CH 223 Practice Problem Set #5

This is a practice problem set and not the actual graded problem set that you will turn in for credit. Answers to each problem can be found at the end of this assignment.

Covering: Chapter Sixteen, Chapter Seventeen and Chapter Guide Five Important Tables and/or Constants: F = 96485 C/mol e-, R = 8.3145 J mol⁻¹ K⁻¹, "Redox Reactions" (Handout), Table of Redox Potentials at the end of problem set #5, Table of Thermodynamic values at the end of problem set #5 and here: http://mhchem.org/thermo

- 1. Classify each of the reactions according to their spontaneity. Are these reactions enthalpy and/or entropy driven?
 - a. $Fe_2O_3(s) + 2 Al(s) \rightarrow 2 Fe(s) + Al_2O_3(s) \quad \Delta H^\circ = -851.5 \text{ kJ} \quad \Delta S^\circ = -375.2 \text{ J/K}$
 - b. $N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$ $\Delta H^\circ = 66.2 \text{ kJ}; \quad \Delta S^\circ = -121.6 \text{ J/K}$
- 2. Heating some metal carbonates, among them calcium carbonate, leads to their decomposition.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

- a. Calculate ΔH° and ΔS° for the reaction.
- b. Is the reaction spontaneous at 298 K?
- c. Is the reaction predicted to be spontaneous at higher temperatures?
- 3. Using values of ΔH°_{f} and S° , calculate ΔG°_{rxn} for the following reaction. Is the reaction product-favored? Is the reaction enthalpy or entropy driven?

 $2 \operatorname{Pb}(s) + O_2(g) \rightarrow 2 \operatorname{PbO}(s, \text{ yellow})$

- 4. Using values of ΔG°_{f} , calculate ΔG°_{rxn} for each of the following reactions. Which are product-favored?
 - a. $2 \text{ K(s)} + \text{Cl}_2(g) \rightarrow 2 \text{ KCl(s)}$
 - b. $2 \operatorname{CuO}(s) \rightarrow 2 \operatorname{Cu}(s) + O_2(g)$
 - c. $4 \text{ NH}_3(g) + 7 \text{ O}_2(g) \rightarrow 4 \text{ NO}_2(g) + 6 \text{ H}_2\text{O}(g)$
- 5. For the reaction: BaCO₃(s) \rightarrow BaO(s) + CO₂(g), $\Delta G^{\circ}_{rxn} = +219.7$ kJ. Using this value and a table of thermodynamic data, calculate the value of ΔG°_{f} for BaCO₃(s).
- 6. Estimate the temperature required to decompose HgS(s) into Hg(l) and S(g).
- 7. Calculate ΔG° and K_{p} at 25 °C for the reaction: 2 HBr(g) + Cl₂(g) \rightarrow 2 HCl(g) + Br₂(l) Is the reaction predicted to be product-favored under standard conditions? Comment on the sign of ΔG° and the magnitude of K_{p} .
- 8. Write balanced equations for the following half-reactions. Specify whether each is an oxidation or reduction.
 - a. $Cr(s) \rightarrow Cr^{3+}(aq)$ (in acid)
 - b. $AsH_3(g) \rightarrow As(s)$ (in acid)
 - c. $VO_{3^{-1}}(aq) \rightarrow V^{2+}(aq)$ (in acid)
 - d. $Ag(s) \rightarrow Ag_2O(s)$ (in base)

- 9. Balance the following redox equations. All occur in acid solution.
 - a. $Ag(s) + NO_3^{-1}(aq) \rightarrow NO_2(g) + Ag^+(aq)$
 - b. $MnO_{4^{-1}}(aq) + HSO_{3^{-1}}(aq) \rightarrow Mn^{2+}(aq) + SO_{4^{2-}}(aq)$
 - c. $Zn(s) + NO_{3^{-1}}(aq) \rightarrow Zn^{2+}(aq) + N_2O(g)$
 - d. $Cr(s) + NO_{3^{-1}}(aq) \rightarrow Cr^{3+}(aq) + NO(g)$
- 10. Balance the following redox equations. All occur in basic solution.
 - a. $Al(s) + OH^{-1}(aq) \rightarrow Al(OH)_{4^{-1}}(aq) + H_2(g)$
 - b. $\operatorname{CrO_{4^2}}(\operatorname{aq}) + \operatorname{SO_{3^2}}(\operatorname{aq}) \rightarrow \operatorname{Cr}(\operatorname{OH})_3(\operatorname{s}) + \operatorname{SO_{4^2}}(\operatorname{aq})$
 - c. $\operatorname{Zn}(s) + \operatorname{Cu}(OH)_2(s) \rightarrow [\operatorname{Zn}(OH)_4]^{2-}(\operatorname{aq}) + \operatorname{Cu}(s)$
 - d. $HS^{-1}(aq) + ClO_3^{-1}(aq) \rightarrow S(s) + Cl^{-1}(aq)$
- 11. A voltaic cell is constructed using the reaction of chromium metal and iron(II) ion.

 $2 \operatorname{Cr}(s) + 3 \operatorname{Fe}^{2+}(aq) \rightarrow 2 \operatorname{Cr}^{3+}(aq) + 3 \operatorname{Fe}(s)$

Complete the following sentences: Electrons in the external circuit flow from the _____ electrode to the _____ electrode. Negative ions move in the salt bridge from the _____ half-cell to the _____ half-cell. The half-reaction at the anode is _____ and that at the cathode is _____.

- 12. The half-cells Fe(s) | Fe²⁺(aq) || O₂(g, 1 atm) | H₂O(l, pH = 1.0) are linked to create a voltaic cell.
 - a. Write equations for the oxidation and reduction half-reactions and for the overall (cell) reaction.
 - b. Which half-reaction occurs in the anode compartment and which occurs in the cathode compartment?
 - c. Complete the following sentences: Electrons in the external circuit flow from the ______ electrode to the _____ electrode. Negative ions move in the salt bridge from the _____ half-cell to the _____ half-cell.
- 13. Balance each of the following *unbalanced* equations, then calculate the standard redox potential, E° , and decide whether each is product-favored as written. All reactions occur in acid solution.
 - a. $\operatorname{Sn}^{2+}(\operatorname{aq}) + \operatorname{Ag}(s) \rightarrow \operatorname{Sn}(s) + \operatorname{Ag}^{+1}(\operatorname{aq})$
 - b. $Al(s) + Sn^{4+}(aq) \rightarrow Sn^{2+}(aq) + Al^{3+}(aq)$
 - c. $ClO_{3^{-1}}(aq) + Ce^{3+}(aq) \rightarrow Cl^{-1}(aq) + Ce^{4+}(aq)$ Look these cell potentials up online
 - d. $Cu(s) + NO_{3^{-1}}(aq) \rightarrow Cu^{2+}(aq) + NO(g)$

14. Consider the following half-reactions:

e	
Half-Reaction	$E^{\circ}(\mathbf{V})$
$\overline{\mathrm{Cu}^{2+}(\mathrm{aq}) + 2 e^{-} \rightarrow \mathrm{Cu}(\mathrm{s})}$	+0.34
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2 e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Fe^{2+}(aq) + 2 e^{-} \rightarrow Fe(s)$	-0.44
$Zn^{2+}(aq) + 2 e^{-} \rightarrow Zn(s)$	-0.76
$Al^{3+}(aq) + 3 e^{-} \rightarrow Al(s)$	-1.66

- a. Based on E° values, which metal is the most easily oxidized?
- b. Which metals on this list are capable of reducing $Fe^{2+}(aq)$ to Fe?
- c. Write a balanced chemical equation for the reaction of $Fe^{2+}(aq)$ with Sn(s). Is this reaction product-favored or reactant-favored?
- d. Write a balanced chemical equation for the reaction of $Zn^{2+}(aq)$ with Sn(s). Is this reaction product-favored or reactant-favored?
- 15. Calculate the voltage delivered by a voltaic cell using the following reaction if all dissolved species are 2.5 x 10⁻² M. Use the OpenStax text to find the cell potentials.

 $Zn(s) + 2 H_2O(l) + 2 OH^{-1}(aq) \rightarrow [Zn(OH)_4]^{2-}(aq) + H_2(g)$

- 16. Calculate ΔG° and the equilibrium constant for the following reactions.
 - a. 2 Fe³⁺(aq) + 2 I⁻¹(aq) \rightarrow 2 Fe²⁺(aq) + I₂(aq)
 - b. $I_2(aq) + 2 \operatorname{Br}^{-1}(aq) \rightarrow 2 \operatorname{I}^{-1}(aq) + \operatorname{Br}_2(aq)$
- 17. A potential of +0.146 V is recorded (under standard conditions) for a voltaic cell constructed using the following half-reactions:
 - Anode: $Ag(s) \rightarrow Ag^{+1}(aq) + e^{-1}$

Cathode: $Ag_2SO_4(s) + 2 e^- \rightarrow 2 Ag(s) + SO_4^{2-}(aq)$

- a. What is the standard reduction potential for the cathode reaction?
- b. Calculate the solubility product, K_{sp} , for Ag₂SO₄.
- 18. In the electrolysis of a solution containing Ni²⁺(aq), metallic Ni(s) deposits on the cathode. Using a current of 0.150 A for 12.2 min, what mass of nickel will form?
- 19. Electrolysis of a solution of CuSO₄(aq) to give copper metal is carried out using a current of 0.66 A. How long should electrolysis continue to produce 0.50 g of copper?
- 20. Electrolysis of molten NaCl is done in cells operating at 7.0 V and 4.0 x 10^4 A. What mass of Na(s) and Cl₂(g) can be produced in one day in such a cell? What is the energy consumption in kilowatt-hours? (1 kWh = 3.6 x 10^6 J and 1 J = 1 C · V)

Answers to the Practice Problem Set: *Please note* that all thermodynamic and electrochemical answers will vary slightly depending on the source of values used to solve the problems. The answers should be close, however.

- 1. a. enthalpy driven, spontaneous at low temperatures b. non-spontaneous at all temperatures
- 2. a. $\Delta H^{\circ} = 191.59 \text{ kJ}, \Delta S^{\circ} = 141.9 \text{ J/K}$ b. no c. yes
- 3. $\Delta H^{\circ} = -434.64 \text{ kJ}, \Delta S^{\circ} = -197.4 \text{ J/K}, \Delta G^{\circ} = -375.77 \text{ kJ}$; product favored, enthalpy driven
- 4. a. $\Delta G^{\circ} = -817.0$ kJ; product favored b. $\Delta G^{\circ} = 259.4$ kJ; reactant favored c. $\Delta G^{\circ} = -1101.3$ kJ; product favored
- 5. $\Delta G_f^{o}[BaCO_3(s)] = -1134.4 \text{ kJ/mol}$
- 6. 2089 K or greater
- 7. $\Delta G^{\circ} = -83.74$ kJ; $K_{\rm p} = 4.8 \times 10^{14}$ Negative ΔG and large $K_{\rm p}$ indicate product-favored reaction
- 8. Answers:

a.	$Cr(s) \rightarrow Cr^{3+}(aq) + 3 e^{-}$	oxidation
b.	$AsH_3(g) \rightarrow As(s) + 3 H^+(aq) + 3 e^-$	oxidation
c.	VO_3 -(aq) + 6 H ⁺ (aq) + 3 e ⁻ \rightarrow V ²⁺ (aq) + 3 H ₂ O(ℓ)	reduction
d.	$2 \operatorname{Ag}(s) + 2 \operatorname{OH}(aq) \rightarrow \operatorname{Ag_2O}(s) + \operatorname{H_2O}(\ell) + 2 e^{-1}$	oxidation

- 9. Answers:
 - a. $Ag(s) + NO_3(aq) + 2 H^+(aq) \rightarrow Ag^+(aq) + NO_2(g) + H_2O(\ell)$
 - b. $2 \text{ MnO}_{4^{-}}(aq) + H^{+}(aq) + 5 \text{ HSO}_{3^{-}}(aq) \rightarrow 2 \text{ Mn}^{2^{+}}(aq) + 3 \text{ H}_{2}O(\ell) + 5 \text{ SO}_{4^{2^{-}}}(aq)$
 - c. $4 Zn(s) + 2 NO_3(aq) + 10 H^+(aq) \rightarrow 5 H_2O(\ell) + 4 Zn^{2+}(aq) + N_2O(g)$
 - d. $Cr(s) + NO_{3}(aq) + 4 H^{+}(aq) \rightarrow Cr^{3+}(aq) + NO(g) + 2 H_{2}O(\ell)$
- 10. Answers:
 - a. $2 \operatorname{Al}(s) + 6 \operatorname{H}_2\operatorname{O}(\ell) + 2 \operatorname{OH}(aq) \rightarrow 2 \operatorname{Al}(\operatorname{OH})_4(aq) + 3 \operatorname{H}_2(g)$
 - b. $2 \operatorname{CrO}_4(aq) + 5 \operatorname{H}_2O(\ell) + 3 \operatorname{SO}_3(aq) \rightarrow 2 \operatorname{Cr}(OH)_3(s) + 4 \operatorname{OH}_4(aq) + 3 \operatorname{SO}_4(aq)$
 - c. $Zn(s) + 2 OH^{-}(aq) + Cu(OH)_{2}(s) \rightarrow Zn(OH)_{4^{2-}}(aq) + Cu(s)$
 - d. $3 \text{ HS-}(aq) + \text{ClO}_3(aq) \rightarrow 3 \text{ S(s)} + \text{Cl-}(aq) + 3 \text{ OH-}(aq)$
- 11. Electrons in the external circuit flow from the Cr electrode to the Fe electrode. Negative ions move in the salt bridge from the Fe/Fe²⁺ half-cell to the Cr/Cr³⁺ half-cell. The half-reaction at the anode is Cr(s) \rightarrow Cr³⁺(aq) + 3 e⁻ and that at the cathode is Fe²⁺(aq) + 2 e⁻ \rightarrow Fe(s).
- 12. Answers:
 - a. Oxidation: $Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}$
 - Reduction: $O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(\ell)$
 - Overall: 2 Fe(s) + $O_2(g)$ + 4 H⁺(aq) \rightarrow 2 H₂O(ℓ) + 2 Fe²⁺(aq)

b. Oxidation occurs in the anode compartment and reduction occurs in the cathode compartment.

c. Electrons in the external circuit flow from the Fe electrode to the positive (site of O_2 reduction) electrode. Negative ions move in the salt bridge from the O_2/H_2O half-cell to the Fe/Fe²⁺ half-cell.

13. Answers:

a.
$$Sn^{2+}(aq) + 2 Ag(s) \rightarrow Sn(s) + 2 Ag^{+}(aq)$$

 $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} = (-0.14 V) - (+0.799 V) = -0.94 V$ not product-favored
b. $2 Al(s) + 3 Sn^{4+}(aq) \rightarrow 2 Al^{3+}(aq) + 3 Sn^{2+}(aq)$
 $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} = (+0.15 V) - (-1.66 V) = +1.81 V$ product-favored
c. $ClO_{3^{-}}(aq) + 6 H^{+}(aq) + 6 Ce^{3+}(aq) \rightarrow Cl^{-}(aq) + 3 H_2O(\ell) + 6 Ce^{4+}(aq)$
 $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} = (+0.62 V) - (+1.61 V) = -0.99 V$ not product-favored
d. $3 Cu(s) + 2 NO_{3^{-}}(aq) + 8 H^{+}(aq) \rightarrow 2 NO(g) + 3 Cu^{2+}(aq) + 4 H_2O(\ell)$
 $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} = (+0.96 V) - (+0.337 V) = +0.62 V$ product-favored
14. Answers:
a. $Al(s)$
b. $Zn(s)$ and $Al(s)$
c. $Fe^{2+}(aq) + Sn(s) \rightarrow Fe(s) + Sn^{2+}(aq)$
 $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} = (-0.44 V) - (-0.14 V) = -0.30 V$ reactant-favored
d. $Zn^{2+}(aq) + Sn(s) \rightarrow Zn(s) + Sn^{2+}(aq)$
 $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} = (-0.76 V) - (-0.14 V) = -0.62 V$ reactant-favored
15. $0.32 V$
16. a. $\Delta G^{\circ} = -45.5 \text{ kJ}$, $K = 9 \times 10^7$ b. $\Delta G^{\circ} = 110 \text{ kJ}$, $K = 4 \times 10^{-19}$
17. a. $0.653 V$ b. $K_{sp} = 1 \times 10^{-5}$
18. $0.0334 g$
19. 2300 s (38 min)
20. $8.2 \times 10^5 \text{ g Na}$, $1.3 \times 10^6 \text{ g Cl}_2$, 6700 kwh