CH 222 Practice Problem Set #1

This is a **practice problem set** and not the actual graded problem set that you will turn in for credit.

Answers to each problem can be found at the end of this assignment.

Covering: Chapter Seven and Chapter Guide One

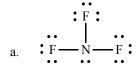
Important Tables and/or Constants: "Bond Enthalpies and Electronegativities" Handout (after problem set #1) and "Geometry and Polarity Guide" (summary of molecular geometries and polarities Handout in Companion)

- 1. Give the periodic group number and number of valence electrons for each of the following atoms.
 - a.O b.B c.Na d.Mg e.F f.S
- 2. Which of the following elements are capable of forming compounds in which the indicated atom has more than four valence electron pairs?
 - a. N b. As c. C d. O e. Br f. Be g. S h. Se
- 3. Which compound in each of the following pairs should require the higher temperature to melt?
 - a. KBr or CsBr
 - b. SrS or CaS
 - c. LiF or BeO
- 4. Draw a Lewis structure for each of the following molecules.
 - a. NF₃ b. CHClF₂ c. HOBr d. CH₃CN
- 5. Draw a Lewis structure for each of the following molecules or ions.
 - a. BrF_3 b. I_3^{1-} c. XeO_2F_2 d. XeF_3^{1+}
- 6. Draw a Lewis structure for each of the following molecules or ions. Describe the electronpair geometry and the molecular geometry around the central atom.
 - a. NH₂Cl b. Cl₂O (O is the central atom) c. SCN¹- (C is the central atom) d. HOF
- 7. Draw a Lewis structure for each of the following molecules or ions. Describe the electronpair geometry and the molecular geometry around the central atom.
 - a. ClF_2^{1-} b. ClF_3 c. ClF_4^{1-} d. ClF_5
- 8. Give approximate values for the indicated bond angles.
 - a. O-S-O in SO₂
 - b. F-B-F angle in BF₃
 - c. Cl-C-Cl angle in Cl₂CO
- 9. Determine the formal charge on each atom in the following molecules and ions.
 - a. NO₂+1 b. NO₂1- c. NF₃ d. HNO₃
- 10. For each of the bonds below, Tell which atom is the more negatively charged using values of electronegativity in your textbook to support your answer..
 - a. C-O b. P-Cl c. B-O d. B-F
- 11. In the following list of compounds, which bond is the most polar? Which compound(s) are nonpolar? Which atom in CIF is more negatively charged?
 - a. H₂O b. NH₃ c. CO₂ d. ClF e. CCl₄

- 12. Three resonance structures are possible for dinitrogen monoxide, N2O.
 - a. Draw the three resonance structures.
 - b. Calculate the formal charge on each atom in each resonance structure.
 - c. Based on formal charges and electronegativity, predict which resonance structure is the most reasonable.
- 13. Give the bond order for each bond in the following molecules or ions.
 - a. CH₂O b. CO₂ c. NO₂1+ d. CH₄
- 14. The compound oxygen difluoride is quite reactive, giving oxygen and HF when treated with water:

$$OF_2(g) + H_2O(g) \rightarrow O_2(g) + 2 HF(g)$$
 $\Delta H^{\circ}_{rxn} = -318 \text{ kJ}$

Using bond energies, calculate the bond dissociation energy of the O-F bond in OF₂.


- 15. Nitric acid, HNO₃, has three resonance structures. One of them, however, contributes much less to the resonance hybrid than the other two. Sketch the three resonance structures and assign a formal charge to each atom. Which one of your structures is the least important?
- 16. Draw the Lewis structure of ammonium nitrate.

Answers to the Practice Problem Set:

1. Answers:

- a. O Group 6Ab. B Group 3A6 valence electrons3 valence electrons
- c. Na Group 1A 1 valence electron d. Mg Group 2A 2 valence electrons
- e. F Group 7A 7 valence electrons f. S Group 6A 6 valence electrons
- 2. b. As e. Br g. S h. Se (all third period or lower)
- 3. a. KBr b. CaS c. BeO

4. Answers:

5. Answers:

c.

6. Answers:

electron pair geometry, tetrahedral

molecular geometry, trigonal pyramidal

electron pair geometry, tetrahedral

molecular geometry, bent

electron pair geometry, linear

molecular geometry, linear

electron pair geometry, tetrahedral

molecular geometry, bent

7. Answers:

electron-pair geometry, trigonal bipyramid

electron-pair geometry, octahedral

molecular geometry, linear

molecular geometry, square planar

electron-pair geometry = trigonal bipyramid

electron-pair geometry, octahedral

molecular geometry, T-shaped

8. a. 120° b. 120° c. 120°

molecular geometry, square pyramidal

9. Answers:

a.
$$\begin{bmatrix} O = N = O \\ O = N = O \end{bmatrix}^{+}$$

$$O = 6 - 4 - \frac{1}{2}(4) = 0$$

$$N = 5 - 0 - \frac{1}{2}(8) = 1$$

d.

$$F = 7 - 6 - \frac{1}{2}(2) = 0$$

$$N = 5 - 2 - \frac{1}{2}(6) = 0$$

b.
$$\begin{bmatrix} O = N - O \\ O = N - O \end{bmatrix}^{-1}$$

$$O = 6 - 4 - \frac{1}{2}(4) = 0$$

$$N = 5 - 2 - \frac{1}{2}(6) = 0$$

$$\begin{array}{ccc} \bullet & \bullet & \bullet & \bullet \\ = 6 - 4 - \frac{1}{2}(4) = 0 & \text{H} = 1 - 0 - \frac{1}{2}(2) = 0 \end{array}$$

$$O = 6 - 4 - \frac{1}{2}(4) = 0$$

$$N = 5 - 0 - \frac{1}{2}(8) = 1$$

$$O = 6 - 4 - \frac{1}{2}(4) = 0$$

$$O = 6 - 6 - \frac{1}{2}(2) = -1$$

$$N = 5 - 0 - \frac{1}{2}(8) = 1$$

$$O = 6 - 4 - \frac{1}{2}(4) = 0$$

$$O = 6 - 6 - \frac{1}{2}(2) = -1$$

10. Answers:

$$2.5 - 3.5$$

$$2.0 - 4.0$$

11. Answers:

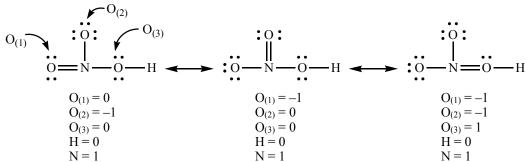
Molecule	$\Delta \chi$ for bond
H_2O	O— $H = 3.5 - 2.1 = 1.4$
NH ₃	N— $H = 3.0 - 2.1 = 0.9$
CO_2	O— $C = 3.5 - 2.5 = 1.0$
ClF	F— $C1 = 4.0 - 3.0 = 1.0$
CCl ₄	C1— $C = 3.0 - 2.5 = 0.5$

- (i) The bonds are most polar in H_2O (biggest $\Delta \chi$)
- (ii) CO₂ and CCl₄ are nonpolar molecules.
- (iii) The F atom in ClF is more negatively charged.

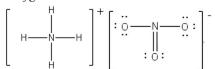
12. Answers:

a.
$$: N = N - O:$$

b. $N = 5 - 2 - 1/2(6) = 0$
 $N = 5 - 4 - 1/2(4) = -1$
 $N = 5 - 6 - 1/2(2) = -2$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$
 $N = 5 - 0 - 1/2(8) = 1$


c. The first resonance structure is most reasonable (the most electronegative element, oxygen, has a negative formal charge).

13. Answers:


a. H_2CO two carbon-hydrogen single bonds bond order = 1 one carbon-oxygen double bond bond order = 2 b. CO_2 two carbon-oxygen double bonds bond order = 2 c. NO_2 + two nitrogen-oxygen double bonds bond order = 2 four carbon-hydrogen single bonds bond order = 1

14.195 kJ/mol

15. Answers:

The third resonance structure is the least important since it has a positive formal charge on one of the oxygen atoms.

16.