Chemistry 151: Basic Chemistry

Chapter 2 Sections 2.1-2.3: Atoms, Isotopes and more

Basic Terms of Chemistry

- Matter: Anything that has mass and occupies space things you can see, touch, taste, or smell.
- **Property:** a characteristic that can be used to describe a substance.
- Size, color, temperature are familiar properties of matter. Less familiar properties include:

Chemical composition: what matter is made of.

Chemical Reactivity: how matter behaves, reactions.

MAR

Physical and Chemical Change

A Physical Change does not alter the chemical makeup of a substance. Change is reversible.

Example: Melting of solid ice; only change in form takes place and change is reversible.

A Chemical Change alters chemical composition of a substance. Change is irreversible.

Example: Rusting of iron; iron combines with oxygen and produces a new substance (rust).

MAR

States of Matter

Matter exist in three forms: *solid*, *liquid*, and *gas*.

Solids have definite shape and volume.

Liquids have definite volume but changes shape to fill containers.

Gases have neither definite volume or definite shape.

Most substances, such as water, can exist in all three states depending on the temperature.

The conversion of a substance from one state into another is known as change of state.

MAR

The solid, liquid and gaseous states of water are shown below:

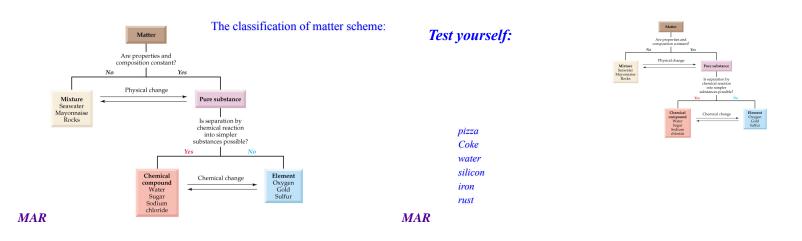
(a) Ice: A solid has a definite volume and a defin and a definite volume and definite shape independent of its container.

(c) Steam: A gas has both variable volume and shape that depend on its container.

Classification of Matter

Pure Substance: Uniform in its chemical composition and properties. Sugar (a compound) and water (compound) are pure substances.

Elements and Compounds can be pure.


Mixture: Composition and properties may Different amounts of sugar dissolved in varv. water will determine sweetness of water.

Mixtures can be **heterogeneous** (single phase) or **homogeneous** (single phase)

Sugar water is a homogeneous mixture, sand is a heterogeneous mixture

More on the Kinetic Molecular Theory (KMT) of Matter in CH 221!

Elements and Compounds Mixtures and compounds contain more than one substance. What's the difference? Mixture: Elements cannot be broken down chemically into simpler substances, "building blocks" of nature. physical Sugar water Water Sugar + Hydrogen, oxygen, and nitrogen are example of change (variable proportions) compound compound elements. Mixtures broken down to compounds or elements by physical changes Chemical Compounds can be broken down into elements or other compounds. Compound: Water is a chemical compound since it can be chemical broken down into hydrogen and oxygen. Water hydrogen oxygen change (fixed proportions) element element MAR Compounds broken down to elements by chemical changes

Chemical Elements and Symbols

Approximately 118 Elements are known - they are listed on the periodic table.

Only 90 of these elements occur naturally, remaining elements synthesized in lab.

Some familiar elements are iron, tin, carbon, oxygen, hydrogen, sulfur, etc.

Some possibly unfamiliar elements are niobium, rhodium, thulium, californium, etc.

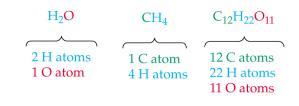
Periodic Table of the Elements

Chemical Symbols

Each element has its own unique symbol.

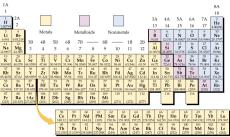
One or *two* letter symbols are used to represent elements.

First letter is always *capitalized* and the second letter is always a *lower case*.


Some symbols came from elements' modern names such as 'H' for hydrogen, 'O' for oxygen, 'N' for nitrogen, etc.

Chemical Symbols

- A few symbols for elements from their Latin names. Example: 'Na' for sodium from Latin Natrium.
- Naturally occurring elements are not equally abundant. Oxygen and silicon together: 75% of earth's crust.
- Chemical Formula: A notation for a chemical compound using element symbols and subscripts to show how many atoms of each element are present.


MAR

The formula for water is H_2O . H₂O indicates that two hydrogens and one oxygen combined together to produce water. Every formula described similarly

MAR

Elements and the Periodic Table

Metals, nonmetals and metalloids appear in distinct places on the periodic table

MAR

Test yourself:

Li

Au

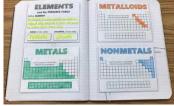
Si

Se

Cl

Ne

Metals (left side)


- Solids at room temperature (except Hg)
- · Good conductor of heat & electricity
- · Malleable, give up electrons

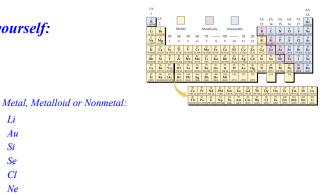
Nonmetals (right side)

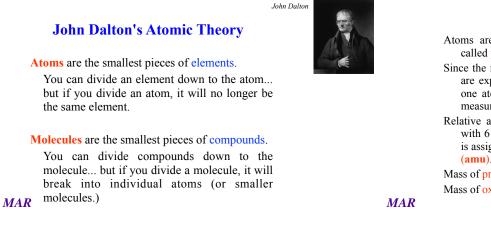
- Eleven gases, five solids, one liquid (Br)
- · Like to absorb electrons generally

Metalloids (between)

- · Properties between metals and nonmetals
- · Used in semi-conductors

MAR

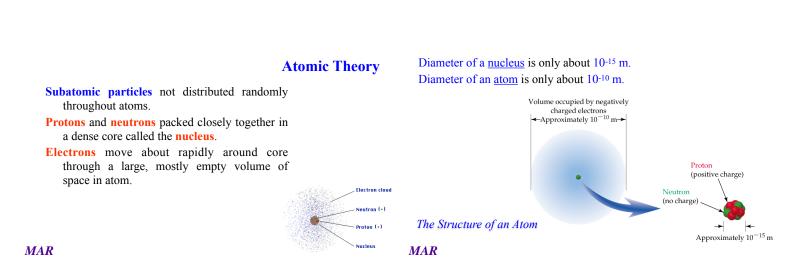

John Dalton

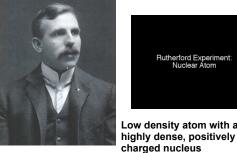

John Dalton's Atomic Theory

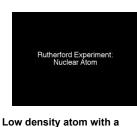
Chemistry founded on four fundamental assumptions about atoms and matter which make up the modern Atomic Theory:

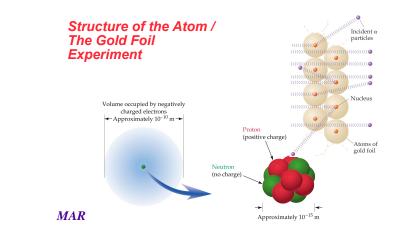
- 1. All matter is composed of atoms.
- 2 The atoms of an element differ from the atoms of all other elements.
- 3. Chemical compounds consist of atoms combined in specific ratios.
- 4. Chemical reactions change only the way the
- atoms are combined in compounds; the atoms

MAR themselves are unchanged.

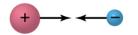



Atomic Theory


- Atoms are composed of tiny subatomic particles called protons, neutrons, and electrons.
- Since the masses of atoms are so small, their masses are expressed on a *relative mass scale*. That is, one atom is assigned a mass, and all others are measured relative to it.
- Relative atomic mass scale based on carbon atoms with 6 protons and 6 neutrons. This carbon atom is assigned a mass of exactly 12 atomic mass units (amu) 1 amu = 1.66 * 10⁻²⁴ g


Mass of proton = 1.007 amu Mass of oxygen = 16.00 amu

The modern view of the atom was developed by Ernest Rutherford in 1910.



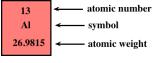
Attraction / Repulsion

Structure of atoms determined by an interplay of different attractive and repulsive forces.

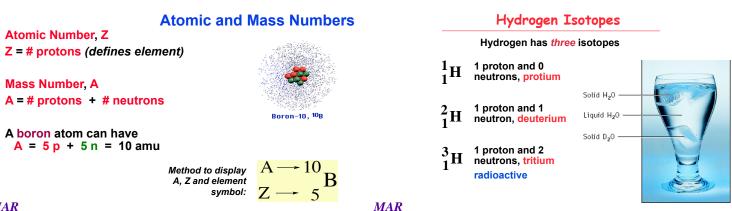
Unlike charges attract - the negatively charged electrons held close to nucleus by attraction to positively charged protons

Protons and electrons attract one another

MAR


Element and Atomic Number

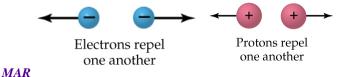
Atomic Number (Z): Number of protons in an atom


Elements defined by number of protons in the nucleus.

Atoms are neutral overall with no net charge; hence, number of positive protons equals number of negative electrons in the atom.

Mass Number (A): The total number of protons and neutrons in an atom.

MAR

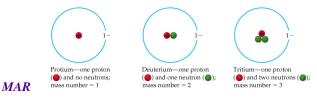


MAR

Attraction / Repulsion

Like charges repel each other - negatively charged *electrons* try to get as far apart as possible

Positively charged protons in nucleus also repel, but they are held together by a unique attraction called nuclear strong force (Chemistry 222)



Isotopes and Atomic Weight

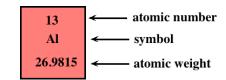
Isotopes are atoms with identical atomic numbers (Z) but different mass numbers (A)

Protium, deuterium, and tritium are isotopes of hydrogen.

- Protium: one proton (Z=1) and no neutrons (A=1)
- Deuterium: one proton (Z=1) and one neutron (A=2)
- Tritium: one proton (Z=1) and two neutrons (A=3)

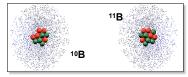
Page III-2-5 / Chapter Two Sections 2.1-2.3 Lecture Notes

Isotopes Overview


Atoms of the same element (same Z) but different mass number (A).

Boron-10 has 5 p and 5 n: ${}^{10}_{5}B$ Boron-11 has 5 p and 6 n: ${}^{11}_{5}B$ 11B ${}^{10}B$

MAR


Atomic Weight: The weighted average mass of an element's atoms in a large sample that includes all naturally occurring isotopes of that atom.

Atomic number and atomic weight displayed in periodic table (but not mass number!)

MAR

Isotopes

Because of the existence of isotopes, the mass of a collection of atoms has an average value.

Average mass = ATOMIC WEIGHT

Boron is 20% ¹⁰B and 80% ¹¹B. That is, ¹¹B is 80 percent abundant on earth.

For boron atomic weight

= 0.20 (10 amu) + 0.80 (11 amu) = 10.8 amu

MAR

Isotopes & Atomic Weight

- Because of the existence of isotopes, the mass of a *collection* of atoms has an average value.
- ⁶Li = 7.5% abundant and ⁷Li = 92.5%

Atomic weight of Li = ____

²⁸Si = 92.23%, ²⁹Si = 4.67%, ³⁰Si = 3.10%

Atomic weight of Si = ____

MAR

Isotopes

Example: Nitrogen has two main isotopes, ¹⁴N (14.0031 amu, 99.6299%) and ¹⁵N (15.0001 amu, 0.3701%). Calculate the average atomic mass.

Solution

Average atomic mass =

- = (0.996299*14.0031) + (0.003701*15.0001)
- = 13.9512745 + 0.05551537

= 14.0068 amu

Isotopes

Example: Gallium has two main isotopes, ⁶⁹Ga (68.9257 amu) and ⁷¹Ga (70.9249 amu) with an average atomic mass of 69.723. Calculate the % abundance of each isotope. *Solution* Average atomic mass = 69.723 = $x(^{69}Ga)^{68.9257} + y(^{71}Ga)^{*70.9249}$ *but also* 1 = $x(^{69}Ga) + y(^{71}Ga)$ (2 percentages equal 100%) so $y(^{71}Ga) = 1 - x(^{69}Ga)$

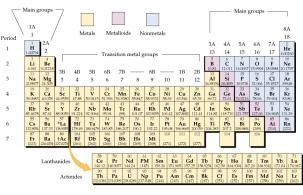
Isotopes

Example: Gallium has two main isotopes, 69Ga (68.9257 amu) and 71Ga (70.9249 amu) with an average atomic mass of 69.723. Calculate the % abundance of each isotope.

Solution

 $69.723 = x(^{69}Ga)^{*}68.9257 + y(^{71}Ga)^{*}70.9249, or$ $69.723 = x^{*}68.9257 + (1 - x)^{*}70.9249$ 69.723 = x*68.9257 + 70.9249 - 70.9249x Solve for **x**, get: $x(^{69}Ga) = 0.6012$ (60.12%) $y(^{71}Ga) = 1 - x = 0.3988$ (39.88%)

MAR


Isotopes

Antimony has two main isotopes: 121Sb (120.9038 amu, 57.20%) and 123Sb (122.9042 amu, 42.80%) Average atomic mass of Sb: 121.760

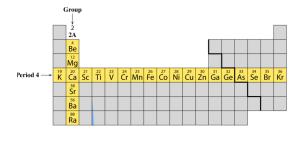
Will you have one atom of antimony with 121.760 amu? No! One atom of antimony will have a mass of 120.9038 amu 57.20% of the time One atom of antimony will have a mass of 122.9042 amu 42.80% of the time

MAR

MAR

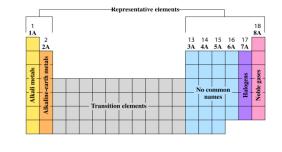
The Periodic Table MAR

Beginning in upper left corner, elements are arranged by increasing atomic number


Seven horizontal rows called periods

Eighteen vertical columns called groups.

Elements in a given group have similar chemical properties (i.e. lithium, sodium, potassium, etc. in group 1A have similar properties)



Groups and Periods

Groups on the Periodic Table

Several groups of elements are known by common names.

MAR

Shuttle main engines use H₂ and O₂

MAR

Hydrogen

Group 1A: Alkali Metals



Extreme reactivity with water!

The Hindenburg crash, May 1939.

- MAR
- Sodium cut with a knife Solids at room temperature, violently react with water

Group 2A: Alkaline Earth Metals

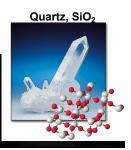
Ba gives green fireworks

Alkaline Earth Metals occur naturally only in compounds (except Be)

Group 3A: The Icosagens B, Al, Ga, In, Tl

Aluminum, the most abundant metal in the earth's crust

Liquid Gallium! MAR


Boron halides, BF₃ & BI₃

Twisted Metals!

Group 4A: The Crystallogens: C, Si, Ge, Sn, Pb

Diamond

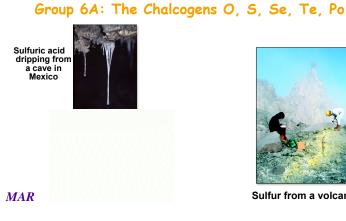
Group 5A: The Pnictogens N, P, As, Sb, Bi

Ammonia, NH₃

Memorize: ammonia = NH₃!

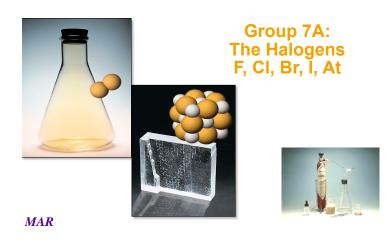
Bismuth

White and red phosphorus

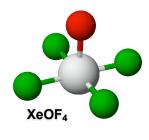


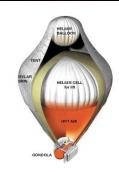
Phosphorus

Red and white phosphorus ignite in air to make P₄O₁₀

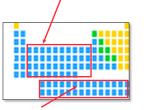

Phosphorus first isolated by Brandt from urine (!) in 1669

Most chemists' jobs are not so "demanding"!!!



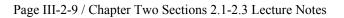

Sulfur from a volcano

Group 8A: Noble Gases He, Ne, Ar, Kr, Xe, Rn All gases at room temperature; considered unreactive until 1962



End of Chapter 2 (2.1-2.3)

Transition Metals



Lanthanides and actinides

Iron in air gives iron(III) oxide

MAR

