CH 223 Practice Problem Set \#6

This is a practice problem set and not the actual graded problem set that you will turn in for credit.
Answers to each problem can be found at the end of this assignment.

Covering: Chapters Eighteen and Chapter Nineteen and Chapter Guide Six
Important Tables and/or Constants: "Coordination Compounds" (Handout)

1. Write balanced chemical equations for the reaction of hydrogen gas with oxygen, chlorine, and nitrogen.
2. Write a balanced chemical equation for the preparation of H_{2} (and CO) by the reaction of CH_{4} and water. Using a table of thermodynamic data, calculate $\Delta H^{\circ}, \Delta \mathrm{G}^{\circ}$, and $\Delta \mathrm{S}^{\circ}$ for this reaction.
3. Complete and balance the equations for the following reactions.
a. $\mathrm{Na}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{l}) \rightarrow$
b. $\mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$
c. $\mathrm{Al}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow$
d. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ (assume an excess of oxygen has been added)
4. Calcium oxide, CaO , is used to remove SO_{2} from power plant exhaust. These two compounds react to give solid CaSO_{3}. What mass of SO_{2} can be removed using $1.2 \times 10^{3} \mathrm{~kg}$ of CaO ?
5. Aluminum dissolves readily in hot aqueous NaOH to give the aluminate ion, $\mathrm{Al}(\mathrm{OH}) 4^{-1}$, and H_{2}. Write a balanced equation for this reaction. If you begin with 13.2 g of Al, what volume (in milliliters) of H_{2} gas is produced when the gas is measured at 735 mm Hg and $22.5^{\circ} \mathrm{C}$?
6. Use a table of thermodynamic data to calculate the enthalpy and free energy change for the reaction: $2 \mathbf{N O}(g)+\mathbf{O}_{2}(g) \rightarrow 2 \mathbf{N O}_{2}(g)$ Is this reaction exothermic or endothermic? Is the reaction product- or reactant-favored?
7. Write the balanced equation for the reaction of hydrazine in acid solution $\left(\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+1}\right)$ with $\mathrm{IO}_{3}{ }^{-1}(\mathrm{aq})$ to give N_{2} and I_{2}. Calculate E° for this reaction using a table of reduction potentials (look online for these values.)
8. If an electrolytic3cell for producing F_{2} operates at $5.00 \times 10^{3} \mathrm{amps}$ (at 10.0 V), what mass of F_{2} can be produced per 24-hour day? Assume the conversion of F^{-1} to F_{2} is 100%.
9. When BCl_{3} gas is passed through an electric discharge, small amounts of the reactive molecule $\mathrm{B}_{2} \mathrm{Cl}_{4}$ are produced. (The molecule has a B-B covalent bond.)
a. Draw a Lewis electron dot structure for $\mathrm{B}_{2} \mathrm{Cl}_{4}$.
b. Describe the hybridization of the B atoms in the molecule and the geometry around each B atom.
10. How would you extinguish a sodium fire in the laboratory? What is the worst thing you could do?
11. You are given a stoppered flask that contains either hydrogen, nitrogen, or oxygen. Suggest an experiment to identify the gas.
12. Halogens form polyhalide ions. Sketch Lewis electron dot structures and describe the molecular geometry for the following ions:
a. $\mathrm{I}_{3}{ }^{-1}$
b. $\mathrm{BrCl}_{2}{ }^{-1}$
c. $\mathrm{ClF}_{2}{ }^{+1}$
13. Give the electron configuration for each of the following ions, and tell whether each is paramagnetic or diamagnetic.
a. Cr^{3+}
b. V^{2+}
c. Ni^{2+}
d. Cu^{+}
14. The following equations represent various ways of obtaining transition metals from their compounds. Balance each equation.
a. $\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{Cr}(\mathrm{s})$
b. $\quad \mathrm{TiCl}_{4}(\mathrm{l})+\mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{Ti}(\mathrm{s})+\mathrm{MgCl}_{2}(\mathrm{~s})$
c. $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-1}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow \mathrm{Ag}(\mathrm{s})+\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-(}(\mathrm{aq})$
d. $\mathrm{Mn}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Mn}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
15. Which of the following ligands is expected to be monodentate and which might be polydentate?
a. $\mathrm{CH}_{3} \mathrm{NH}_{2} \quad$ b. $\mathrm{CH}_{3} \mathrm{CN} \quad$ c. $\mathrm{N}_{3}-1 \quad$ d. en e. $\mathrm{Br}^{-1} \quad$ f. phen
16. Give the oxidation number of the metal ion in each of the following compounds.
a. $\left[\mathrm{Mn}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{SO}_{4}$
b. $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
c. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
d. $\mathrm{Cr}(\mathrm{en})_{2} \mathrm{Cl}_{2}$
17. Write formulas for the following ions or compounds.
a. dichlorobis(ethylenediamine)nickel(II)
b. potassium tetrachloroplatinate(II)
c. potassium dicyanocuprate(I)
d. tetraamminediaquairon(II)
18. Name the following ions or compounds.
a. $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$
b. $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Br}_{2}\right]^{+1}$
c. $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{2+}$
d. $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$
19. Give the name or formula for each ion or compound, as appropriate.
a. pentaaquahydroxoiron(III) ion
b. $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$
c. $\mathrm{K}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
d. ammonium tetrachloroplatinate(II)
20. Draw all possible geometric isomers of the following.
a. $\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}$
b. $\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{SCN})(\mathrm{Br})\left(\mathrm{SCN}^{-1}\right.$ is bonded to Pt^{2+} through S$)$
c. $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{3}\left(\mathrm{NO}_{2}{ }^{-1}\right.$ is bonded to Co^{3++} through N$)$
d. $\left[\mathrm{Co}(\mathrm{en}) \mathrm{Cl}_{2}\right]^{-1}$
21. In water, the titanium(III) ion, $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, has a broad absorption band at about 500 nm . What color light is absorbed by the ion?
22. A transition metal complex absorbs $425-\mathrm{nm}$ light. What is its color?
a. red
b. green
c. yellow
d. blue
23. Give the formula of the complex formed from one Co^{3+} ion, two ethylenediamine molecules, one water molecule, and one chloride ion. Is the complex neutral or charged? If charged, give the net charge on the ion.

Answers to the Practice Problem Set:

1. Answers:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$
$3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
2. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) ; \Delta H^{\mathrm{o}}=205.9 \mathrm{~kJ}, \Delta S^{\mathrm{o}}=214.7 \mathrm{~J} / \mathrm{K}, \Delta G^{\mathrm{o}}=141.9 \mathrm{~kJ}$ (Note: Answers will vary depending on table used)
3. Answers:
a. $2 \mathrm{Na}(\mathrm{s})+\mathrm{Br}_{2}(\ell) \rightarrow 2 \mathrm{NaBr}(\mathrm{s})$
b. $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
c. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlF}_{3}(\mathrm{~g})$
d. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
4. $1.4 \times 10^{6} \mathrm{~g}$
5. $2 \mathrm{Al}(\mathrm{s})+2 \mathrm{NaOH}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow 2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g}) ; 1.84 \times 10^{4} \mathrm{~mL}$
6. $\Delta H^{\mathrm{o}}=-114.1 \mathrm{~kJ}, \Delta G^{\mathrm{o}}=-72.6 \mathrm{~J} / \mathrm{K}$; exothermic and product-favored
7. $5 \mathrm{~N}_{2} \mathrm{H}_{5}{ }^{+}(\mathrm{aq})+4 \mathrm{IO}_{3}^{-}(\mathrm{aq}) \rightarrow 5 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{I}_{2}(\mathrm{aq})+12 \mathrm{H}_{2} \mathrm{O}(\ell) ; E^{\circ}=(1.195-(-0.23)=$ 1.43 V (Note: Answers will vary depending on table used)
8. $8.51 \times 10^{4} \mathrm{~g}$
9. a. B-B single bond, each B has two Cl atoms connected via sigma bond b. $s p^{2}$, trigonal planar
10. Use inert dry chemical fire extinguisher; Na reacts with water!
11. Insert glowing splint: H will ignite, O will burst into flame, N will extinguish flint 12. Answers:
a. $\left[\begin{array}{ccc}\because \mathrm{I} & \cdots & \cdots \\ \cdots & \cdot & \cdot \\ \mathrm{I} & \cdot\end{array}\right]$
linear
b. $\quad\left[\begin{array}{lll}\because \ddot{\mathrm{Cl}}- & \ddot{\mathrm{Br}}- & \ddot{\mathrm{Cl}}: \\ \bullet & \cdot\end{array}\right]$
linear
c. $\left[\begin{array}{lll}\because \ddot{\mathrm{F}} & \ddot{\mathrm{Cl}}-\ddot{\mathrm{F}}: \\ \because \cdot\end{array}\right]^{+}$
bent
12. a. $[\mathrm{Ar}] 3 d^{3}$, paramagnetic b. $[\mathrm{Ar}] 3 d^{3}$, paramagnetic c. $[\mathrm{Ar}] 3 d^{8}$, paramagnetic d. $[\mathrm{Ar}] 3 d^{10}$, diamagnetic
13. Answers:
a. $\quad \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Cr}(\mathrm{s})$
b. $\mathrm{TiCl}_{4}(\ell)+2 \mathrm{Mg}(\mathrm{s}) \rightarrow \mathrm{Ti}(\mathrm{s})+2 \mathrm{MgCl}_{2}(\mathrm{~s})$
c. $2\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]-(\mathrm{aq})+\mathrm{Zn}(\mathrm{s}) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}(\mathrm{aq})$
d. $3 \mathrm{Mn}_{3} \mathrm{O}_{4}(\mathrm{~s})+8 \mathrm{Al}(\mathrm{s}) \rightarrow 9 \mathrm{Mn}(\mathrm{s})+4 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
14. monodentate: $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}$ polydentate: d, f
15. a. Mn^{2+} b. Co^{3+} c. Co^{3+} d. Cr^{2+}
16. a. $\left[\mathrm{NiCl}_{2}(\mathrm{en})_{2}\right]$
b. $\mathrm{K}_{2}\left[\mathrm{PtCl}_{4}\right]$
c. $\mathrm{K}\left[\mathrm{Cu}(\mathrm{CN})_{2}\right]$
d. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
17. Answers:
a. diaquabis(oxalato)nickelate(II) ion
b. dibromobis(ethylenediamine)cobalt(II) ion
c. amminechlorobis(ethylenediamine)cobalt(III) ion
d. diammineoxalatoplatinum(II)
18. Answers:
(a) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}$
(b) potassium tetracyanonickelate(II)
(c) potassium diaquabis(oxalato)chromate(III)
(d) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{PtCl}_{4}\right]$
19. Answers:
a.

b.

20. yellow
21. yellow
22. $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{+}$, aquachlorobis(ethylenediamine)cobalt(III) ion. The complex has a +1 charge
