determination of an Equilibrium Constant



Goal is to find K_c in this lab Use Beer-Lambert Law and a Spec 21 or SpectroVis Plus:

 $A = \epsilon bc = log (100\% / \%T)$

Determination of an Equilibrium Constant

use SpectroVis Plus

Determination of an Equilibrium Constant

<u>Part A</u>: Determine ϵ

• Use [Fe³⁺] >>> [SCN⁻], so by "limiting reactant theory", [SCN⁻] = [FeSCN²⁺] • Create graph of Absorbance vs. [FeSCN²⁺], should be straight line

 Perform linear regression using Excel / calculator, report a (slope), b (y-

int), r (*correlation coefficient*) • Slope = ϵ for part B

Determination of an Equilibrium Constant

Part B: Determine Kc

Use ϵ from part A, find [FeSCN²⁺] for five sol

where x = [FeSCN2+] and

 $\mathbf{x} = \mathbf{A} / \epsilon \mathbf{b}$

 $[Fe^{3+}]_0 = initial Fe^{3+}$ concentration

eauilihrium

[Fe³⁺]₀ - x

[SCN-]₀ = initial SCNconcentration

e e non	n part A, I	iniu [Pesci	
utions,	then use	"ICE" table	:
	[Fe ³⁺]	[SCN-]	[FeSCN ²⁺]
initial	[Fe ³⁺] ₀	[SCN-]0	0
change	- x	- x	+ x

K _c =	(x)
	$([Fe^{+3}]_0 - x)([SCN^-]_0 - x)$

[SCN⁻]₀ - x

Determination of an Equilibrium Constant

Part B: Determine K_c

- Work in groups, get names of lab partner(s)
- Solvent = HNO₃ for this lab
- Acquire five Kc values; average and perform parts per thousand analysis
- Remember graph (part A) and "dilution" rules:

Ex: Find [SCN-1] if 20.0 mL of 1.50 x 10-4 M KSCN diluted to 25.0 mL $\left[\text{SCN}^{-1}\right] = \frac{20.0 \text{ mL} * 1.50 \text{ x} 10^{-4} \text{ M}}{1.50 \text{ x} 10^{-4} \text{ M}} = 1.20 \text{ x} 10^{-4} \text{ M}$ 25.0 mL

Next Week's Assignments

Turn in "Determination of an Equilibrium Constant" lab Turn in Problem Set #1 (also: Practice Problem Set #1) Take Quiz #1 (also: Sample Quiz #1) Reserve Class Presentation topic by next week Friday Prepare for "Chemical Equilibrium - Le Chatelier's Principle" Lab See "What's Due This Week" (Syllabus) ...and always... if questions, ASK ME!