Stoichiometry: Calculations with Chemical Formulas and Equations

Visualizing Concepts

3.1 Reactant $\mathrm{A}=$ red, reactant $\mathrm{B}=$ blue

Overall, 4 red A_{2} molecules +4 blue B atoms $\rightarrow 4 \mathrm{~A}_{2} \mathrm{~B}$ molecules
Since 4 is a common factor, this equation reduces to equation (a).
3.3 (a) There are twice as many O atoms as N atoms, so the empirical formula of the original compound is NO_{2}.
(b) No, because we have no way of knowing whether the empirical and molecular formulas are the same. NO_{2} represents the simplest ratio of atoms in a molecule but not the only possible molecular formula.
(a) Analyze. Given the molecular model, write the molecular formula.

Plan. Use the colors of the atoms (spheres) in the model to determine the number of atoms of each element.

Solve. Observe 2 gray C atoms, 5 white H atoms, 1 blue N atom, 2 red O atoms. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$
(b) Plan. Follow the method in Sample Exercise 3.9. Calculate formula weight in amu and molar mass in grams.

2 C atoms $=2(12.0 \mathrm{amu})=24.0 \mathrm{amu}$
5 H atoms $=5(1.0 \mathrm{amu})=5.0 \mathrm{amu}$
1 N atoms $=1(14.0 \mathrm{amu})=14.0 \mathrm{amu}$
2 O atoms $=2(16.0 \mathrm{amu})=\underline{32.0 \mathrm{amu}}$
75.0 amu

Formula weight $=75.0 \mathrm{amu}$, molar mass $=75.0 \mathrm{~g} / \mathrm{mol}$
(c) Plan. The molar mass of a substance provides the factor for converting moles to grams (or grams to moles).
Solve. 3 mol glycine $\times \frac{75.0 \text { glycine }}{\mathrm{mol}}=225$ glycine
(d) Plan. Use the definition of mass $\%$ and the results from parts (a) and (b) above to find mass $\% \mathrm{~N}$ in glycine.
Solve. $\mathrm{mass} \% \mathrm{~N}=\frac{\mathrm{gN}}{\mathrm{gC}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}} \times 10 \mathrm{C}$
Assume $1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}_{2}$. From the molecular formula of glycine [part (a)], there is $1 \mathrm{~mol} \mathrm{~N} / \mathrm{mol}$ glycine.

$$
\text { mass } \% \mathrm{~N}=\frac{1 \times(\text { molarmass } \mathrm{N})}{\text { molar massglycine }} \times 100=\frac{140 \mathrm{~g}}{75.0 \mathrm{~g}} \times 100=187 \%
$$

3.7 Analyze. Given a box diagram and formulas of reactants, draw a box diagram of products.
Plan. Write and balance the chemical equation. Determine combining ratios of elements and decide on limiting reactant. Draw a box diagram of products, containing the correct number of product molecules and only excess reactant.

Each N atom (1/2 of an N_{2} molecule) reacts with 3 H atoms ($1.5 \mathrm{H}_{2}$ molecules) to form an NH_{3} molecule. Eight N atoms ($4 \mathrm{~N}_{2}$ molecules) require 24 H atoms $\left(12 \mathrm{H}_{2}\right.$ molecules) for complete reaction. Only $9 \mathrm{H}_{2}$ molecules are available, so H_{2} is the limiting reactant. Nine H_{2} molecules (18 H atoms) determine that $6 \mathrm{NH}_{3}$ molecules are produced. One N_{2} molecule is in excess.

Check. Verify that mass is conserved in your solution, that the number and kinds of atoms are the same in reactant and product diagrams. In this example, there are 8 N atoms and 18 H atoms in both diagrams, so mass is conserved.

Balancing Chemical Equations

3.9
(a) In balancing chemical equations, the law of conservation of mass, that atoms are neither created nor destroyed during the course of a reaction, is observed. This means that the number and kinds of atoms on both sides of the chemical equation must be the same.
(b) Subscripts in chemical formulas should not be changed when balancing equations, because changing the subscript changes the identity of the compound (law of constant composition).
(c) liquid water $=\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$; water vapor $=\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$; aqueous sodium chloride $=$
$\mathrm{NaCl}(\mathrm{aq})$; solid sodium chloride $=\mathrm{NaCl}(\mathrm{s})$
(a) $\quad 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
(b) $\quad \mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})$
(c) $\mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CCl}_{4}(\mathrm{l})+4 \mathrm{HCl}(\mathrm{g})$
(d) $\quad \mathrm{Al}_{4} \mathrm{C}_{3}(\mathrm{~s})+\mathbf{1 2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathbf{4 A l}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{CH}_{4}(\mathrm{~g})$
(e) $\quad 2 \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}(\mathrm{l})+\mathbf{1 3} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathbf{1 0 \mathrm { CO } _ { 2 }}(\mathrm{g})+\mathbf{1 0} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(f) $\quad 2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(g) $\quad \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 3 \mathrm{MgSO}_{4}(\mathrm{aq})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$
3.13 (a) $\mathrm{CaC}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$
(b) $\quad 2 \mathrm{KClO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
(c) $\mathrm{Zn}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnSO}_{4}(\mathrm{aq})$
(d) $\quad \mathrm{PCl}_{3}(\mathrm{l})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})+3 \mathrm{HCl}(\mathrm{aq})$
(e) $\quad 3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{~S}_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Patterns of Chemical Reactivity

3.15 (a) When a metal reacts with a nonmetal, an ionic compound forms. The combining ratio of the atoms is such that the total positive charge on the metal cation(s) is equal to the total negative charge on the nonmetal anion(s). Determine the formula by balancing the positive and negative charges in the ionic product. All ionic compounds are solids. $2 \mathrm{Na}(\mathrm{s})+\mathrm{Br}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{NaBr}(\mathrm{s})$
(b) The second reactant is oxygen gas from the air, $\mathrm{O}_{2}(\mathrm{~g})$. The products are $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) .2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$.
3.17 (a) $\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$
(b) $\quad \mathrm{BaCO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{BaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
(c) $\quad \mathrm{C}_{8} \mathrm{H}_{8}(\mathrm{l})+10 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(d) $\quad \mathrm{CH}_{3} \mathrm{OCH}_{3}$ is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
3.19
(a) $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{~s})$ combination
(b) $\quad \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ combustion
(c) $6 \mathrm{Li}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})$ combination
(d) $\quad \mathrm{PbCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{PbO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$ decomposition
(e) $\quad \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}_{2}(\mathrm{l})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ combustion

Formula Weights

3.21 Analyze. Given molecular formula or name, calculate formula weight.

Plan. If a name is given, write the correct molecular formula. Then, follow the method in Sample Exercise 3.5. Solve.
(a) $\mathrm{HNO}_{3}: 1(1.0)+1(14.0)+3(16.0)=63.0 \mathrm{amu}$
(b) $\mathrm{KMnO}_{4}: 1(39.1)+1(54.9)+4(16.0)=158.0 \mathrm{amu}$
(c) $\quad \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}: 3(40.1)+2(31.0)+8(16.0)=310.3 \mathrm{amu}$
(d) $\quad \mathrm{SiO}_{2}: 1(28.1)+2(16.0)=60.1 \mathrm{amu}$
(e) $\quad \mathrm{Ga}_{2} \mathrm{~S}_{3}: 2(69.7)+3(32.1)=235.7 \mathrm{amu}$
(f) $\quad \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}: 2(52.0)+3(32.1)+12(16.0)=392.3 \mathrm{amu}$
(g) $\quad \mathrm{PCl}_{3}: 1(31.0)+3(35.5)=137.5 \mathrm{amu}$
3.23 Plan. Calculate the formula weight (FW), then the mass \% oxygen in the compound. Solve.
(a) $\quad \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{FW}=17(12.0)+19(1.0)+1(14.0)+3(16.0)=285.0 \mathrm{amu}$

$$
\% \mathrm{O}=\frac{3(16 .(\mathrm{a} m \mathrm{mu}}{2850 \mathrm{amu}} \times 100=16842=168 \%
$$

(b) $\quad \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{FW}=18(12.0)+21(1.0)+1(14.0)+3(16.0)=299.0 \mathrm{amu}$

$$
\% \mathrm{O}=\frac{3(16 . \mathrm{a}) \mathrm{mu}}{2990 \mathrm{amu}} \times 100=16054161 \%
$$

(c) $\quad \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{FW}=17(12.0)+21(1.0)+1(14.0)+4(16.0)=303.0 \mathrm{amu}$

$$
\% \mathrm{O}=\frac{4(16 .(a) \mathrm{mu}}{3030 \mathrm{amu}} \times 100=21.122=21.1 \%
$$

(d) $\quad \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{8}: F W=22(12.0)+24(1.0)+2(14.0)+8(16.0)=444.0 \mathrm{amu}$

$$
\% O=\frac{8(16 . \text { amu }}{444 . \mathrm{amu}} \times 100=28829=288 \%
$$

(e) $\quad \mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{13}: \mathrm{FW}=4(12.0)+64(1.0)+13(16.0)=764.0 \mathrm{amu}$
$\% O=\frac{13(16 . \mathrm{amnu}}{764 \mathrm{amu}} \times 100=27.225=27.2 \%$
(f) $\quad \mathrm{C}_{66} \mathrm{H}_{75} \mathrm{Cl}_{2} \mathrm{~N}_{9} \mathrm{O}_{24}: \mathrm{FW}=66(12.0)+75(1.0)+2(35.5)+9(14.0)+24(16.0)=1448.0 \mathrm{amu}$ $\% \mathrm{O}=\frac{24(16 . \mathrm{Amu}}{1448 . \Delta \mathrm{mu}} \times 100=26519=265 \%$
3.25 Plan. Follow the logic for calculating mass \% C given in Sample Exercise 3.6. Solve.
(a) $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}: \mathrm{FW}=7(12.0)+6(1.0)+1(16.0)=106.0 \mathrm{amu}$ $\% \mathrm{C}=\frac{7(12 . \text { ©amu }}{100 \mathrm{amu}} \times 100=792 \%$
(b) $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}:$ FW $=8(12.0)+8(1.0)+3(16.0)=152.0 \mathrm{amu}$
$\% \mathrm{C}=\frac{8(12 . \text { (a) } \mathrm{mu}}{1520 \mathrm{amu}} \times 100=632 \%$
(c) $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}: \mathrm{FW}=7(12.0)+14(1.0)+2(16.0)=130.0 \mathrm{amu}$

$$
\% \mathrm{C}=\frac{7(12 . \mathrm{Camu}}{130 \mathrm{amu}} \times 100=646 \%
$$

Avogadro's Number and the Mole

3.27 (a) 6.022×10^{23}. This is the number of objects in a mole of anything.
(b) The formula weight of a substance in amu has the same numerical value as the molar mass expressed in grams.

Plan. Since the mole is a counting unit, use it as a basis of comparison; determine the total moles of atoms in each given quantity. Solve.
23 g Na contains 1 mol of atoms
$0.5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ contains (3 atoms $\times 0.5 \mathrm{~mol}$) $=1.5 \mathrm{~mol}$ atoms
$6.0 \times 10^{23} \mathrm{~N}_{2}$ molecules contains (2 atoms $\times 1 \mathrm{~mol}$) $=2 \mathrm{~mol}$ atoms
3.31 Analyze. Given: $160 \mathrm{lb} /$ person; Avogadro's number of people, 6.022×10^{23} people. Find: mass in kg of Avogadro's number of people; compare with mass of Earth.
Plan. people \rightarrow mass in lb \rightarrow mass in kg; mass of people / mass of Earth
Solve 6.022 $\times 10^{23}$ people $\times \frac{160 \mathrm{~b}}{\text { person }} \times \frac{1 \mathrm{~kg}}{2.2041 \mathrm{~m}}=4.37 \mathrm{Q} 10^{25}=4.37 \times 10^{25}$ or $4.4 \times 10^{25} \mathrm{~kg}$
$\frac{4.37 \otimes 10^{25} \mathrm{~kg} \text { of people }}{5.9 \& 10^{24} \mathrm{~kg} \text { Earth }}=7.3 \mathrm{br} 7.3$
One mole of people weighs 7.31 times as much as Earth.
Check. This mass of people is reasonable since Avogadro's number is large.
Estimate: $160 \mathrm{lb} \approx 70 \mathrm{~kg} ; 6 \times 10^{23} \times 70=420 \times 10^{23}=4.2 \times 10^{25} \mathrm{~kg}$
(a) Analyze. Given: 0.105 mol sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$. Find: mass in g.

Plan. Use molar mass ($\mathrm{g} / \mathrm{mol}$) of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ to find $\mathrm{g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$.
Solve. molar mass $=12(12.0107)+22(1.00794)+11(15.9994)=342.296=342.30$
$0.105 \mathrm{~mol} \mathrm{CaH} 2 \times \frac{34230 \mathrm{~g}}{1 \mathrm{~mol}}=35942=35.9 \mathrm{~g} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
Check. $0.1(342)=34.2 \mathrm{~g}$. The calculated result is reasonable.
(b) Analyze. Given: mass. Find: moles. Plan. Use molar mass of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$.

Solve. molar mass $=1(65.39)+2(14.01)+6(16.00)=189.41=189.4$
$143.5 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mol}}{189.4 \mathrm{~g}}=0.757 \mathrm{~mol} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
Check. $140 / 180 \approx 7 / 9=0.78 \mathrm{~mol}$
(c) Analyze. Given: moles. Find: molecules. Plan. Use Avogadro's number.

$$
\begin{aligned}
\text { Solve } 1.0 \times 10^{-6} \mathrm{~mol} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \times \frac{6.022 \times 10^{23} \mathrm{molecules}}{1 \mathrm{~mol}} & =6.022 \times 10^{17} \\
= & 6.0 \times 10^{17} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \text { molecules }
\end{aligned}
$$

Check. $\left(1.0 \times 10^{-6}\right)\left(6 \times 10^{23}\right)=6 \times 10^{17}$
(d) Analyze. Given: mol NH_{3}. Find: N atoms.

Plan. $\operatorname{mol~} \mathrm{NH}_{3} \rightarrow \operatorname{mol~N}$ atoms $\rightarrow \mathrm{N}$ atoms
Solve. 0.41 שnol $\mathrm{NH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{~N} \text { atoms }}{1 \mathrm{~mol} \mathrm{NH}_{3}} \times \frac{6.022 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}}$
$=2.47 \times 10^{23} \mathrm{C}$ atoms
Check. $(0.4)\left(6 \times 10^{23}\right)=2.4 \times 10^{23}$.

Analyze/Plan. See Solution 3.33 for stepwise problem-solving approach. Solve.
(a) $\quad\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ molar mass $=3(14.007)+12(1.008)+1(30.974)+4(16.00)=149.091$

$$
=149.1 \mathrm{~g} / \mathrm{mol}
$$

$2.50 \times 10^{-3} \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \times \frac{1491 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}}{1 \mathrm{~mol}}=0.373 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$
(b) $\quad \mathrm{AlCl}_{3}$ molar mass $=26.982+3(35.453)=133.341=133.34 \mathrm{~g} / \mathrm{mol}$

$$
0.255 \mathrm{~g} \mathrm{AlCl}_{3} \times \frac{1 \mathrm{~mol}}{133.3 \mathrm{gACl}_{3}} \times \frac{3 \mathrm{~mol} \mathrm{Cl}^{-}}{1 \mathrm{~mol} \mathrm{AlCl}_{3}}=5.73 \times 10^{-3} \mathrm{~mol} \mathrm{Cl}^{-}
$$

(c) $\quad \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ molar mass $=8(12.01)+10(1.008)+4(14.01)+2(16.00)=194.20$

$$
=194.2 \mathrm{~g} / \mathrm{mol}
$$

$7.7 Q 10^{20}$ molecules $\times \frac{1 \mathrm{~mol}}{6.02 \& 10^{23} \text { molecules }} \times \frac{194 . \mathrm{gC} \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{caffeine}}$
$=0.248 \mathrm{~g} \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$
(d) $\frac{0.406 \text { cholesterb }}{0.0010 \mathrm{~mol}}=387 \mathrm{~g}$ cholester b / mol
(a) $\quad \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{OS}_{2}$ molar mass $=6(12.01)+10(1.008)+1(16.00)+2(32.07)=162.28$

$$
=162.3 \mathrm{~g} / \mathrm{mol}
$$

(b) Plan. $\mathrm{mg} \rightarrow \mathrm{g} \rightarrow \mathrm{mol}$ Solve.
5.00 mg allicin $\times \frac{1 \times 10^{-3} \mathrm{~g}}{1 \mathrm{mg}} \times \frac{1 \mathrm{~mol}}{162 . \mathrm{g}}=3.081 \times 10^{-5}=3.08 \times 10^{-5} \mathrm{~mol}$ allicin

Check. 5.00 mg is a small mass, so the small answer is reasonable.

$$
\left(5 \times 10^{-3}\right) / 200=2.5 \times 10^{-5}
$$

(c) Plan. Use mol from part (b) and Avogadro's number to calculate molecules.

$$
\text { Solve } 3.08 \ngtr 10^{-5} \mathrm{~mol} \text { allicin } \times \frac{6.02 \not 210^{23} \text { molecules }}{\mathrm{mol}=}=1.85510^{19}
$$

Check. $\left(3 \times 10^{-5}\right)\left(6 \times 10^{23}\right)=18 \times 10^{18}=1.8 \times 10^{19}$
(d) Plan. Use molecules from part (c) and molecular formula to calculate S atoms.

Solve.1.85\$10 ${ }^{19}$ allicin molecules $\times \frac{2 \text { Satoms }}{1 \text { allicin molecule }}=3.71 \times 10^{19}$ Satoms
Check. Obvious.
(a) Analyze. Given: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, 1.250 \times 10^{21} \mathrm{C}$ atoms. Find: H atoms.

Plan. Use molecular formula to determine number of H atoms that are present with $1.250 \times 10^{21} \mathrm{C}$ atoms. Solve.

$$
\frac{12 \mathrm{H} \text { atoms }}{6 \mathrm{C} \text { atoms }}=\frac{2 \mathrm{H}}{1 \mathrm{C}} \times 1.25 Q 10^{21} \mathrm{C} \text { atoms }=2.50 \otimes 10^{21} \mathrm{H} \text { atoms }
$$

Check. $\left(2 \times 1 \times 10^{21}\right)=2 \times 10^{21}$
(b) Plan. Use molecular formula to find the number of glucose molecules that contain $1.250 \times 10^{21} \mathrm{C}$ atoms. Solve.

$$
\begin{aligned}
\frac{1 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \text { molecule }}{6 \mathrm{C} \text { atoms }} \times 1.25 \otimes 10^{21} \mathrm{C} \text { atoms } & =2.083810^{20} \\
& =2.083 \times 10^{20} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \text { molecules }
\end{aligned}
$$

Check. $\left(12 \times 10^{20} / 6\right)=2 \times 10^{20}$
(c) Plan. Use Avogadro's number to change molecules \rightarrow mol. Solve.

$$
\begin{aligned}
2083 \mathrm{~B} 10^{20} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \text { molecules } & \frac{1 \mathrm{~mol}}{6.02 \& 10^{23} \text { molecules }} \\
& =3.459 \& 1 \sigma^{-4}=3.46 Q 1 \sigma^{-4} \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
\end{aligned}
$$

Check. $\left(2 \times 10^{20}\right) /\left(6 \times 10^{23}\right)=0.33 \times 10^{-3}=3.3 \times 10^{-4}$
(d) Plan. Use molar mass to change mol $\rightarrow \mathrm{g} . \quad$ Solve.

1 mole of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ weighs 180.0 g (Sample Exercise 3.9)
$3.4595 \times 10^{-4} \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{180 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{1 \mathrm{~mol}}=0.0622 \not \mathrm{gC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Check. $3.5 \times 180=630 ; 630 \times 10^{-4}=0.063$
3.41 Analyze. Given: $\mathrm{g} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} / \mathrm{L}$. Find: mol/L, molecules/L.

Plan. The /L is constant throughout the problem, so we can ignore it. Use molar mass for $\mathrm{g} \rightarrow$ mol, Avogadro's number for $\mathrm{mol} \rightarrow$ molecules. Solve.

$$
\begin{aligned}
& \frac{20 \times 10^{-6} \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}}{625 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}}=3.20 \times 10^{-8}=3.2 \times 10^{-8} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl} / \mathrm{L} \\
& \frac{3.20 \times 10^{-8} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}}{1 \mathrm{~L}} \times \frac{6.022 \times 10^{23} \mathrm{molecules}}{1 \mathrm{~mol}}=1.9 \times 10^{16} \mathrm{molecules} \mathrm{~K}
\end{aligned}
$$

Check. $\left(200 \times 10^{-8}\right) / 60=2.5 \times 10^{-8} \mathrm{~mol}$

$$
\left(2.5 \times 10^{-8}\right) \times\left(6 \times 10^{23}\right)=15 \times 10^{15}=1.5 \times 10^{16}
$$

Empirical Formulas

(a) Analyze. Given: moles. Find: empirical formula.

Plan. Find the simplest ratio of moles by dividing by the smallest number of moles present.
Solve. $0.0130 \mathrm{~mol} \mathrm{C} / 0.0065=2$

$$
0.039 \mathrm{~mol} \mathrm{H} / 0.0065=6
$$

$$
0.0065 \mathrm{~mol} \mathrm{O} / 0.0065=1
$$

The empirical formula is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.
Check. The subscripts are simple integers.
(b) Analyze. Given: grams. Find: empirical formula.

Plan. Calculate the moles of each element present, then the simplest ratio of moles.
Solve.11.66 Fe $\times \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.85 \mathrm{Fe}}=0.2088 \mathrm{nol} \mathrm{Fe} ; 0.20880 .20881$
$5.0 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{gO}}=0.313 \mathrm{~mol} 0 ; 0.313 \times 0.20881 .5$
Multiplying by two, the integer ratio is $2 \mathrm{Fe}: 3 \mathrm{O}$; the empirical formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
Check. The subscripts are simple integers.
(c) Analyze. Given: mass \%. Find: empirical formulas.

Plan. Assume 100 g sample, calculate moles of each element, find the simplest ratio of moles.

Solve. $40.0 \mathrm{gC} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=3.33 \mathrm{~mol} \mathrm{C} ; 3.33 / 3.33=1$
$6.7 \mathrm{gH} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{nolH}}=6.65 \mathrm{~mol} \mathrm{H} ; 6.65 / 3.33=2$
$53.3 \mathrm{JO} \times \frac{1 \mathrm{molO}}{16.00 \mathrm{nol} \mathrm{O}}=3.33 \mathrm{~mol} \mathrm{O} ; 3.33 / 3.33=1$
The empirical formula is $\mathrm{CH}_{2} \mathrm{O}$.
Check. The subscripts are simple integers.
3.45 Analyze/Plan. The procedure in all these cases is to assume 100 g of sample, calculate the number of moles of each element present in that 100 g , then obtain the ratio of moles as smallest whole numbers. Solve.
(a) $104 \mathrm{gC} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=0.866 \mathrm{~mol} \mathrm{C} ; 0.8660 .8661$
$27.8 \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{molS}}{32.07 \mathrm{gS}}=0.867 \mathrm{~mol} \mathrm{~S} ; 0.8670 .8661$
$61.7 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.4 \mathrm{~g} \mathrm{Cl}}=1.74 \mathrm{~mol} \mathrm{Cl} ; 1.740 .8662$
The empirical formula is CSCl_{2}.
(b) $\quad 21.7 \mathrm{gC} \times \frac{1 \mathrm{molC}}{12.0 \mathrm{gC}}=1.81 \mathrm{~mol} \mathrm{C} ; 1.8 \mathrm{~V} 0.60 \otimes 3$
$9.6 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g} \mathrm{O}}=0.600 \mathrm{~mol} \mathrm{O} ; 0.6000 .60 \theta 1$
$687 \mathrm{gF} \times \frac{1 \mathrm{molF}}{19.0 \mathrm{gF}}=3.62 \mathrm{molF} ; 3.62 / 0.60 \otimes 6$
The empirical formula is $\mathrm{C}_{3} \mathrm{OF}_{6}$.
(c) $\quad 3279 \mathrm{~g} \mathrm{Na} \times \frac{1 \mathrm{~mol} \mathrm{Na}}{22.9 \mathrm{~g} \mathrm{Na}}=1.42 \mathrm{~mol} \mathrm{Na} ; 1.4260 .48263$
$1302 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{gl}}=0.482 \mathrm{~mol} \mathrm{Al} ; \quad 0.48260 .48261$
$5419 \mathrm{gF} \times \frac{1 \mathrm{~mol} \mathrm{~F}}{19.0 \mathrm{~g} \mathrm{~F}}=2.852 \mathrm{~mol} \mathrm{~F} ; 2.8520 .48266$
The empirical formula is $\mathrm{Na}_{3} \mathrm{AlF}_{6}$.
3.47 Analyze. Given: empirical formula, molar mass. Find: molecular formula.

Plan. Calculate the empirical formula weight (FW); divide FW by molar mass (MM) to calculate the integer that relates the empirical and molecular formulas. Check. If FW / MM is an integer, the result is reasonable. Solve.
(a) $\mathrm{FWCH}_{2}=12+2(1)=14 \quad \frac{\mathrm{MM}}{\mathrm{FW}}=\frac{84}{14}=6$

The subscripts in the empirical formula are multiplied by 6 . The molecular formula is $\mathrm{C}_{6} \mathrm{H}_{12}$.
(b) $\quad \mathrm{FW} \mathrm{NH}{ }_{2} \mathrm{Cl}=14.072(1.008) 35.4551 .48 . \frac{\mathrm{MM}}{\mathrm{FW}}=\frac{51.5}{51.5}=1$

The empirical and molecular formulas are $\mathrm{NH}_{2} \mathrm{Cl}$.
Analyze. Given: mass \%, molar mass. Find: molecular formula.
Plan. Use the plan detailed in Solution 3.45 to find an empirical formula from mass $\%$ data. Then use the plan detailed in 3.47 to find the molecular formula. Note that some indication of molar mass must be given, or the molecular formula cannot be determined. Check. If there is an integer ratio of moles and MM/ FW is an integer, the result is reasonable. Solve.
(a) $\quad 923 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=7.685 \mathrm{~mol} \mathrm{C} ; 7.685 / 7.931 .0061$
$7.7 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{molH}}{1.009 \mathrm{H}}=7.639 \mathrm{~mol} \mathrm{H} ; 7.639 / 7.531$
The empirical formula is $\mathrm{CH}, \mathrm{FW}=13$.
$\frac{M M}{F W}=\frac{104}{13}=8$; themolecularformula is $\mathrm{C}_{8} \mathrm{H}_{8}$.
(b) $\quad 495 \mathrm{gC} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{gC}}=4.12 \mathrm{~mol} \mathrm{C} ; 4.12 / 1.034$
$5.15 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{H}}=5.11 \mathrm{~mol} \mathrm{H} ; 5.11 / 1 . \not .35$
$289 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.0 \mathrm{~g} \mathrm{~N}}=2.06 \mathrm{~mol} \mathrm{~N} ; 2.06 / 1.032$
$165 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{gO}}=1.03 \mathrm{~mol} \mathrm{O} ; 1.03 / 1.03 \mathrm{l}$
Thus, $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}, \mathrm{FW}=97$. If the molar mass is about 195, a factor of 2 gives the molecular formula $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$.
(c) $3551 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=2.96 \mathrm{~mol} \mathrm{C} ; 2.96 / 0.59 \mathrm{~J}$
$4.77 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{H}}=4.73 \mathrm{~mol} \mathrm{H} ; 4.73 / 0.597 .998$
$37.85 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g} \mathrm{O}}=237 \mathrm{~mol} \mathrm{O} ; 2.37 / 0.592$
$8.29 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.0 \mathrm{~g} \mathrm{~N}}=0.592 \mathrm{~mol} \mathrm{~N} ; 0.592 / 0.591$
$1360 \mathrm{~g} \mathrm{aa} \times \frac{1 \mathrm{~mol} \mathrm{Na}}{22.9 \mathrm{~g} \mathrm{Na}}=0.592 \mathrm{~mol} \mathrm{Na} ; 0.592 / 0.7 \mathrm{~g} 1$

The empirical formula is $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{NNa}, \mathrm{FW}=169 \mathrm{~g}$. Since the empirical formula weight and molar mass are approximately equal, the empirical and molecular formulas are both $\mathrm{NaC}_{5} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{~N}$.
(a) Analyze. Given: $\mathrm{mg} \mathrm{CO} 2, \mathrm{mg} \mathrm{H}_{2} \mathrm{O}$ Find: empirical formula of hydrocarbon, $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}$
Plan. Upon combustion, all $\mathrm{C} \rightarrow \mathrm{CO}_{2}$, all $\mathrm{H} \rightarrow \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{mg} \mathrm{CO}=2 \mathrm{~g} \mathrm{CO}_{2} \rightarrow \mathrm{molC} ; \mathrm{mg} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{g} \mathrm{H}_{2} \mathrm{O}, \mathrm{mol} \mathrm{H}$
Find simplest ratio of moles and empirical formula. Solve.

$$
\begin{aligned}
& 5.86 \times 1 \sigma^{-3} \mathrm{gCO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{4401 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=1.33 \times 10^{-4} \mathrm{~mol} \mathrm{C} \\
& 1.37 \times 1 \sigma^{-3} \mathrm{gH}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1802 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{10 \mathrm{H}}^{2 \mathrm{O}}}{1 \mathrm{~mol}_{2}}=1.52 \times 10^{-4} \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

Dividing both values by 1.33×10^{-4} gives $\mathrm{C}: \mathrm{H}$ of $1: 1.14$. This is not "close enough" to be considered 1:1. No obvious multipliers $(2,3,4)$ produce an integer ratio. Testing other multipliers (trial and error!), the correct factor seems to be 7 . The empirical formula is $\mathrm{C}_{7} \mathrm{H}_{8}$.
Check. See discussion of C:H ratio above.
(b) Analyze. Given: g of menthol, $\mathrm{g} \mathrm{CO}_{2}, \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$, molar mass. Find: molecular formula.
Plan/Solve. Calculate mol C and mol H in the sample.
$0.2829_{\mathrm{g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{4401 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{1}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.006428=10.00642 \mathrm{~mol} \mathrm{C}$
$0.1159 \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1802 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{1} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{10.0128630 .01286 \mathrm{~mol} \mathrm{H}}$
Calculate $\mathrm{g} \mathrm{C}, \mathrm{g} \mathrm{H}$ and get g O by subtraction.
0.00642 8inol $\mathrm{C} \times \frac{12.0 \text { g } \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=0.0772 \mathrm{gC}$
$0.01286 \mathrm{Bol} \mathrm{H} \times \frac{1.008 \mathrm{H}}{1 \mathrm{molH}}=0.0129 \mathrm{gH}$
mass $\mathrm{O}=0.1005 \mathrm{~g}$ sample $-(0.07720 \mathrm{~g} \mathrm{C}+0.01297 \mathrm{~g} \mathrm{H})=0.01033 \mathrm{~g} \mathrm{O}$
Calculate mol O and find integer ratio of $\operatorname{mol~C}: \operatorname{mol~H}: \operatorname{mol} \mathrm{O}$.
$0.0103 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.0 \mathrm{~g} \mathrm{O}}=6.45610^{-4} \mathrm{~mol} \mathrm{O}$
Divide moles by 6.456×10^{-4}.
$C: \frac{0.006428}{6.45 \otimes 10^{-4}} \approx 10 \mathrm{H}: \frac{0.01286}{6.45 \otimes 10^{-4}} \approx 20 \mathrm{O}: \frac{6.45 \otimes 10^{-4}}{6.45610^{-4}}=1$
The empirical formula is $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$.

FW $=10$ (12 (2) 20 ($1+16=156 ; \frac{M}{\text { FW }}=\frac{156}{156}=1$
The molecular formula is the same as the empirical formula, $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$.
Check. The mass of O wasn't negative or greater than the sample mass; empirical and molecular formulas are reasonable.

Analyze. Given $2.558 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}, 0.948 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$. Find: x .
Plan. The reaction involved is $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{xH}_{2} \mathrm{O}(\mathrm{g})$.
Calculate the mass of $\mathrm{H}_{2} \mathrm{O}$ lost and then the mole ratio of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$.
Solve. $\mathrm{g} \mathrm{H}_{2} \mathrm{O}$ lost $=2.558 \mathrm{~g}$ sample $-0.948 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}=1.610 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$0.948 \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{1060 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.0089$ Ahol $\mathrm{Na}_{2} \mathrm{CO}_{3}$
$1.61 \mathrm{ggH}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1802 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0893 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
The formula is $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \underline{10} \mathrm{H}_{2} \mathrm{O}$.
Check. x is an integer.

Calculations Based on Chemical Equations

3.55 The mole ratios implicit in the coefficients of a balanced chemical equation express the fundamental relationship between amounts of reactants and products. If the equation is not balanced, the mole ratios will be incorrect and lead to erroneous calculated amounts of products.
$\mathrm{Na}_{2} \mathrm{SiO}_{3}(\mathrm{~s})+8 \mathrm{HF}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{SiF}_{6}(\mathrm{aq})+2 \mathrm{NaF}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(a) Analyze. Given: mol $\mathrm{Na}_{2} \mathrm{SiO}_{3}$. Find: mol HF. Plan. Use the mole ratio $8 \mathrm{HF}: 1 \mathrm{Na}_{2} \mathrm{SiO}_{3}$ from the balanced equation to relate moles of the two reactants.

Solve.

Check. Mol HF should be greater than $\mathrm{mol} \mathrm{Na}_{2} \mathrm{SiO}_{3}$.
(b) Analyze. Given: mol HF. Find: g NaF. Plan. Use the mole ratio $2 \mathrm{NaF}: 8 \mathrm{HF}$ to change mol HF to mol NaF , then molar mass to get NaF . Solve.
$0.500 \mathrm{~mol} \mathrm{HF} \times \frac{2 \mathrm{~mol} \mathrm{NaF}}{8 \mathrm{~mol} \mathrm{HF}} \times \frac{41.99 \mathrm{~g} \mathrm{NaF}}{1 \mathrm{~mol} \mathrm{NaF}}=5.25 \mathrm{~g} \mathrm{NaF}$
Check. $(0.5 / 4)=0.125 ; 0.13 \times 42>4 \mathrm{~g} \mathrm{NaF}$
(c) Analyze. Given: g HF Find: $\mathrm{g} \mathrm{Na}_{2} \mathrm{SiO}_{3}$.

Plan. gHF \rightarrow molHF $\binom{$ mol }{ ratio }$\rightarrow \mathrm{molNa}_{2} \mathrm{SiO}_{3} \rightarrow \mathrm{gNa}_{2} \mathrm{SiO}_{3}$
The mole ratio is at the heart of every stoichiometry problem. Molar mass is used
to change to and from grams. Solve.
$0.800 \mathrm{gHF} \times \frac{1 \mathrm{~mol} \mathrm{HF}}{20.01 \mathrm{gF}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SiO}_{3}}{8 \mathrm{~mol} \mathrm{HF}} \times \frac{1221 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SiO}_{3}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SiO}_{3}}=0.61 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SiO}_{3}$
Check. $0.8(120 / 160)<0.75 \mathrm{~mol}$
(a) $\mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) Analyze. Given mass of one reactant, find stoichiometric mass of other reactant and products.

Plan. Follow the logic in Sample Exercise 3.16. Calculate mol $\mathrm{Al}(\mathrm{OH})_{3}$ in 0.500 g $\mathrm{Al}\left(\mathrm{OH}_{3}\right)_{3}$ separately, since it will be used several times.

Solve. $0.50 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3} \times \frac{1 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}}{7800 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}}=6.41 \mathrm{Q} 10^{-3}=6.41 \times 10^{-3} \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}$
$6.41 \propto 10^{-3} \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3} \times \frac{3 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}} \times \frac{3646 \mathrm{~g} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{HCl}}=0.701 \cong 0.70 \mathrm{~g} \mathrm{HCl}$
(c) $\quad 6.41 \otimes 10^{-3} \mathrm{molAl}(\mathrm{OH})_{3} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Al}_{(\mathrm{OH})_{3}}} \times \frac{133.3 \mathrm{~g} \mathrm{AlCl}_{3}}{1 \mathrm{~mol} \mathrm{AlCl}_{3}}=0.8547$
$=0.855 \mathrm{AlCl}_{3}$

(d) Conservation of mass: mass of products $=$ mass of reactants reactants: $\mathrm{Al}(\mathrm{OH})_{3}+\mathrm{HCl}, 0.500 \mathrm{~g}+0.701 \mathrm{~g}=1.201 \mathrm{~g}$
products: $\mathrm{AlCl}_{3}+\mathrm{H}_{2} \mathrm{O}, 0.855 \mathrm{~g}+0.347 \mathrm{~g}=1.202 \mathrm{~g}$
The 0.001 g difference is due to rounding $(0.8547+0.3465=1.2012)$. This is an excellent check of results.
(a) $\quad \mathrm{Al}_{2} \mathrm{~S}_{3}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
(b) Plan. g A \rightarrow mol A $\rightarrow \operatorname{mol~B} \rightarrow \mathrm{g}$ B. See Solution 3.57 (c). Solve.
$142 \mathrm{~g} \mathrm{Al}_{2} \mathrm{~S}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}}{150 \mathrm{~g} \mathrm{Al}_{2} \mathrm{~S}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{~S}_{3}} \times \frac{7800 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}}{1 \mathrm{~mol} \mathrm{Al}(\mathrm{OH})_{3}}=147 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}$ Check $14\left(\frac{2 \times 78}{150}\right) \approx 14\left(1 \neq 14 \mathrm{~g} \mathrm{Al}(\mathrm{OH})_{3}\right.$
(a) Analyze. Given: $\operatorname{mol~} \mathrm{NaN}_{3}$. Find: $\mathrm{mol} \mathrm{N}_{2}$.

Plan. Use mole ratio from balanced equation. Solve.
$1.50 \mathrm{~mol} \mathrm{NaN}_{3} \times \frac{3 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NaN}_{3}}=2.25 \mathrm{~mol} \mathrm{~N}_{2}$
Check. The resulting mol N_{2} should be greater than mol NaN_{3}, (the $\mathrm{N}_{2}: \mathrm{NaN}_{3}$ ratio is >1), and it is.
(b) Analyze. Given: g_{2} Find: $\mathrm{g} \mathrm{NaN}_{3}$.

Plan. Use molar masses to get from and to grams, mol ratio to relate moles of the two substances. Solve.

$$
100 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{280 \mathrm{gg} \mathrm{~N}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{NaN}_{3}}{3 \mathrm{~mol} \mathrm{~N}_{2}} \times \frac{6501 \mathrm{~g} \mathrm{NaN}_{3}}{1 \mathrm{~mol} \mathrm{NaN}_{3}}=155 \mathrm{~g} \mathrm{NaN}_{3}
$$

Check. Mass relations are less intuitive than mole relations. Estimating the ratio of molar masses is sometimes useful. In this case, $65 \mathrm{~g} \mathrm{NaN}_{3} / 28 \mathrm{~g} \mathrm{~N}_{2} \approx 2.25$ Then, $(10 \times 2 / 3 \times 2.25) \approx 14 \mathrm{~g} \mathrm{NaN}_{3}$. The calculated result looks reasonable.
(c) Analyze. Given: vol N_{2} in ft^{3}, density N_{2} in g / L. Find: $\mathrm{g} \mathrm{NaN} \mathrm{N}_{3}$.

Plan. First determine how many g_{2} are in $10.0 \mathrm{ft}^{3}$, using the density of N_{2}. Then proceed as in part (b).

Solve.
$\frac{1.25 \mathrm{~g}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~L}}{100 @ \mathrm{~m}^{3}} \times \frac{\left(2.54^{3} \mathrm{~cm}^{3}\right.}{1 \mathrm{in}^{3}} \times \frac{(1)^{3} \mathrm{in}^{3}}{1 \mathrm{ft}^{3}} \times 100 \mathrm{ft}^{3}=3540=354 \mathrm{~g} \mathrm{~N}_{2}$
$3540 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{2801 \mathrm{~g} \mathrm{~N}} \times \frac{2 \mathrm{~mol} \mathrm{NaN}_{3}}{3 \mathrm{~mol} \mathrm{~N}_{2}} \times \frac{6501 \mathrm{~g} \mathrm{NaN}}{3} 1 \mathrm{~mol} \mathrm{NaN}_{3} \quad 548 \mathrm{NaN}_{3}$
Check. $1 \mathrm{ft}^{3} \sim 28 \mathrm{~L} ; 10 \mathrm{ft}^{3} \sim 280 \mathrm{~L} ; 280 \mathrm{~L} \times 1.25 \sim 350 \mathrm{~g} \mathrm{~N}_{2}$
Using the ratio of molar masses from part (b), $(350 \times 2 / 3 \times 2.25) \approx 525 \mathrm{~g} \mathrm{NaN}_{3}$
(a) Analyze. Given: dimensions of Al foil. Find: mol Al.

Plan. Dimenṡons \rightarrow vol $\xrightarrow{\text { density }}$ mass $\xrightarrow[\text { mass }]{\text { molar }}$ mol Al
Solve. 1.0@m $\times 1.0 @ \mathrm{~m} \times 0.550 \mathrm{~nm} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}=0.055 @ \mathrm{~m}^{3} \mathrm{Al}$
$0.055 \mathrm{~cm}^{3} \mathrm{Al} \times \frac{2.699 \mathrm{Al}}{1 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{Al}}=5.502 \times 10^{-3}=5.5 Q 10^{-3} \mathrm{~mol} \mathrm{Al}$
Check. $2.699 / 26.98 \approx 0.1 ;\left(0.055 \mathrm{~cm}^{3} \times 0.1\right)=5.5 \times 10^{-3} \mathrm{~mol} \mathrm{Al}$
(b) Plan. Write the balanced equation to get a mole ratio; change mol $\mathrm{Al} \rightarrow \mathrm{mol}$ $\mathrm{AlBr}_{3} \rightarrow \mathrm{~g} \mathrm{AlBr}{ }_{3}$.

Solve. $2 \mathrm{Al}(\mathrm{s})+3 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{AlBr}_{3}(\mathrm{~s})$
$5.502 \times 10^{-3} \mathrm{~mol} \mathrm{Al} \times \frac{2 \mathrm{~mol} \mathrm{AlBr}_{3}}{2 \mathrm{~mol} \mathrm{Al}} \times \frac{26669 \mathrm{~g} \mathrm{AlBr}_{3}}{1 \mathrm{~mol} \mathrm{AlBr}_{3}}=1.467=1.47 \mathrm{~g} \mathrm{AlBr}_{3}$
Check. $(0.006 \times 1 \times 270) \approx 1.6 \mathrm{~g} \mathrm{AlBr}_{3}$

Limiting Reactants; Theoretical Yields

3.67 (a) The limiting reactant determines the maximum number of product moles resulting from a chemical reaction; any other reactant is an excess reactant.
(b) The limiting reactant regulates the amount of products, because it is completely used up during the reaction; no more product can be made when one of the reactants is unavailable.
(c) Combining ratios are molecule and mole ratios. Since different molecules have different masses, equal masses of different reactants will not have equal numbers of molecules. By comparing initial moles, we compare numbers of available reactant molecules, the fundamental combining units in a chemical reaction.

Analyze. Given: $1.85 \mathrm{~mol} \mathrm{NaOH}, 1.00 \mathrm{~mol} \mathrm{CO} 2$. Find: $\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$.
Plan. Amounts of more than one reactant are given, so we must determine which reactant regulates (limits) product. Then apply the appropriate mole ratio from the balanced equation.

Solve. The mole ratio is $2 \mathrm{NaOH}: 1 \mathrm{CO}_{2}$, so 1.00 mol CO 2 requires 2.00 mol NaOH for complete reaction. Less than 2.00 mol NaOH are present, so NaOH is the limiting reactant.
$1.85 \mathrm{~mol} \mathrm{NaOH} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{2 \mathrm{~mol} \mathrm{NaOH}}=0.925 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}$ can beproduced
The $\mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{CO}_{2}$ ratio is $1: 1$, so $0.925 \mathrm{~mol} \mathrm{Na} 2 \mathrm{CO}_{3}$ produced requires $0.925 \mathrm{~mol} \mathrm{CO}_{2}$ consumed. (Alternately, $1.85 \mathrm{~mol} \mathrm{NaOH} \times 1 \mathrm{~mol} \mathrm{CO} 2 / 2 \mathrm{~mol} \mathrm{NaOH}=0.925 \mathrm{~mol} \mathrm{CO}_{2}$ reacted). $1.00 \mathrm{~mol} \mathrm{CO}_{2}$ initial $-0.925 \mathrm{~mol} \mathrm{CO}_{2}$ reacted $=0.075 \mathrm{~mol} \mathrm{CO}_{2}$ remain.

Note that the "change" line (but not necessarily the "final" line) reflects the mole ratios from the balanced equation.
$3 \mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}(\mathrm{aq})$
(a) Analyze/Plan. Abbreviate citric acid as $\mathrm{H}_{3} \mathrm{Cit}$. Follow the approach in Sample Exercise 3.19. Solve.

$$
\begin{aligned}
& 1.0 \mathrm{~g} \mathrm{NaHCO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NaHCO}_{3}}{84.0 \mathrm{~g} \mathrm{NaHCO}_{3}}=1.19 \otimes 10^{-2}=1.1910^{-2} \mathrm{~mol} \mathrm{NaHCO}_{3} \\
& 1.00 \mathrm{~g} \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \times \frac{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{Cit}}{1921 \mathrm{~g} \mathrm{H}_{3} \mathrm{Cit}}=5.20610^{-3}=5.21 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{3} \mathrm{Cit}
\end{aligned}
$$

But NaHCO_{3} and H_{3} Cit react in a 3:1 ratio, so $5.21 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{3}$ Cit require $3\left(5.21 \times 10^{-3}\right)=1.56 \times 10^{-2} \mathrm{~mol} \mathrm{NaHCO} 3$. We have only $1.19 \times 10^{-2} \mathrm{~mol} \mathrm{NaHCO}_{3}$, so NaHCO_{3} is the limiting reactant.
(b) $1.19 Q 10^{-2} \mathrm{~mol} \mathrm{NaHCO}_{3} \times \frac{3 \mathrm{~mol} \mathrm{CO}_{2}}{3 \mathrm{~mol} \mathrm{NaHCO}_{3}} \times \frac{440 \mathrm{lg} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.524 \mathrm{~g} \mathrm{CO}_{2}$
(c) $1.19 \otimes 10^{-2} \mathrm{~mol} \mathrm{NaHCO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{H}_{3} \mathrm{Cit}}{3 \mathrm{~mol} \mathrm{NaHCO}_{3}}=3.96810^{-3}$

$$
=3.97 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{3} \mathrm{Cit} \text { react }
$$

$5.206 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{3} \mathrm{Cit}-3.968 \times 10^{-3} \mathrm{~mol}$ react $=1.238 \times 10^{-3}$
$=1.24 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{3}$ Cit remain
$1.238 \times 10^{-3} \mathrm{~mol} \mathrm{H}_{3} \mathrm{Cit} \times \frac{192.1 \mathrm{~g} \mathrm{H}_{3} \mathrm{Cit}}{\mathrm{mol} \mathrm{H}_{3} \mathrm{Cit}}=0.238 \mathrm{~g} \mathrm{H}_{3} \mathrm{Cit}$ remain

Analyze. Given: initial $\mathrm{g} \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~g} \mathrm{AgNO}_{3}$. Find: final g Na $\mathrm{AO}_{3}, \mathrm{AgNO}_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$, NaNO_{3}

Plan. Write balanced equation; determine limiting reactant; calculate amounts of excess reactant remaining and products, based on limiting reactant.

Solve. $2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$
$3.50 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{106 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.033020 .0330 \mathrm{nol} \mathrm{Na}_{2} \mathrm{CO}_{3}$
$5.0 \mathrm{~g} \mathrm{AgNO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{AgNO}_{3}}{169.9 \mathrm{AgNO}_{3}}=0.029430 .029 \mathrm{hol} \mathrm{AgNO}_{3}$
0.0294 ßुol $\mathrm{AgNO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{2 \mathrm{~mol} \mathrm{AgNO}_{3}}=0.0147 \neq 0.014$ ॠुol $\mathrm{Na}_{2} \mathrm{CO}_{3}$ required
AgNO_{3} is the limiting reactant and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is present in excess.

| | $2 \mathrm{AgNO}_{3}(\mathrm{aq})$ | + | $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ | \rightarrow |
| :--- | :---: | :---: | :---: | :---: | $\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \quad+\quad 2 \mathrm{NaNO}_{3}(\mathrm{aq})$

Check. The initial mass of reactants was 8.50 g , and the final mass of excess reactant and products is 13.50 g ; mass is conserved.

Analyze. Given: amounts of two reactants. Find: theoretical yield.
Plan. Determine the limiting reactant and the maximum amount of product it could
produce. Then calculate \% yield. Solve.
(a) $300 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}}{781 \mathrm{ggC}_{6} \mathrm{H}_{6}}=0.384 \neq 0.384 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}$
$650 \mathrm{~g} \mathrm{Br}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Br}_{2}}{1598 \mathrm{~g} \mathrm{Br}_{2}}=0.406 \& 0.407 \mathrm{~mol} \mathrm{Br}_{2}$
Since $\mathrm{C}_{6} \mathrm{H}_{6}$ and Br_{2} react in a $1: 1$ mole ratio, $\mathrm{C}_{6} \mathrm{H}_{6}$ is the limiting reactant and determines the theoretical yield.

$$
0.384 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{1 \mathrm{molC}_{6} \mathrm{H}_{5} \mathrm{Br}}{1 \mathrm{molC}_{6} \mathrm{H}_{6}} \times \frac{157 \mathrm{ggC}_{6} \mathrm{H}_{5} \mathrm{Br}}{1 \mathrm{molC}_{6} \mathrm{H}_{5} \mathrm{Br}}=60.3 \theta 60.3 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}
$$

Check. $30 / 78 \sim 3 / 8 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6} .65 / 160 \sim 3 / 8 \mathrm{~mol} \mathrm{Br}_{2}$. Since moles of the two reactants are similar, a precise calculation is needed to determine the limiting reactant. $3 / 8 \times 160 \approx 60 \mathrm{~g}$ product
(b) $\%$ yield $=\frac{42.3 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br} \text { actual }}{603 \mathrm{gC}_{6} \mathrm{H}_{5} \mathrm{Br} \text { theoretica }} \times 100=70149=701 \%$
3.79 Analyze. Given: g of two reactants, \% yield. Find: $\mathrm{g} \mathrm{S}_{8}$.

Plan. Determine limiting reactant and theoretical yield. Use definition of \% yield to calculate actual yield. Solve.

$$
\begin{aligned}
& \left.300 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}{34.08 \mathrm{H}_{2} \mathrm{~S}}=0.880\right\} 0.880 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S} \\
& 500 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{3200 \mathrm{~g} \mathrm{H}_{2} \mathrm{~S}}=1.56251 .56 \mathrm{~mol} \mathrm{O}_{2} \\
& 0.880 \mathrm{Bnol} \mathrm{H}_{2} \mathrm{~S} \times \frac{4 \mathrm{~mol} \mathrm{O}_{2}}{8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}}=0.440 \neq 0.44 \mathrm{~mol} \mathrm{O}_{2} \text { required }
\end{aligned}
$$

Since there is more than enough O_{2} to react exactly with $0.880 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}, \mathrm{O}_{2}$ is present in excess and $\mathrm{H}_{2} \mathrm{~S}$ is the limiting reactant.
$0.8803 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{~S}_{8}}{8 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}} \times \frac{256.56 \mathrm{~S}_{8}}{1 \mathrm{~mol} \mathrm{~S}_{8}}=28.23 \neq 28.2 \mathrm{~g} \mathrm{~S}$ theoreticayield
Check. $30 / 34 \approx 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S} ; 50 / 32 \approx 1.5 \mathrm{~mol} \mathrm{O}_{2}$. Twice as many $\mathrm{mol}_{2} \mathrm{~S}$ as $\mathrm{mol} \mathrm{O}_{2}$ are required, so $\mathrm{H}_{2} \mathrm{~S}$ limits. $1 \times(260 / 8) \approx 30 \mathrm{~g} \mathrm{~S}_{8}$ theoretical.
$\%$ yield $=\frac{\text { actual }}{\text { theoretich }} \times 10 ¢ \frac{\% \text { yield } \times \text { theoretich }}{100}=$ actualyield
$\frac{98 \%}{100} \times 2823 \mathrm{~g} \mathrm{~S}_{8}=27.66628 \mathrm{~g}_{8}$ actual

Additional Exercises

(a) $\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$. At room temperature and pressure, pure acetic acid is a liquid. $\quad \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{l})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) $\quad \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(c) $\mathrm{Ni}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NiCl}_{2}(\mathrm{~s})$
(a) Analyze. Given: diameter of Si sphere (dot), density of Si. Find: mass of dot.

Plan. Calculate volume of sphere in cm^{3}, use density to calculate mass of the sphere (dot).
Solve. $\mathrm{V}=4 / 3 \pi \mathrm{r}^{3} ; \mathrm{r}=\mathrm{d} / 2$

$$
\text { radius of dot }=\frac{4 \mathrm{~nm}}{2} \times \frac{1 \times 10^{-9} \mathrm{~m}}{1 \mathrm{~nm}} \times \frac{1 \mathrm{~cm}}{1 \times 10^{-9} \mathrm{~m}}=2 \times 10^{-7} \mathrm{~cm}
$$

$$
\text { volume of dot }=(4 / 3) \times \pi \times\left(2 \times 10^{-7}\right)^{3}=3.35 \times 10^{-20}=3 \times 10^{-20} \mathrm{~cm}^{3}
$$

$$
3.3510^{-20} \mathrm{~cm}^{3} \times \frac{2.3 \mathrm{~g} \mathrm{Si}}{\mathrm{~cm}^{3}}=7.70710^{-20}=8 \times 10^{-20} \mathrm{~g} \mathrm{Si} \text { in dot }
$$

(b) Plan. Change g Si to mol Si using molar mass, then mol Si to atoms Si using Avogadro's number. Solve.

$$
\begin{aligned}
7.70 \mathbb{Z} 10^{-20} \mathrm{~g} \mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}}{280855 \mathrm{~g} \mathrm{Si}} \times \frac{6.022 \times 10^{23} \mathrm{Si} \text { atoms }}{\mathrm{mol} \mathrm{Si}} & =1.65 Z 10^{3} \\
& =2 \times 10^{3} \mathrm{Si} \text { atoms }
\end{aligned}
$$

(c) Plan. A 4 nm quantum dot of Ge also has a volume of $3 \times 10^{-20} \mathrm{~cm}^{3}$. Use density of Ge and Avogadro's number to calculate the number of Ge atoms in a 4 nm spherical quantum dot.

$$
\begin{aligned}
& 3.3510^{-20} \mathrm{~cm}^{3} \times \frac{5.32 \mathrm{G} \mathrm{Ge}}{\mathrm{~cm}^{3}} \times \frac{1 \mathrm{~mol} \mathrm{Ge}}{72.64 \mathrm{Ge}} \times \frac{6.022 \times 10^{23} \mathrm{Ge} \text { atoms }}{\mathrm{mol} \mathrm{Ge}} \\
&=1.479 \times 10^{3}=1 \times 10^{3} \mathrm{Ge} \text { atoms }
\end{aligned}
$$

Strictly speaking, the result has 1 sig fig (from 4 nm). A more meaningful comparison might be 1700 Si atoms vs. 1500 Ge atoms. Although Ge has greater molar mass, it is also more than twice as dense as Si , so the numbers of atoms in the Si and Ge dots are similar.
Plan. Because different sample sizes were used to analyze the different elements, calculate mass \% of each element in the sample.
i. Calculate mass $\% \mathrm{C}$ from $\mathrm{g} \mathrm{CO}_{2}$.
ii. Calculate mass $\% \mathrm{Cl}$ from AgCl .
iii. Get mass \% H by subtraction.
iv. Calculate mole ratios and the empirical formulas.

Solve.
i. $\quad 3.52 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{4401 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{molC}}{1 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{1201 \mathrm{gC}}{1 \mathrm{molC}}=0.960 \Leftrightarrow 0.96 \mathrm{gg} \mathrm{C}$
$\frac{0.9606 \mathrm{C}}{1.50 \mathrm{~g} \text { sample }} \times 100=6404=640 \% \mathrm{C}$
ii. $\quad 1.27 \mathrm{~g} \mathrm{AgCl} \times \frac{1 \mathrm{~mol} \mathrm{AgCl}}{1433 \mathrm{~g} \mathrm{AgCl}} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{AgCl}} \times \frac{3545 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{molCl}}=0.31420 .314 \mathrm{~g} \mathrm{Cl}$ $\frac{0.3142 \mathrm{~g} \mathrm{Cl}}{1.00 \mathrm{~g} \text { sample }} \times 100=31.42=31.4 \% \mathrm{Cl}$
iii. $\quad \% \mathrm{H}=100.0-(64.04 \% \mathrm{C}+31.42 \% \mathrm{Cl})=4.54=4.5 \% \mathrm{H}$
iv. Assume 100 g sample.
$6404 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{~g} \mathrm{C}}=5.33 \mathrm{~mol} \mathrm{C} ; \quad 5.33 / 0.88 € 6.0$ c
$31.42 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{Cl}}=0.886 \mathrm{~mol} \mathrm{Cl} ; 0.8860 .8861 .0($
$4.54 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{molH}}{1.008 \mathrm{H}}=4.50 \mathrm{~mol} \mathrm{H} ; 4.500 .88 \ominus 5.0 \varepsilon$
The empirical formula is probably $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$.
The subscript for $\mathrm{H}, 5.08$, is relatively far from 5.00 , but $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ makes chemical sense. More significant figures in the mass data are required for a more accurate mole ratio.
$\mathrm{O}_{3}(\mathrm{~g})+2 \mathrm{NaI}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~s})+2 \mathrm{NaOH}(\mathrm{aq})$
(a) $5.95 \times 10^{-6} \mathrm{~mol} \mathrm{O}_{3} \times \frac{2 \mathrm{~mol} \mathrm{Nal}}{1 \mathrm{~mol} \mathrm{O}_{3}}=1.19 \times 10^{-5} \mathrm{~mol} \mathrm{Nal}$
(b) $1.3 \mathrm{mg} \mathrm{O}_{3} \times \frac{1 \times 10^{-3} \mathrm{~g}}{1 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{O}_{3}}{4800 \mathrm{~g} \mathrm{O}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{Nal}}{1 \mathrm{~mol} \mathrm{O}_{3}} \times \frac{1499 \mathrm{~g} \mathrm{Nal}}{1 \mathrm{~mol} \mathrm{Nal}}$

$$
=8.120 \times 10^{-3}=8.1 \times 10^{-3} \mathrm{~g} \mathrm{NaI}=8.1 \mathrm{mg} \mathrm{NaI}
$$

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Determine the moles of N_{2} and H_{2} required to form the 3.0 moles of NH_{3} present after the reaction has stopped.

$$
\begin{aligned}
& 3.0 \mathrm{~mol} \mathrm{NH}_{3} \times \frac{3 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=4.5 \mathrm{~mol} \mathrm{H}_{2} \text { reactec } \\
& 3.0 \mathrm{~mol} \mathrm{NH}_{3} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{2 \mathrm{~mol} \mathrm{NH}_{3}}=1.5 \mathrm{~mol} \mathrm{~N}_{2} \text { reactec } \\
& \text { mol H} \text { initial }=3.0 \mathrm{~mol} \mathrm{H}_{2} \text { remain }+4.5 \mathrm{~mol} \mathrm{H}_{2} \text { reacted }=7.5 \mathrm{~mol} \mathrm{H}_{2} \\
& \text { mol N} \mathrm{N}_{2} \text { initial }=3.0 \mathrm{~mol} \mathrm{~N}_{2} \text { remain }+1.5 \mathrm{~mol} \mathrm{~N}_{2} \text { reacted }=4.5 \mathrm{~mol} \mathrm{~N}_{2} \\
& \text { In tabular form: } \quad \mathrm{N}_{2}(\mathrm{~g}) \quad+\quad 3 \mathrm{H}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})
\end{aligned}
$$

initial	4.5 mol	7.5 mol	0 mol
reaction	-1.5 mol	-4.5 mol	+3.0 mol
final	3.0 mol	3.0 mol	3.0 mol

(Tables like this will be extremely useful for solving chemical equilibrium problems in Chapter 15.)

Integrative Exercises

Plan. Volumecube $\xrightarrow{\text { density }}$ massCaCO $_{3} \rightarrow$ molesCaCO $_{3} \rightarrow$ molesO $\rightarrow 0$ atoms
Solve (2.003) $\mathrm{in}^{3} \times \frac{\left(254^{3} \mathrm{~cm}^{3}\right.}{1 \mathrm{in}^{3}} \times \frac{27 \mathrm{~g} \mathrm{CaCO}_{3}}{1 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{~mol} \mathrm{CaCO}_{3}}{100 \mathrm{~g} \mathrm{CaCO}_{3}} \times \frac{3 \mathrm{~mol} \mathrm{O}_{1 \mathrm{~mol} \mathrm{CaCO}_{3}}^{1 \mathrm{~m}^{2}}}{}$

$$
\times \frac{6.02210^{23} \mathrm{O} \text { atoms }}{1 \mathrm{molO}}=6.46 \times 10^{24} \mathrm{O} \text { atoms }
$$

3.105
(a) $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) ; \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CaO}(\mathrm{s}) \rightarrow \mathrm{CaSO}_{3}(\mathrm{~s})$
(b) If the coal contains $2.5 \% \mathrm{~S}$, then 1 g coal contains 0.025 g S .
$\frac{200 \text { @onscoal }}{\text { day }} \times \frac{200 \mathrm{db}}{1 \text { ton }} \times \frac{1 \mathrm{~kg}}{2.20 \mathrm{~b}} \times \frac{100 \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{0.025 \mathrm{~g} \mathrm{~S}}{1 \mathrm{gcoal}} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.07 \mathrm{gS}}$
$\times \frac{1 \mathrm{~mol} \mathrm{SO}_{2}}{1 \mathrm{molS}} \times \frac{1 \mathrm{~mol} \mathrm{CaO}}{1 \mathrm{~mol} \mathrm{SO}_{2}} \times \frac{5608 \mathrm{~g} \mathrm{CaO}}{1 \mathrm{~mol} \mathrm{CaO}} \times \frac{1 \mathrm{~kg} \mathrm{CaO}}{100 \mathrm{~g} \mathrm{CaO}}=$
$79,485=7.9 \times 10^{4} \mathrm{~kg} \mathrm{CaO}$ or $7.9 \times 10^{7} \mathrm{~g} \mathrm{CaO}$
(c) $1 \mathrm{~mol} \mathrm{CaO}=1 \mathrm{~mol} \mathrm{CaSO}_{3}$
$7.9485 \times 10^{7} \mathrm{~g} \mathrm{CaO} \times \frac{1 \mathrm{~mol} \mathrm{CaO}}{56.08 \mathrm{GaO}} \times \frac{1 \mathrm{~mol} \mathrm{CaSO}_{3}}{1 \mathrm{~mol} \mathrm{CaO}} \times \frac{120.1 \mathrm{f} \mathrm{CaSO}_{3}}{1 \mathrm{~mol} \mathrm{CaSO}_{3}}$
$=1.70 \mathrm{Z} 10^{8}=1.7 \times 10^{8} \mathrm{~g} \mathrm{CaSO}_{3}$
This corresponds to about 190 tons of CaSO_{3} per day as a waste product.

