Chemistry 151: Basic Chemistry

Time For a (relevant) Joke!

Two chemists walk into a bar.

The first chemist says, "I'll have some H Two O"
A clear liquid in a glass arrives...

They drink it down... very satisfying.

The second chemist says, "I'll have some H Two O

Too"

i.e. H₂O₂

A clear liquid in a glass arrives... They drink it down....

...and die!

H₂O = water, good to drink! H₂O₂ = hydrogen peroxide, looks like water, dangerous / deadly to drink

One extra atom affects the reactivity!

Nomenclature very important!

. .

Nomenclature

Nomenclature: a set of rules used to generate names for chemical compounds - or, being able to "talk the talk" of chemistry

Important to describe H₂O (essential to life) versus H₂O₂ (deadly oxidizing agent) - one atom (more or less) makes a huge difference

This is arguably the most important chapter of CH 151!

Compounds and Molecules

COMPOUNDS are a combination of 2 or more elements in definite ratios by mass.

The character of each element is lost when forming a compound.

MOLECULES are the smallest unit of a compound that retains the characteristics of the compound.

MAR

Chemical Bond

Bonding, the way **atoms** are attracted to each other to form **molecules**, determines nearly all of the chemical properties. We shall see later that the number "8" is very important to chemical bonding.

Bonding can be ionic or covalent.

Ions

Atoms are electrically neutral because number of protons = number of electrons

By gaining or losing electrons an atom can be converted into a charged particle called an *ion*.

Loss of one or more electrons gives positively charged ion called a *cation*.

Gaining one or more electrons gives negatively charged ion called a *anion*.

MAR

MAR

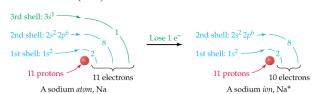
IONS AND IONIC COMPOUNDS

CATIONS have protons > electrons

ANIONS have electrons > protons

Remember:

CATS have PAWS
CATions are PAWSitive

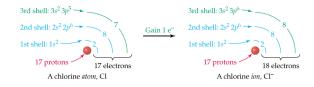


Cations

Ionic Bonds

The symbol for a cation is written by adding a positive charge as a superscript to the symbol for the element.

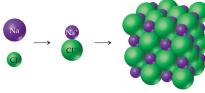
For example, Na loses an electron to make the sodium cation (Na⁺).



Anions

The symbol for a anion is written by adding a negative charge as a superscript to the symbol for the element.

For example, Cl gains an electron to make the chloride anion (Cl-).


MAR

Opposite electrical charges attract

When sodium combines with chlorine, sodium transfers electron to chlorine forming Na⁺ and Cl⁻ ions.

The oppositely charged Na⁺ and Cl⁻ ions are held together by a *ionic bond*, making an *ionic compound*.

MAR

Formation of NaCl

Ionic Compounds

Ionic compounds *usually* form crystalline solids Ions vary in size and charge.

Ionic compounds have high melting and boiling points.

NaCl, Na⁺ and Cl⁻, m.p. 804 °C

MgO, Mg²⁺ and O²⁻ m.p. 2800 °C

MAR

MAR

Ions of Some Common Elements

Metals of group 1A and 2A form only +1 and +2 ions. Ions of these elements all have a noble gas configuration through electron loss from their outermost shell.

Group 6A and 7A elements attain noble gas configuration by *gaining* 1 or 2 electrons.

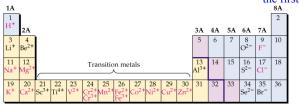
MAR

MAR

Group 6A:
$$\dot{\mathbb{Q}} \cdot + 2e^{-} \longrightarrow \ddot{\mathbb{Q}} : ^{2-}$$

 $\dot{\mathbb{S}} \cdot + 2e^{-} \longrightarrow \ddot{\mathbb{S}} : ^{2-}$

"noble gas configuration" means 8 electrons


Ions and the Octet Rule

Octet Rule: Main group elements undergo reactions that leave them with 8 valence electrons or a noble gas configuration isoelectronic (same number of electrons) with noble gases.

All noble gases (except helium) have 8 electrons in their valence shell.

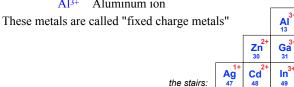
For example, in NaCl, Na+ and Cl- have the following electron configurations:

Common ions formed by elements in the first four periods

Groups IA - IIIA: ion usually gets a positive charge equal to the group number

Groups VA - VIIA: ion usually gets a negative charge equal to the group number minus eight

Ex: Aluminum makes the Al3+ ion Ex: Nitrogen makes the N^{3-} ion


Naming Fixed Charge Cations

Main group metal cations (Groups 1A, 2A, and "the stairs") named by identifying the metal, followed by the word "ion":

> K+ Potassium ion

Mg²⁺ Magnesium ion

 $A1^{3+}$ Aluminum ion

Naming Anions

Main group nonmetal anions (Groups VA, VIA, and VIIA) named by identifying the nonmetal and changing ending to "ide" followed by the word "ion":

> C1-Chloride ion

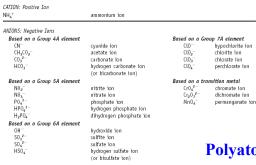
O²-Oxide ion

P3-Phosphide ion

C4-Carbide ion

Naming Variable Charge Cations

Many metals (transition, lanthanide, actinide, etc.) can often form more than one type of cation. Use Roman number to describe charge on metal:


> Cr^{2+} Cr3+ Chromium(II) ion Chromium(III) ion

Roman numeral indicates charge on cation: iron(III) would be Fe³⁺

MAR MAR

A *Polyatomic ion* is an ion composed of more than one atom. Formula for polyatomic ions shown by subscripts. *Example*: SO₄²⁻ ion has one sulfur atom, four oxygen atoms and a -2 charge

Many polyatomic ions known - memorize!

Introducing: Nick the Camel!

 \underline{N} ick the \underline{C} amel \underline{Br} at ate \underline{I} cky \underline{Cl} am for \underline{S} upper in \underline{Ph} oenix

Polyatomic Ions

Nick the Camel

MAR

 \underline{N} ick the \underline{C} amel \underline{Br} at ate \underline{I} cky \underline{Cl} am for \underline{S} upper in \underline{Ph} oenix

Con	sonants = <u>Oxygen</u>	Vowels = Charge	Polyatomic <u>Ion</u>
Nick = Nitrate	3	-1	NO ₃ -
<u>Camel</u> = Carbonate	3	-2	CO ₃ 2-
<u>Br</u> at = Bromate	3	-1	BrO3 -
<u>I</u> cky = Iodate	3	-1	IO ₃ -
<u>Cl</u> am = Chlorate	3	-1	CIO ₃ -
<u>Supper</u> = Sulfate	4	-2	SO ₄ ²⁻
<u>Ph</u> oenix = Phosphate	4	-3	PO ₄ 3-
Did N	ick have Crepe	s for dessert too?	· :)
<u>Cr</u> epes = chromate	4	-2	CrO ₄ 2-

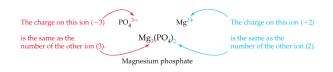
Naming Ionic Compounds

Ionic compounds are named by citing first the cation and then the anion with a space between the words. For example:

NaBr – Sodium bromide

MgSO₄ – Magnesium sulfate

SnCl₂ - Tin(II) chloride


SnCl₄ – Tin(IV) chloride

Al₂O₃ – Aluminum oxide

MAR MAR

Formulas of Ionic Compounds

Formula of an ionic compound shows the *lowest* possible ratio of atoms in the compound.

Formulas of Ionic Compounds

Na+ + Cl- = NaCl	Ca+2 + Cl- = CaCl ₂
Ca+2 + O-2= CaO	$Na^+ + O^{-2} = Na_2O$
$AI^{+3} + S^{-2} = AI_2S_3$	$Ca^{+2} + N^{-3} = Ca_3N_2$
Li+ + Br- = LiBr	$Mg^{+2} + F^{-} = MgF_{2}$
$Al^{+3} + I^{-} = AlI_3$	$NH_4^+ + PO_4^{-3} = (NH_4)_3 PO_4$ Not $NH_{43} PO_4$
$Sr^{+2} + P^{-3} = Sr_3P_2$	K+ + CI- = KCI

Practice, practice, practice!!!

MAR

Make final compound neutral

MAR

Learning Check

Write the formulas and names for compounds of the following ions:

	Br⁻	S ²⁻	N³-
Na⁺			
A 3+			
Sn ²⁺			
Sn ⁴⁺			

Remember: To write formulas, cross the charge. To write the name, name the cation (Roman numeral if necessary) then the anion.

Learning Check - Answers

Write the formulas and names for compounds of the following ions:

	Br-	S ²⁻	N³-
Na⁺	NaBr	Na₂S	Na₃N
	sodium bromide	sodium sulfide	sodium nitride
A 3+	AlBr ₃ aluminum bromide	Al ₂ S ₃ aluminum sulfide	AIN aluminum nitride
Sn ²⁺	SnBr ₂	SnS	Sn ₃ N ₂
	tin(II) bromide	tin(II) sulfide	tin(II) nitride
Sn ⁴⁺	SnBr ₄	SnS ₂	Sn ₃ N ₄
	tin(IV) bromide	tin(IV) sulfide	tin(IV) nitride

Learning Check

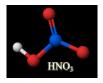
Write formulas and names for compounds of the following ions.

	OH-	CO ₃ ²⁻	PO ₄ 3-
NH ₄ ⁺			
Ca ²⁺			

Remember: To write formulas, cross the charges. To name an ionic compound, name the cation (with Roman numeral if necessary), then the anion. If you need more than one polyatomic ion, use parentheses with the number of ions as a subscript.

Learning Check - Answers

Write formulas and names for compounds of the following ions.


	OH-	CO ₃ 2-	PO ₄ 3-
NH ₄ +	NH₄OH ammonium hydroxide	(NH ₄) ₂ CO ₃ Ammonium carbonate	(NH ₄) ₃ PO ₄ ammonium phosphate
Ca ²⁺	Ca(OH) ₂ Calcium hydroxide	CaCO ₃ Calcium carbonate	Ca ₃ (PO ₄) ₂ calcium phosphate

H+ and Acids

The *Hydrogen cation* (H⁺) contains only a proton (no electrons or neutrons).

Acids are substances that provide H⁺ ions in water; for example, HCl, H₂SO₄, HNO₃.

HCl dissolved in water \rightarrow H⁺ + Cl-

OH-Ions and Bases

The *Hydroxide anion* (OH-) is a polyatomic ion with a -1 charge.

Bases are substances that provide OH- ions in water; for example, NaOH, KOH, Ba(OH)₂.

NaOH dissolved in water → Na⁺ + OH⁻

NaOH NaOH
NaOH NaOH
NaOH

MAR

MAR

MAR

MAR

Test Yourself: Ionic Compounds

Give the names for the following formulas:

NaCl CaBr₂ MnF₂

 $Ga_2(\tilde{SO}_4)_3$

 $Cr(NO_3)_3$

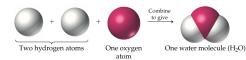
MAR

MAR

Give the formulas for the following names:

hydrochloric acid iron(III) oxide potassium hydroxide chromium(III) iodide

Practice, practice!


Covalent Bonds

A *covalent bond* is a bond formed by sharing electrons between atoms.

A *molecule* is a group of atoms held together by covalent bonds.

Nonmetals form covalent bonds with nonmetals. They reach the Noble Gas configuration by *sharing* an appropriate number of electrons.

A water molecule results when two hydrogen atoms and one oxygen atom are covalently bonded:

Test Yourself

Are these compounds bonded through ionic or covalent bonding?

 PCl_{5}

Na₂O SO₃

CaSO₃

SbAs

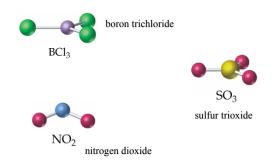
Nomenclature of covalent compounds different from ionic compounds; important to know the difference

Naming Molecular Compounds

When two or more nonmetal elements combine they form *covalent compounds*.

The formulas of covalent compounds are written with the less electronegative (*i.e. more metallike*) element first.

More electronegative element gets *-ide* suffix
Use Greek Prefixes to indicate number of atoms


Use Greek Prefixes to indicate number of atoms present.

Greek Prefixes

1	mono	6	hexa
2	di	7	hepta
3	tri	8	octa
4	tetra	9	nona
5	penta	10	deca

MAR MAR

Covalent compounds and nomenclature:

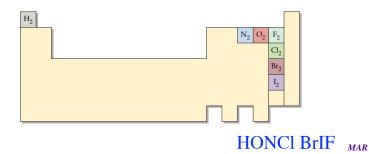
Test Yourself - Covalent Bonding

Give the names for the following formulas: $N_2O_5\\SO_2\\OF_2\\$

 P_2O_3 NO

Give the formulas for the following names:

tetraphosphorus decaoxide carbon dioxide carbon monoxide nitrogen dioxide


Practice, practice, practice!

Most elements exist as individual atoms.

MAR

MAR

Seven elements *always* exist as diatomic molecule - the seven diatomics

Elements that Exist as Diatomic Molecules

Have No Fear Of Ice Clear Brew

Nitrogen, N₂

End of Chapter 3 Part I

