CH 223 Practice Problem Set \#4

This is a practice problem set and not the actual graded problem set that you will turn in for credit.
Answers to each problem can be found at the end of this assignment.

Covering: Chapter Fifteen (solubility), Chapter Sixteen and Chapter Guide Four
Important Tables and/or Constants: Solubility Table (from the CH 221 Net Ionics lab or here: https://mhchem.org/ sol), "Solubility Product Constant $\left(\mathbf{K}_{\mathbf{s p}}\right)$ Values at $25{ }^{\circ} \mathbf{C}$ " and "Complex Ion Formation Constant $\left(\mathbf{K}_{\mathbf{f}}\right)$ Values at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$ " at the end of problem set \#4, "Solubility Guide" (Handout), Table of Thermodynamic Values (found at the end of CH 223 Problem Set \#5 or here: http://mhchem.org/thermo)

1. Predict whether each of the following is insoluble or soluble in water.
a. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
b. ZnSO_{4}
c. NiS
d. BaSO_{4}
2. For each of the following insoluble salts, (i) write a balanced equation showing the equilibrium occurring when the salt is added to water and (ii) write the $K_{\text {sp }}$ expression.
a. AgCN
b. NiCO_{3}
c. AuBr_{3}
3. When 1.55 g of solid thallium(I) bromide is added to 1.00 L of water, the salt dissolves to a small extent.

$$
\mathrm{TlBr}(\mathrm{~s}) \rightleftarrows \mathrm{Tl}^{+}(\mathrm{aq})+\mathrm{Br}^{-1}(\mathrm{aq})
$$

The thallium(I) and bromide ions in equilibrium with TlBr each have a concentration of 1.9 x $10^{-3} \mathrm{M}$. What is the value of $K_{\text {sp }}$ for TlBr ?
4. You add 0.979 g of $\mathrm{Pb}(\mathrm{OH})_{2}$ to 1.00 L of pure water at $25^{\circ} \mathrm{C}$. The pH is 9.15 . Estimate the value of $K_{\text {sp }}$ for $\mathrm{Pb}(\mathrm{OH})_{2}$.
5. Estimate the solubility of calcium fluoride, CaF_{2}, (a) in moles per liter and (b) in grams per liter of pure water.

$$
\mathrm{CaF}_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-1}(\mathrm{aq}) \quad K_{\mathrm{sp}}=5.3 \times 10^{-11}
$$

6. The $K_{\text {sp }}$ value for radium sulfate, RaSO_{4}, is 3.7×10^{-11}. If 25 mg of radium sulfate is placed in $1.00 \times 10^{2} \mathrm{~mL}$ of water, does all of it dissolve? If not, how much dissolves?
7. Use $K_{\text {sp }}$ values to decide which compound in each of the following pairs is the more soluble.
a. $\mathrm{PbCl}_{2}\left(K_{\mathrm{Sp}}=1.7 \times 10^{-5}\right)$ or $\mathrm{PbBr}_{2}\left(K_{\mathrm{Sp}}=6.6 \times 10^{-6}\right)$
b. $\mathrm{HgS}\left(K_{\mathrm{sp}}=4.2 \times 10^{-11}\right)$ or $\mathrm{FeS}\left(K_{\mathrm{Sp}}=8.0 \times 10^{-19}\right)$
c. $\mathrm{Fe}(\mathrm{OH})_{2}\left(K_{\mathrm{Sp}}=4.9 \times 10^{-17}\right)$ or $\mathrm{Zn}(\mathrm{OH})_{2}\left(K_{\mathrm{Sp}}=3.0 \times 10^{-17}\right)$
8. Compare the solubility, in milligrams per milliliter, of silver iodide, AgI, (a) in pure water and (b) in water that is $0.020 \mathrm{M} \mathrm{in}_{\mathrm{AgNO}_{3}}$. $\left(K_{\text {Sp }}\right.$ for $\left.\mathrm{AgI}=8.5 \times 10^{-17}\right)$
9. You have a solution that has a lead(II) concentration of 0.0012 M .
$\mathrm{PbCl}_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-1}(\mathrm{aq})$
If enough soluble chloride-containing salt is added so that the Cl^{-1} concentration is 0.010 M , will PbCl_{2} precipitate? $\left(K_{\mathrm{sp}}\right.$ for $\left.\mathrm{PbCl}_{2}=1.7 \times 10^{-5}\right)$
10. Will a precipitate of $\mathrm{Mg}(\mathrm{OH})_{2}$ form when 25.0 mL of 0.010 M NaOH is combined with 75.0 mL of a 0.10 M solution of magnesium chloride? $\left(K_{\text {sp }}\right.$ for $\left.\mathrm{Mg}(\mathrm{OH})_{2}=5.6 \times 10^{-12}\right)$
11. Solid gold(I) chloride, AuCl , dissolves when excess cyanide ion, CN^{-1}, is added to give a water-soluble complex ion.

$$
\mathrm{AuCl}(\mathrm{~s})+2 \mathrm{CN}^{-1}(\mathrm{aq}) \rightleftarrows\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-1}(\mathrm{aq})+\mathrm{Cl}^{-1}(\mathrm{aq})
$$

Show that this equation is the sum of two other equations, one for dissolving AuCl to give its ions ($K_{\text {sp }}=2.0 \times 10^{-13}$) and the other for the formation of the $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-1}$ ion (using $K_{\text {form }}=$ 2.0×10^{38}) from Au^{+1} and CN^{-1}. Calculate $K_{\text {net }}$ for the overall reaction.
12. Each pair of ions below is found together in aqueous solution. Using a table of solubility product constants, devise a way to separate these ions by precipitating one of them as an insoluble salt and leaving the other in solution.
a. Ba^{2+} and Na^{+}
b. Ni^{2+} and Pb^{2+}
13. A solution contains Ca^{2+} and Pb^{2+} ions, both at a concentration of 0.010 M . You wish to separate the two ions from each other as completely as possible by precipitating one but not the other using aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ as the precipitating agent.
a. Which will precipitate first as sodium sulfate is added, CaSO_{4} or PbSO_{4} ?
b. What will be the concentration of the first ion that precipitates $\left(\mathrm{Ca}^{2+}\right.$ or $\left.\mathrm{Pb}^{2+}\right)$ when the second, more soluble salt begins to precipitate?
14. Explain why the solubility of $\mathrm{Ag}_{3} \mathrm{PO}_{4}$ can be greater in water than is calculated from the $K_{\text {sp }}$ value of the salt.
15. Which substance has the higher entropy in each of the following pairs?
a. dry ice (solid CO_{2}) at $-78{ }^{\circ} \mathrm{C}$ or $\mathrm{CO}_{2}(\mathrm{~g})$ at $0^{\circ} \mathrm{C}$
b. liquid water at $25^{\circ} \mathrm{C}$ or liquid water at $50^{\circ} \mathrm{C}$
c. pure alumina, $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$, or ruby (ruby is $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$ in which some of the Al^{3+} ions in the crystalline lattice are replaced with Cr^{3+} ions.)
d. one mole of $\mathrm{N}_{2}(\mathrm{~g})$ at 1 bar pressure or one mole of $\mathrm{N}_{2}(\mathrm{~g})$ at 10 bar pressure (both at 298 K)
16. By comparing the formulas for each pair of compounds, decide which is expected to have the higher entropy. Assume all are at the same temperature.
a. $\mathrm{O}_{2}(\mathrm{~g})$ or $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ (two substances with the same molar mass)
b. $\mathrm{HF}(\mathrm{g}), \mathrm{HCl}(\mathrm{g})$, or $\mathrm{HBr}(\mathrm{g})$
c. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ or $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})$
d. $\mathrm{HNO}_{3}(\mathrm{~g}), \mathrm{HNO}_{3}(\mathrm{l})$, or $\mathrm{HNO}_{3}(\mathrm{aq})$
17. Use S° values to calculate the entropy change, ΔS°, for each of the following processes and comment on the sign of the change.
a. $\mathrm{LiOH}(\mathrm{s}) \rightarrow \mathrm{LiOH}(\mathrm{aq}) \quad\left(\right.$ Note: $\left.S^{\circ}(\mathrm{LiOH}(\mathrm{aq}))=91.6 \mathrm{~J} / \mathrm{molK}\right)$
b. $\mathrm{Na}(\mathrm{g}) \rightarrow \mathrm{Na}(\mathrm{s})$
c. $\mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g})$
d. $\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{HCl}(\mathrm{aq}) \quad$ (Note: $\left.S^{\circ}(\mathrm{HCl}(\mathrm{aq}))=56.5 \mathrm{~J} / \mathrm{molK}\right)$
18. Calculate the standard molar entropy change of formation $\left(\Delta \mathrm{S}_{f}^{\circ}\right)$ for each of the following compounds from the elements at $25^{\circ} \mathrm{C}$.
a. $\mathrm{HCl}(\mathrm{g})$
b. $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
19. Calculate the standard molar entropy change for each of the following reactions at $25^{\circ} \mathrm{C}$. Comment on the sign of $\Delta \mathrm{S}^{\circ}$.
a. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})$
b. $2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Answers to the Practice Problem Set:

1. (a) and (b): soluble, (c) and (d): insoluble
2. Answers:
a. $\operatorname{AgCN}(\mathrm{s}) \rightleftarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \quad K_{\mathrm{sp}}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CN}^{-}\right]$
b. $\mathrm{NiCO}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \quad K_{\text {sp }}=\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]$
c. $\mathrm{AuBr}_{3}(\mathrm{~s}) \rightleftarrows \mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{Br}(\mathrm{aq}) \quad K_{\text {sp }}=\left[\mathrm{Au}^{3+}\right]\left[\mathrm{Br}^{-}\right]^{3}$
3. 3.6×10^{-6}
4. 1.4×10^{-15}
5. a. $2.4 \times 10^{-4} \quad$ b. 0.018
6. No; 0.20 mg dissolves
7. a. $\mathrm{PbCl}_{2} \quad$ b. HgS b. $\mathrm{Fe}(\mathrm{OH})_{2}$
8. a. 2.2×10^{-6} b. 1.0×10^{-13}
9. $Q<K_{\text {sp }}$ so no precipitate
10. $Q>K_{\text {sp }}$ so precipitate forms
11. $K_{\text {net }}=4.0 \times 10^{25}$
12. a. $\mathrm{SO}_{4}{ }^{2-}$ will precipitate Ba^{2+} b. Cl^{-1} will precipitate Pb^{2+}
13. a. PbSO_{4} b. $5.1 \times 10^{-6} \mathrm{M}$
14. $\mathrm{PO}_{4}{ }^{3-}$ acts as a base, increasing solubility upon formation of $\mathrm{HPO}_{4}{ }^{2-}$
15. a. $\mathrm{CO}_{2}(\mathrm{~g})$ b. $50^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ c. ruby d. $\mathrm{N}_{2}(\mathrm{~g})$ at 1 bar
16. a. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \quad$ b. $\mathrm{HBr}(\mathrm{g}) \quad$ c. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \quad$ d. $\mathrm{HNO}_{3}(\mathrm{~g})$
17. a. $48.8 \mathrm{~J} / \mathrm{K}$ (entropy increase) b. $-102.4 \mathrm{~J} / \mathrm{K}$ (entropy decrease) c. $93.3 \mathrm{~J} / \mathrm{K}$ (entropy increase) d. $-130.4 \mathrm{~J} / \mathrm{K}$ (entropy decrease) (Instructor note: your values of $\Delta \mathrm{S}$ might be slightly different depending on the textbook used, etc., but they should be close to these values.)
18. a. 10.0 J/K b. -294.1 J/K (see note in answer \#17, above)
19. a. $-504.6 \mathrm{~J} / \mathrm{K}$ (entropy increase) b. $313.6 \mathrm{~J} / \mathrm{K}$ (entropy decrease) (see note in answer \#17, above)
