\qquad Lab Section: \qquad
Part I: Multiple Choice Questions (100 Points) Use a scantron sheet for Part I. There is only one best answer for each question.

1. A sample of gas (24.2 g) initially at 4.00 atm was compressed from 8.00 L to 2.00 L at constant temperature. After the compression, the gas pressure was \qquad atm.
a. $\quad 4.00$
b. $\quad 2.00$
c. $\quad 1.00$
d. 8.00
e. 16.0
2. A balloon originally had a volume of 4.39 L at $44^{\circ} \mathrm{C}$ and a pressure of 729 torr. The balloon must be cooled to \qquad ${ }^{\circ} \mathrm{C}$ to reduce its volume to 3.78 L (at constant pressure).
a. 38
b. 0
c. 72.9
d. 273
e. 546
3. If 50.75 g of a gas occupies 10.0 L at STP, 129.3 g of the gas will occupy \qquad L at STP.
a. $\quad 3.92$
b. 50.8
c. $\quad 12.9$
d. 25.5
e. 5.08
4. The reaction of 50 mL of Cl_{2} gas with 50 mL of CH_{4} gas via the equation below will produce a total of \qquad mL of products (assume pressure and temperature are kept constant.)

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{HCl}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{Cl}(\mathrm{~g})
$$

a. 100
b. 50
c. 200
d. 150
e. 250
5. The pressure of a sample of CH_{4} gas $(6.022 \mathrm{~g})$ in a 30.0 L vessel at 402 K is \qquad atm.
a. $\quad 2.42$
b. 6.62
c. 0.413
d. 12.4
e. 22.4
6. The density of $\mathrm{N}_{2} \mathrm{O}$ at 1.53 atm and $45.2{ }^{\circ} \mathrm{C}$ is \qquad g / L.
a. $\quad 18.2$
b. 1.76
c. 0.388
d. 9.99
e. 2.58
7. Automobile air bags use the decomposition of sodium azide as their source of gas for rapid inflation per the reaction below. What mass (g) of NaN_{3} is required to provide 40.0 L of N_{2} at $25.0^{\circ} \mathrm{C}$ and 763 torr?

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

a. $\quad 1.64$
b. 1.09
c. 160
d. 71.1
e. 107
8. A vessel contained $\mathrm{N}_{2}, \mathrm{Ar}, \mathrm{He}$, and Ne . The total pressure in the vessel was 987 torr. The partial pressures of nitrogen, argon, and helium were $44.0,486$, and 218 torr, respectively. The partial pressure of neon in the vessel was \qquad torr.
a. $\quad 42.4$
b. 521
c. $\quad 19.4$
d. 239
e. 760
9. Of the following, \qquad has the highest boiling point.
a. $\quad \mathrm{N}_{2}$
b. Br_{2}
c. H_{2}
d. Cl_{2}
e. O_{2}
10. Of the following, \qquad is an exothermic process.
a. melting
b. subliming
c. freezing
d. boiling
e. All of the above are exothermic.
11. The heat of fusion of water is $333 \mathrm{~J} / \mathrm{g}$. The conversion of 50.0 g of ice at $0.0^{\circ} \mathrm{C}$ to liquid water at $22.0^{\circ} \mathrm{C}$ requires how many kilojoules (kJ) of heat?
a. $\quad 3.8 \times 10^{2}$
b. 21.3
c. $\quad 17.2$
d. 0.469
e. Insufficient data are given.
12. Of the following, \qquad is the most volatile.
a. CBr_{4}
b. CCl_{4}
c. CF_{4}
d. CH_{4}
e. $\mathrm{C}_{6} \mathrm{H}_{14}$
13. Potassium metal crystallizes in a body-centered cubic structure with a unit cell edge length of $5.31 \AA$. The radius of a potassium atom is \qquad Å.
a. 1.33
b. $\quad 1.88$
c. 2.30
d. 2.66
e. 5.31
14. As a solid element melts, the atoms become \qquad and they have \qquad attraction for one another.
a. more separated, more
b. more separated, less
c. closer together, more
d. closer together, less
e. larger, greater
15. Which one of the following exhibits dipole-dipole attraction between molecules?
a. XeF_{4}
b. AsH_{3}
c. CO_{2}
d. BCl_{3}
e. Cl_{2}
16. Based on the following information, which compound has the strongest intermolecular forces?

Substance	$\mathbf{\Delta H} \mathbf{V a p}(\mathbf{k J} / \mathbf{m o l})$
Argon (Ar)	6.3
Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$	31.0
Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$	39.3
Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$	40.8
Methane $\left(\mathrm{CH}_{4}\right)$	9.2

a. Argon
b. Benzene
c. Ethanol
d. Water
e. Methane
17. The vapor pressure of any substance at its normal boiling point is
a. 1 bar
b. 1 torr
c. 1 atm
d. equal to atmospheric pressure
e. equal to the vapor pressure of water
18. The solubility of oxygen gas in water at $25^{\circ} \mathrm{C}$ and 1.0 atm pressure of oxygen is $0.041 \mathrm{~g} / \mathrm{L}$. The solubility of oxygen in water at 3.0 atm and $25^{\circ} \mathrm{C}$ is \qquad g / L.
a. 0.041
b. 0.014
c. 0.31
d. 0.12
e. 3.0
19. A sample of potassium nitrate $(49.0 \mathrm{~g})$ is dissolved in 101 g of water at $100^{\circ} \mathrm{C}$ with precautions taken to avoid evaporation of any water. The solution is cooled to $30.0^{\circ} \mathrm{C}$ and a small amount of precipitate is observed. This solution is \qquad -.
a. hydrated
b. placated
c. saturated
d. unsaturated
e. supersaturated
20. The concentration of urea in a solution prepared by dissolving 16 g of urea in 39 g of $\mathrm{H}_{2} \mathrm{O}$ is \qquad \% by mass. The molar mass of urea is $60.0 \mathrm{~g} / \mathrm{mol}$.
a. 29
b. 41
c. 0.29
d. 0.41
e. 0.48
21. The concentration of KBr in a solution prepared by dissolving 2.21 g of KBr in 897 g of water is \qquad molal.
a. 2.46
b. 0.0167
c. 0.0207
d. 2.07×10^{-5}
e. 0.0186
22. A solution is prepared by dissolving 15.0 g of NH_{3} in 250.0 g of water. The density of the resulting solution is $0.974 \mathrm{~g} / \mathrm{mL}$. The molarity of NH_{3} in the solution is \qquad .
a. 0.00353
b. 0.882
c. 60.0
d. 3.24
e. 3.53
23. The concentration of sodium chloride in an aqueous solution that is 2.23 M and that has a density of $1.01 \mathrm{~g} / \mathrm{mL}$ is \qquad \% by mass.
a. 2.21
b. 7.83
c. 45.3
d. 12.9
e. 10.1
24. The vapor pressure of pure water at $25^{\circ} \mathrm{C}$ is 23.8 torr. What is the vapor pressure (torr) of water above a solution prepared by dissolving 18.0 g of glucose (a nonelectrolyte, MW $=180.0 \mathrm{~g} / \mathrm{mol}$) in 95.0 g of water?
a. 24.3
b. 23.4
c. 0.451
d. 0.443
e. 23.8
25. Determine the freezing point $\left({ }^{\circ} \mathrm{C}\right)$ of a 0.015 molal aqueous solution of MgSO_{4}. The molal freezing-point-depression constant of water is $1.86^{\circ} \mathrm{C} / \mathrm{m}$. Note: Check your van't Hoff factor!
a. -0.056
b. -0.028
c. -0.17
d. -0.084
e. 0.000

Part II: Short Answer / Calculation. Show all work!

1. A $1.44-\mathrm{g}$ sample of an unknown pure elemental gas occupies a volume of 0.335 L at a pressure of 1.00 atm and a temperature of $100.0^{\circ} \mathrm{C}$. Use this information to determine the identity of the unknown gas. (10 points)

Part II: Short Answer / Calculation (continued) Show all work!

2. The fluorocarbon $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}$ has a normal boiling point of $47.6^{\circ} \mathrm{C}$. The specific heats of $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}(\mathrm{l})$ and $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}(\mathrm{~g})$ are $0.910 \mathrm{~J} / \mathrm{g}-\mathrm{K}$ and $0.670 \mathrm{~J} / \mathrm{g}-\mathrm{K}$, respectively. The heat of vaporization of the compound is $27.49 \mathrm{~kJ} / \mathrm{mol}$. Calculate the heat required to convert 50.0 g of the compound from the liquid at $5.0^{\circ} \mathrm{C}$ to the gas at $80.0^{\circ} \mathrm{C}$ in kilojoules $(\mathrm{kJ}) .(10$ points $)$
3. What is the molar mass of a nonelectrolyte if 6.02 grams dissolved in 30.0 grams of benzene freezes at $-1.55^{\circ} \mathrm{C}$? The freezing point of pure benzene is $5.50^{\circ} \mathrm{C}$ and the freezing point depression constant, K_{fp}, is $-5.12{ }^{\circ} \mathrm{C} / \mathrm{m}$. (10 points)

Extra Credit Question: The nonelectrolyte compound in problem \#3 is found to have the following: 49.31\%C, $\mathbf{6 . 9 0} \mathbf{\%} \mathbf{H}$, and $\mathbf{4 3 . 7 9} \% \mathbf{O}$. Determine the empirical and molecular formulas for the unknown compound. (5 points)

